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Abstract: Cancer drug resistance presents a challenge for precision medicine. Drug-resistant mu-
tations are always emerging. In this study, we explored the relationship between drug-resistant
mutations and drug resistance from the perspective of protein structure. By combining data from
previously identified drug-resistant mutations and information of protein structure and function, we
used machine learning-based methods to build models to predict cancer drug resistance mutations.
The performance of our combined model achieved an accuracy of 86%, a Matthews correlation
coefficient score of 0.57, and an F1 score of 0.66. We have constructed a fast, reliable method that
predicts and investigates cancer drug resistance in a protein structure. Nonetheless, more information
is needed concerning drug resistance and, in particular, clarification is needed about the relationships
between the drug and the drug resistance mutations in proteins. Highly accurate predictions regard-
ing drug resistance mutations can be helpful for developing new strategies with personalized cancer
treatments. Our novel concept, which combines protein structure information, has the potential to
elucidate physiological mechanisms of cancer drug resistance.

Keywords: cancer drug; drug resistance; single amino acid variation; protein structure; machine
learning; feature selection; personalized therapeutics

1. Introduction

One of the greatest challenges of this century is precision medicine, highlighted
by the search for personalized cancer medicine. The expectation is that by analyzing
tumors at the molecular level, scientists can design treatment that specifically adapts
to specific molecular subgroups of tumors and even individual patient characteristics,
greatly improving the therapeutic outcomes. In recent decades, targeted cancer therapy
has been associated with significant improvements in survival rates, so has become one
of the standard strategies for cancer treatment [1]. However, a problem with targeted
drug therapy is the emergence of cancer drug resistance [2], as with chemotherapy [3,4].
Many studies have investigated the mechanisms of resistance to chemotherapy and their
solutions [5–14]. The mechanisms of how cancer cells acquire targeted drug resistance are
not clarified. Some patients develop resistance to targeted drug therapy post-treatment,
possibly due to the occurrence of drug-resistant mutations [15]. For example, gefitinib and
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afatinib, epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) that have
been developed as targeted therapies for use in patients with non-small cell lung cancer
(NSCLC) who have EGFR-activating mutations, significantly improve survival rates in
this patient population [16–18]. However, a recent case study has reported that a patient
with NSCLC and the EGFR L858R mutation developed acquired resistance to gefitinib [19].
Gene sequencing of the blood revealed an EGFR kinase domain duplication (EGFR-KDD
mutation) that has not previously been reported as an acquired mutation due to EGFR-TKI
resistance in NSCLC [19]. The gradual development of acquired resistance within tumors is
characterized by subpopulations of cells that may acquire or already possess the mutations
that enable them to escape the effects of targeted therapies [20–22]. Adaptive responses
of tumor cells to treatment promote a variety of mechanisms that lead to drug resistance,
including changes in the tumor microenvironment, repair of DNA damage, changes in drug
targets, alterations of signaling pathways, and changes in the pharmacology of cells [4,23].
Many experimental studies have revealed intrinsic or acquired resistance mechanisms that
validate the use of strategic changes to treatment strategies, such as combination therapy, to
overcome resistance to tumor treatment [24,25]. Notably, searching for successful treatment
strategies requires multiple experimental conditions, cell lines and different time series
modeling techniques, all of which are expensive and time-consuming to conduct with
traditional hypothesis-driven experimental methods [26–28].

In recent years, the public release of data from large-scale drug screening programs [29–32]
has helped to promote the development of precision oncology. These data have been ap-
plied by computational methods to identify putative drug response biomarkers [29,33]
and have been used to develop predictive models to predict drug sensitivity [34]. The
development of computational strategies for predicting drug responses is vital for guid-
ing drug discovery and reducing the required amount of experimental work. Various
machine learning models have been proposed that predict drug responses and enable
the discovery of drug response biomarkers, such as the random forest algorithm [34–37],
support vector machine (SVM) algorithms [38], neural networks [39] and Bayesian mul-
titask multiple kernel learning [40,41]. Many methods have been developed to predict
drug responses using analytical data based on signaling networks, cellular dynamics, and
high-throughput data [42–46].

Evidence from the study of genomics has produced vital information. As proteins are
responsible for coordinating biological processes of cells, understanding and analyzing
the role of proteins in organisms is necessary for correct assessments of disease status [47].
Proteomes are much more complex than their corresponding genomes, as proteomes
involve mechanisms such as alternative splicing and post-translational modifications.
Correct biological functions of proteins depend upon them coiling and folding correctly
into three-dimensional (3D) structures; gene mutations can lead to structural changes
that influence protein functions [48,49]. In many types of gene mutations, most disease-
related single amino acid variations (SAVs) occur in structurally or functionally important
positions. SAV refers to an amino acid substitution caused by a genetic polymorphism. In
extreme cases, nonsynonymous encoding variants alter protein sequences and thus change
the entire protein structure or function. The unique physical and chemical properties of
each kind of amino acid mean that the occurrence of mutations at different positions in the
sequence affects protein conformation and function to varying degrees.

In this study, we explored the relationship between resistance mutations and cancer
drug resistance from the perspective of protein structures and we built a reliable predic-
tion model to distinguish which mutation(s) might be responsible for drug resistance.
The data used to build prediction models were obtained from the Catalogue of Somatic
Mutations in Cancer (COSMIC) database, the world’s largest expert-curated database of
somatic mutations in human cancers [50]. These mutations are recorded in the literature
as drug resistance mutations and include both intrinsic resistance (before treatment) and
acquired resistance (after treatment). The prediction models were constructed by machine
learning-based methods, including genetic algorithms and SVMs, to predict drug resistance
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mutations involving protein structures. The performance of our combined model demon-
strated an accuracy of 86%, an MCC (Matthews correlation coefficient) of 0.57 and an F1
score of 0.66, indicating that mutations may lead to drug resistance by altering protein
structures and their positions in 3D space.

2. Results
2.1. Performance Evaluation of the Training Set

This study employed the machine learning method to construct several different
drug resistance SAV prediction (DRSP) models. Each model was subjected to the five-fold
cross-validation technique to evaluate predictive performance. All prediction models were
optimized using the MCC as the fitness function. Table 1 presents comparisons of predictive
performances from the different prediction models. In our experiment, the prediction of
the simulated complexes (DRSPs) outperformed the prediction of the crystal complexes
(DRSPc). The training set from the simulated and crystal complexes was divided into
subgroups based on the spatial distance between the SAVs and the drug. According to
the study dataset, approximately 60% of drug-resistant SAVs were located within an 8 Å
distance from the drug; this 8 Å space surrounding the drug was regarded as the drug-
binding pocket. We therefore used a cut-off of 8 Å, then divided the model according to
SAV location; within the 8 Å space surrounding the drug (DRSPi, where “i” = interior), or
beyond that space (DRSPe, where “e” = exterior). The interior models (DRSPi

c and DRSPi
s)

had higher sensitivity than the exterior models (DRSPe
c and DRSPe

s), although the exterior
models exhibited higher specificity than the interior models. Thus, we speculated that
combining the DRSPe and DRSPi models would yield superior performances for both
prediction models (simulated and crystal complexes). The combined interior and exterior
modeled complexes yielded an accuracy of 85%, an MCC of 0.56 and F1 score of 0.65. The
performance was slightly better with the combined interior and exterior crystal complexes,
with an accuracy of 86%, an MCC of 0.57 and F1 score of 0.66, which may be due to the
SAV positions, which are capable of directly or indirectly influencing drug binding to the
protein. The superior predictive performance based on the 8 Å distance suggests that
spatial distance is a primary consideration for calculations into direct and indirect factors
affecting drug resistance. Indeed, spatial distance appears to be the primary contributor in
the impact of resistance SAVs.

Table 1. Comparison of predictive performances from different prediction models. All predictions
were optimized using the Matthews correlation coefficient (MCC) as the fitness function.

Models Accuracy Sensitivity Specificity MCC Precision F1 Score

DRSPc 0.8377 0.5338 0.9224 0.4936 0.6574 0.5892
DRSPs 0.8508 0.5188 0.9434 0.5241 0.7188 0.6026
DRSPe

c 0.8886 0.5385 0.9378 0.4803 0.5490 0.5437
DRSPi

c 0.7819 0.7284 0.8224 0.5536 0.7564 0.7421
DRSPe

s 0.8886 0.5577 0.9351 0.4888 0.5472 0.5524
DRSPi

s 0.7660 0.6914 0.8224 0.5196 0.7467 0.7179
DRSPe

c + DRSPi
c 0.8557 0.6541 0.9119 0.5724 0.6744 0.6641

DRSPe
s + DRSPi

s 0.8508 0.6391 0.9099 0.5567 0.6641 0.6513

2.2. Performance Evaluation of the Testing Set

The testing set contained three resistance SAVs located in three proteins: L505H in the
BRAF protein kinase (a participant in MAP kinase/ERK signaling) [51]; V215E in the dual
specificity mitogen-activated protein kinase 2 (MAP2K2, a downstream kinase from BRAF
in the MAPK pathway) [34]; and G2032R in the c-ros oncogene 1 (ROS1, a receptor tyrosine
kinase that acts as an oncogene driver of non-small cell lung cancer [NSCLC]) [52] (Table 2).
The molecular docking method was used to simulate the BRAF-vemurafenib, MAP2K2-
PD0325901, and ROS1-crizotinib structural complexes. Different prediction models were
used to perform drug-resistant SAV predictions, according to the distance between the
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drug-resistant SAV and the drug in the simulated complexes. Table 2 presents distances
between drug-resistant SAVs and drugs, the prediction models, and the predicted results.
The DRSPi

c model correctly predicted three drug-resistant SAV mutations; L505H in BRAF,
V215E in MAP2K2 and G2032R in ROS1. However, L505H in BRAF and V215E in MAP2K2
were not correctly predicted by the DRSPe

s model. Specificity values of the testing sets
predicted by the combined models from the crystal and simulated complexes were 0.84
and 0.93, respectively. The predicted results from the testing sets indicate that the crystal
complex performs better than the simulated complex prediction model in the identification
of drug-resistant SAVs. In contrast, the simulated complex prediction model performs
better in detecting non-drug-resistant SAVs.

Table 2. The predicted results from the testing sets.

Protein Drug-Resistant SAV Distance 1 Model Predicted Result

BRAF L505H 5.41 DRSPi
c TP

DRSPi
s FN

MAP2K2 V215E 4.27 DRSPi
c TP

DRSPi
s FN

ROS1 G2032R 3.30 DRSPi
c TP

DRSPi
s TP

1 The distance between the drug-resistant SAV and the docked drug.

2.3. Case Study: L505 in BRAF and V215E in MAP2K2

The BRAF gene is an oncogene that occurs in 8% of human cancers [53], while the
BRAF mutation usually occurs in melanoma and colorectal cancer [54,55]. The substitution
of the valine residue by glutamic acid at amino acid position 600 of the BRAF protein
is the most frequently observed BRAF mutation (occurring in approximately 90% of pa-
tients) [53,56]. Previous studies have documented how the use of a MAP2K2 inhibitor for
BRAF-mutated melanoma triggers the PI3K/AKT pathway and leads to drug treatment
resistance, although acquired MAP2K2 mutations have also been associated with the drug
resistance [57,58]. BRAF inhibitor therapy can provide short-term curative effects, but it
also induces resistance and often disease progression [59]. Several unique drug-resistant
SAVs have been reported in the COSMIC database. Five L505 mutations in the BRAF
protein have been linked to vemurafenib; one of these L505 mutations is mutated to his-
tidine [60,61]. Moreover, a V215E mutation in MAP2K2 is reportedly associated with
PD0325901 drug resistance [62].

Our prediction model analyzes the interaction characteristics of drug-protein com-
plexes. However, not all drug-protein complexes have a crystal structure for analysis.
For those complexes lacking a crystal structure, we would use the docking model to
simulate the complex before analyzing whether the SAVs are drug-resistant or not. Our
docking model has proven reliable for our follow-up analysis, because the positions of
each drug in the simulated complexes overlap the drug positions in the crystal complexes
(Figures 1a, 2a and 3a). We were also able to simulate each mutated amino acid so that
we could investigate changes in the structures after substitution (Figures 1b, 2b and 3b).
Simulated mutated amino acids were generated by PS2, a protein structure prediction
server [63]. The BRAF leucine residue 505 is 5.41 Å away from the docking space for
vemurafenib, while the MAP2K2 valine residue 215 is 4.27Å away from PD0325901. Both
drug-resistant SAVs are positioned within the distance of 8 Å. Thus, the DRSPi

c would be
applied. This model incorporates several critical features (see Table S1): the drug-resistant
SAVs are found with low levels of five elements (W-H-neu, W-Z-low, W-Z-med, W-P-low,
and W-P-neu) within the surrounding amino acid residues. This finding implies that fewer
neutral amino acids are associated with drug-resistant SAVs. BRAF residue L505 is posi-
tioned very near the functional amino acid R506, which exhibits a distinct conformation for
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molecular binding [64]. We speculated that this unique pattern can be used to predict drug
resistance and highlight drug-protein interactions.

Figure 1. Simulated and crystal structures of the BRAF-drug complex. (a) The simulated structure
of the BRAF-vemurafenib complex. Docked vemurafenib is indicated by the orange-colored stick.
The magenta-colored stick represents the pyrazolopyridine inhibitor, which is located in the crystal
structure of the BRAF-pyrazolopyridine inhibitor complex. The gray-colored cartoon structures of
BRAF (PDBID: 3TV6 [65]) were drawn using PyMOL software. Residues found within 8 Å from
vemurafenib are represented by blue coloring. The drug-resistant SAV (L505) is represented as spheres
in blue. (b) Simulation of the amino acid mutated to histidine (H505) is shown in the color green.

Figure 2. Simulated and crystal structures of the MAP2K2-drug complex. (a) The simulated structure
of the MAP2K2-PD0325901 complex. Docked PD0325901 is indicated by the yellow-colored stick.
The blue-colored stick indicates the PD184352-like inhibitor. The gray-colored cartoon structures of
MAP2K2 (PDBID: 1S9I [66]) were drawn using PyMOL software. Residues found within 8 Å from
PD0325901 are represented by pink coloring. The drug-resistant SAV (V215) is represented as spheres
in pink. (b) Simulation of mutated glutamic acid (E215) is shown in the color green.
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Figure 3. Simulated and crystal structures of the ROS1-drug complex. (a) The simulated structure of
the ROS1-crizotinib structure complex. Docked crizotinib is indicated by the yellow-colored stick.
The transparent orange-colored stick indicates crizotinib. The gray-colored cartoon structures of
ROS1 (PDBID: 3ZBF [67]) were drawn using PyMOL software. Residues found within 8 Å from
crizotinib are represented by green coloring. The drug-resistant SAV (G2032) is represented as spheres.
(b) Simulation of mutated arginine (R2032) is shown in the color purple.

2.4. Case Study: The ROS1-G2032R Mutation

The rearrangement of the ROS1 gene has been reported in several different tumors, in-
cluding NSCLC [68]. Almost all patients with NSCLC receiving first- or second-generation
tyrosine kinase inhibitors develop treatment resistance. The secondary kinase-domain mu-
tation ROS1-G2032R has been identified in patients refractory to treatment with crizotinib,
an ALK/ROS1/MET inhibitor [69,70]. The G2032R mutation also significantly reduces
the cellular potency of lorlatinib [71]. Alteration of the glycine residue 2032 to arginine in
the ROS1 structure is responsible for blocking the drug binding [72,73]. In our predicted
system, the ROS1 glycine 2032 is 3.3 Å away from the docking space for crizotinib (within
the 8 Å distance surrounding crizotinib), so it would be appropriate to apply the DRSPi

c
model. The amino acid residues surrounding drug-resistant SAVs are found with neutral
and low polarizability properties. Glycine is simply an amino acid with a neutral charge,
while mutated arginine is a large-volume amino acid with an electrically charged side chain.
These massive changes in the microenvironment represent an obstacle for drug binding.
Our prediction system predicted correctly in this case.

3. Discussion

A critical problem that has emerged with cancer-targeted therapies is persistent drug
resistance, which is linked to various factors including increased drug efflux, epigenetics,
inhibition of apoptosis, and drug inactivation [74,75]. These factors lead to escape pathways
and adaptive mechanisms that can even include inactivation of the drug. Another challenge
in drug resistance is the heterogeneity of tumors [76]. Genetic heterogeneity influences
drug responses and causes drug resistance [77,78]. Although several large-scale tumor
genomic projects exist, such as the 1000 Genomes Project [79], COSMIC [50] and the TCGA
database [80], no models have systematically investigated the relationship between drug
resistance and genetic mutations. Clarifying this relationship would benefit the drug
development process, by serving as a reference during drug design and modifications. Our
DRSP model attempts to provide a comprehensive high-throughput system for the full
appreciation of drug resistance. Our approach offers a spatial structure that incorporates
microenvironmental properties and interprets how drugs interact with protein residues.
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This system is advantageous for not only determining which SAVs are associated with drug
resistance, but it also assists with drug development.

When we divided our prediction system into two subgroups, based on the 8 Å dis-
tance between docked drug and protein, we found that combining the interior (within the
8 Å distance) and exterior (beyond the 8 Å distance) models resulted in superior perfor-
mances for both prediction models (simulated and crystal complexes). We suggest that
this phenomenon may be related to the location of the SAV, indicating that it is closely
associated with the drug interaction. The binding pocket is a dynamic, active site that
hosts drug-protein interactions. Within this space, not all of the mutations are capable
of influencing drug resistance; each amino residue within the 8 Å distance has a distinct
function, such as arginine and histidine, which are more likely to be located in the ligand
binding site [81,82]. More research is needed to explore these discrepant functions.

Our drug prediction systems analyzed selected features from the energy arising from
interactions between drug molecules and SAVs, microenvironmental properties surround-
ing SAVs, protein structural characteristics and sequence conservation profiles of the SAVs
(Figure 4). The four models share three features: the weighted contact number of aromatic
amino acid, W-E-aro (FWY); the weighted contact number of sulfur amino acid, W-E-sul
(CM), and an average entropy value containing 11 residues, ETP-avg11. Phenylalanine,
tyrosine and tryptophan play a key role in the stability of the folding structure, while
cysteine and methionine are important for structural maintenance; both molecules are
hydrophobic. ETP-avg11 values may assist with evolutionary conservation.

Figure 4. Selected features that were applied in the four drug prediction models.

Other features were selected for distances within 8 Å in the simulated and crystal
complexes: the weighted contact number of the medium-volume amino acid, W-V-med
(NVEQIL); the weighted contact number of the amino acid with neutral polarity, W-P-neu
(PATGS); a BLOSUM62 substitution matrix, SSI-b62; and an average value over 7 residues,
ETP-avg7. Around 40% of drug-resistant SAVs are located beyond the drug-binding pocket,
but also lead to drug resistance. We also identified several features that are located beyond
the 8 Å distance from the ligand: van der Waals forces, DKE-vdw; the weighted contact
number of oxygen atoms, WCN-o; the weighted contact number of the amino acid with
neutral polarity, W-H-neu (GASCTPHY); the weighted contact number of the small-volume
amino acid, W-V-sma (GASCTPD); the weighted contact number of the amino acid with
low polarizability, W-Z-low (GASDT); the weighted contact number of the acidic amino
acid, W-E-aci (DE); a secondary structure, SSE; an H-bond acceptor of the backbone H-
bond energy, EHB-acc; and an average value over 5 residues, ETP-avg5. Although further
study is needed for most of these selected features to determine the mechanisms of drug
resistance, our results indicate that it is possible to reliably predict drug-resistant mutations.

The greatest obstacle facing any attempt to reliably predict drug-resistant mutations
is the identification of those SAVs capable of influencing drug resistance. The scant data
in the literature makes it challenging to link with certainty any SAVs with drug resis-
tance. Similarly, although several reliable prediction tools such as SIFT and PolyPhen can
determine the pathogenic degree of variants, their rarity makes them difficult to define
and their potential for drug resistance is uncertain. As illustrated by the TCGA records,
only 132 BRAF missense variants (48 of which are predicted to be deleterious, i.e., asso-
ciated with tumorigenesis, but are not necessarily drug-resistant) have been identified
in 731 cancer patients across 26 tumor types; 82.76% of those patients have mutations in
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valine residue 600. The frequencies of other mutations amount to less than 2%, and most
mutations are only detected once. Interestingly, both our crystal and simulated models
predicted three mutations (F516L, M517V, and G596S) as capable of causing drug resistance
(Figure 5a). Although the evidence is insufficient at this time, further research is warranted
with these variants. The TCGA records have revealed the MAP2K2 protein in association
with 51 missense variants in 57 patients across 16 tumor types; all of these variants are
rare, as each appears only twice at the most. Moreover, 24 of these missense variants are
deleterious. Interestingly, both of our prediction systems identified one of the 24 missense
variants—mutation of G83 to serine was predicted as a drug-resistant mutation (Figure 5b).
G83 is in a glycine-rich conservative loop, a catalytic region for binding and positioning
ATP [83]. Although this mutation is not directly involved in drug interactions, it might
alter drug binding and subsequently lead to drug resistance. TCGA data show that the
ROS1 protein is found in 475 missense variants (40 of which have been identified by SIFT
and PolyPhen as deleterious) in 384 patients across 29 cancer types; the frequencies of these
variants are below 1%. One of those 40 missense variants (S2088 mutated to phenylala-
nine) was predicted to be a drug-resistant mutation by both of our systems (Figure 5c).
Although most cancer-related mutations are rare, differences between individual patterns
are important for precise medicine for tailoring targeting therapy.

Figure 5. Simulated structures of the protein-drug complexes with mutation alterations. Wild-type
amino acids are represented as spheres and mutated-type amino acids as sticks. (a) The BRAF-
vemurafenib complex with the F516L, M517V, and G596S mutations. (b) The MAP2K2-PD0325901
structure complex with the G83S mutation. (c) The ROS1-crizotinib structure complex with the
S2088F mutation.

Although the crystal drug-protein complex might more realistically reflect the binding
condition, the crystallization structure has some limitations. Not all of the protein has
the drug-protein co-crystal complex. Thus, we built the crystal complex and simulated
two prediction systems to confirm the influence of SAVs on drug resistance. Our modeled
systems can also analyze whether a particular SAV influences drug resistance without the
crystal complex. Before performing any prediction, we would use the docking method to
create the protein-drug complex. Although the conformation of the protein structure might
differ slightly due to binding with different compounds, the binding site would be the
identical region. A comparison of our stimulated and crystal complexes reveals consistent
drug binding sites. Our stimulated complex is therefore reliable.

The primary impediment facing our study research is the small pool of data available
for analysis. Although many large-scale cancer genome projects exist, scant information
is available regarding drug resistance. Another challenge is how to confirm which SAVs
would likely impact drug resistance. Understanding which SAVs influence the effects of
a drug is invaluable for research and drug development in the cancer field. Our system
provides characteristics of SAVs that help to elucidate their functions. The features used by
our prediction systems may serve as valuable factors for further study.
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4. Materials and Methods
4.1. Dataset Preparation

All SAV-related data were obtained from The Cancer Genome Atlas (TCGA) [80] and
COSMIC databases [50]. The TCGA project has collected and sequenced gene mutations
across many different cancers, while COSMIC is the largest available global database that
includes somatic mutations from human cancers. To date, 582 unique drug-resistance
mutations located in 22 genes have been annotated in COSMIC and 2,531 missense mu-
tations located in these genes have been recorded in the TCGA. The impacts of these
mutations can be appropriately interpreted by methodologies such as those used in studies
predicting changes in amino acids that affect protein function, as with the SIFT (Sorting
Intolerant from Tolerant) program [84] and by methodology that predicts the impact of
protein sequence variants, such as PolyPhen [85]. For our study, non-drug-resistant SAVs
were collected which were identified as deleterious by SIFT and PolyPhen. All SAVs were
mapped to the identified protein structure obtained from the Protein Data Bank (PDB) via
the Universal Protein Resource (UniProt). SAVs that lacked structure, were duplicated,
or were ambiguous were filtered out, leaving a total of 136 drug-resistant and 589 non-
drug-resistant SAVs in our dataset, which were classified into training and testing sets. The
training set contained 11 protein-drug crystal complexes and included 133 drug-resistant
and 477 non-drug-resistant SAVs. PDB alphanumeric identifiers (IDs) and the numbers of
drug-resistant and non-drug-resistant SAVs are listed for each training set protein-drug
complex in Table 3.

Table 3. Numbers of drug-resistant and non-drug-resistant SAVs for each protein and drug in the
training set.

Protein Drug PDB ID Drug-Resistant 1 Non-Drug-Resistant 2

ABL1 Imatinib 1OPJ 31 36
ALK Alectinib 3AOX 24 50
BTK Ibrutinib 5P9I 4 36

EGFR Osimertinib 4ZAU 15 54
ESR1 Raloxifene 1ERR 6 23
FLT3 Quizartinib 4RT7 5 48
KIT Imatinib 1T46 21 51

MAP2K1 PD0325901 3VVH 2 31
PDGFRA Sunitinib 6JOK 1 65

SMO Vismodegib 5L7I 17 42
MET Crizotinib 2WGJ 7 41

TOTAL 133 477
1 Numbers of drug-resistant SAVs; 2 Numbers of non-drug-resistant SAVs.

The testing set was used for the performance evaluation, which contained three
drug-resistant SAVs (BRAF, MAP2K2, and ROS1) located in three proteins (Table 4). The
BRAF-vemurafenib, MAP2K2-PD0325901, and ROS1-crizotinib complexes were simulated
by the molecular docking method.

Table 4. Numbers of drug-resistant and deleterious SAVs for each protein and drug in the testing set.

Protein Drug PDB ID Drug-Resistant 1 Non-Drug-Resistant 2

BRAF Vemurafenib 3TV6 1 48
MAP2K2 PD0325901 1S9I 1 24

ROS1 Crizotinib 3ZBF 1 40

TOTAL 3 112
1 Numbers of drug-resistant SAVs; 2 Numbers of non-drug-resistant SAVs.
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4.2. Construction of Prediction Systems

The machine learning method was used to build two DRSP systems. The first sys-
tem contained two prediction models, DRSPc and DRSPs, constructed according to the
features generated by the crystal and simulated protein-drug complexes of the training
set, respectively. The simulated protein-drug complexes of the training set were obtained
by removing non-protein molecules from the protein structures and docking the drug
into the protein structure. The second prediction system divided the training set into two
subgroups, according to whether the minimum distance between drug and protein was
greater or less than 8 Å in the protein-drug crystal complexes. Figure 6 shows the numbers
of drug-resistant and non-drug-resistant SAV distributions for each distance interval (2 Å).
A total of 60.09% drug-resistant SAVs were within 8 Å, so were regarded as located within
the drug-binding pocket of proteins. These SAVs are considered to be capable of directly
affecting the binding of the drug. The remaining 39.91% of drug-resistant SAVs were
beyond the drug-binding pocket of proteins and were regarded as indirectly affecting drug
binding activity. The training set was split into two subgroups (e and i), and four prediction
models were built: DRSPe

c and DRSPi
c for the crystal protein-drug complexes and DRSPe

s
and DRSPi

s for the simulated protein-drug complexes.

Figure 6. Distributions of drug-resistant and non-drug-resistant SAVs in the training set.

4.3. Machine Learning Method

Each prediction model was an SVM classifier module. The SVM method is a supervised
learning model that uses statistical risk minimization to estimate the hyperplane of a
classification. This model is widely used for classifying protein structure or function
in computational biology [86–91]. All SVM calculations were performed using LIBSVM
(version 3.24) [92,93], incorporating the radial basis function (RBF) kernel. The RBF kernel
is the most generalized form of kernelization and is widely used because of its similarity to
the Gaussian distribution. Optimized classification was identified by using hyperparameter
tuning techniques for the given datasets. The parameters (penalty and gamma values of
the RBF kernel) were trained by exponentially increasing the grid search from 2−15 to 215,
incorporating best values of informative measures with a 5-fold cross-validation during
model training.



Pharmaceuticals 2022, 15, 136 11 of 18

4.4. Feature Selection

The genetic algorithm (GA) [94–96] was used to select critical features and opti-
mize classification performance. The basic GA procedures were as follows: N solutions
(Si, i = 1, . . . , N) were randomly generated in the initial population, with each solution
Si represented as a set of m-dimensional feature vectors ( f i

j , j = 1, . . . , m) indicating the

binary representations of m features. If f i
j = 1, the jth feature was retained; if f i

j = 0,

the feature jth was eliminated for feeding into the SVM. For each generation of τ, the
three basic mechanisms driving the evolutionary processes were performed, consisting of
the selection, mutation and crossover processes. The selection operators were defined as

ατ = max
{

Sτ
1 , . . . , Sτ

N/2, ατ−1
}

and βτ = max
{

Sτ
N
2 +1

, . . . , Sτ
N , βτ−1

}
. The solutions ατ and

βτ had the best fitness values in each half of the N solutions and ατ−1 and βτ−1 in previous
generations, respectively. For the special case of τ = 0, the fitness values of α0 and β0 were
defined as 0. A new solution in next-generation τ + 1, Sτ+1

i , was considered equal to ατ if
i was an odd numerical value, while Sτ+1

i was equal to βτ if i was an even numerical value.
Four informative measures (Equations (1)–(4)) calculated from the 5-fold cross-validation

were used as the fitness functions in the selection process. They consisted of accuracy (Acc),
the MCC, and the F1 score (F1), as well as the summation of sensitivity and weighted
specificity (Hybrid) values, and were calculated as follows:

Acc =
TP + TN

TP + TN + FP + FN
(1)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(2)

F1 =
2× Precision× Sensitivity

Precision + Sensitivity
(3)

Hybrid = Sensitivity + δ× Speci f icity (4)

where Precision = TP
TP+FP , Sensitivity = TP

TP+FN , and Speci f icity = TN
TN+FP , TP represents

true-positives, TN represents true-negatives, FP represents false-positives, FN represents
false-negatives and δ is the ratio of the number of positives to negatives.

After inputting the selection operators, two types of mutations were applied to the
N solution Sis. In the case of i = 1, . . . , N/2, every b bit of the vectors was subject to
mutation: b = ∼ b, if the mutation rate was less than 0.1. In the case of i = N

2 + 1, . . . , N,
we randomly chose a bit from each vector and subjected the bits to mutation without any
mutation thresholds. The one-point crossover operations were carried out between S2p−1
and S2p, where p = 1, . . . , N/2 and proceeded as follows: the feature vectors from r to m of
S2p−1 and S2p were swapped if the crossover rate was less than 0.5, where r was randomly
selected from 1 to m.

In this work, the processes of feature selections and model training were repeated
for a total of 8 runs. For each run, the number of generations was 150 and there were
80 solutions (N = 80) for each generation. Finally, the best feature set and predictive
performances were selected with their optimized MCC values. The prediction system is
shown schematically in Figure 7.
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Figure 7. The workflow diagram represents the study’s prediction system for cancer drug resistance.

4.5. Generation of Feature Sets

In this study, we used 45 features to describe SAV characteristics, which were classified
into four categories: the interaction energy between the drug and the SAV; the microen-
vironmental properties surrounding the SAV; the protein structural characteristics of the
SAV; and the sequence conservation of the SAV (Table S1). Three types of the interaction
energies between drugs and SAVs (electrostatic, hydrogen-bonding, and van der Waals
forces) were calculated from the crystal or simulated protein-drug complexes using iGEM-
DOCK software [97], a widely used molecular docking program that provides accurate
predictions of protein-molecule interactions. Using iGEMDOCK with an accurate set of
parameters ensured that the drugs were docked into specific proteins and the simulated
protein-drug complexes were also obtained.

The weighted contact number (WCN) model [98] was used to describe our 26 microenvironment-
associated features of SAVs. The local packing density profile of this WCN model is highly
correlated with the sequence conservation profile [99]. The WCN value of atom i was

calculated by WCNi =
N
∑
j 6=i

1
r2

ij
, where rij was the distance between atom i and atom j,

while N was the number of calculated atoms. In this work, atom i was defined as the
Cα atom of SAV, and the different microenvironment properties were represented by
calculated different atom types or the source of atom j. The atom type of j could be
Cα atoms, nitrogen atoms or oxygen atoms of an amino acid, representing the residue-,
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nitrogen- and oxygen-packing densities of a SAV, respectively. The packing density of the
SAVs were then divided into different classifications representing the microenvironmental
properties where the SAV was located. According to the physicochemical properties of
the residues, we used the following classification schemes [100] to refer to the different
microenvironments surrounding the amino acid residues: H for polar (RKEDQN), neutral
(GASTPHY), and hydrophobic (CVLIMFW); V for small (GASCTPD), medium (NVEQIL),
and large (MHKFRYW); Z for low (GASDT), medium (CPNVEQIL), and high polarizability
(KMHFRYW); P for low (LIFWCMVY), neutral (PATGS), and high polarity (HQRKNED);
F for charged (DEHKR), polar (CGNQSTY), and nonpolar (AFILMPVW); and E for acidic
(DE), basic (HKR), aromatic (FWY), amide (NQ), small hydroxyl (ST), sulfur-containing
(CM), aliphatic 1 (AGP), and aliphatic 2 (ILV).

Five structure-associated features were derived from the PDB and DSSP databases [101,102].
Firstly, the B-factor value of the SAV Cα atom was identified; this value represents the
diminished intensity of scattered X-rays after atoms are displaced from their mean positions
in a crystal structure. This displacement may be the result of temperature-dependent atomic
vibrations, or because of static disorder in a crystal lattice. Our model also used critical
DSSP information regarding solvent accessibility and energy derived from the acceptor and
donor backbone hydrogen bonds. The last structural descriptors represent the secondary
structure elements of SAV defined by DSSP; 1 for the α-helix (H, G and I), -1 for the β-sheet
(B and E) and 0 for loop (T, S, and others).

In the last category of characteristics, 11 sequence-associated features were used in this
study. The three commonly used substitution indices were used; the BLOSUM62 [103,104],
PAM250 [105], and the position-specific scoring matrix (PSSM), which was derived from
PSI-BLAST [106]. The evolutional entropy values derived from PSI-BLAST were used to
denote a sliding window containing several amino acids on either side of the SAV. This
window of amino acids was used to calculate average entropy values. Window lengths
of 1, 3, 5, 7, 9, 11, 13 and 15 are centered on the SAV, representing sequence conservations
from near to far-ranging.

5. Conclusions

In this project, we developed a drug-resistant prediction system that provides SAV
environmental properties comprising the interaction energy, structure characteristics, and
microenvironmental components. Although drug resistance is a more complicated mech-
anism involving more than a single mutation, an in-depth evaluation of the SAVs can
determine how a particular SAV is associated with drug resistance and its value for drug
development. Moreover, although targeted therapy is the preferred strategy for cancer
treatment, it needs to consider molecular heterogeneity for the cancer being treated and
the particular mutation pattern. Our prediction system may also be applied to different
mutation patterns. The information gleaned can be used to generate individually-specific
treatment strategies for true precision medicine.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/ph15020136/s1: Table S1: The list of 45 feature vectors used for
training. Dataset.xlsx: Training and testing datasets.

Author Contributions: Conceptualization, C.-H.L. and Y.-F.L.; methodology, C.-H.L. and C.-S.Y.; vali-
dation, Y.-J.C., C.-S.Y. and W.Y.; investigation, J.-J.L.; data curation, J.-J.L. and Y.-J.C.; writing—original
draft preparation, Y.-F.L. and J.-J.L.; writing—review and editing, C.-H.L. and H.-Y.L.; visualization,
J.-J.L.; supervision, H.-Y.L.; project administration, C.-H.L.; funding acquisition, C.-H.L. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by C.-H.L. of China Medical University, Taiwan, grant number
CMU110-S-35.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

https://www.mdpi.com/article/10.3390/ph15020136/s1
https://www.mdpi.com/article/10.3390/ph15020136/s1


Pharmaceuticals 2022, 15, 136 14 of 18

Data Availability Statement: The authors confirm that the data supporting the findings of this study
are available within the article and its Supplementary Materials.

Acknowledgments: We would like to thank Iona MacDonald for professional language editing.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sawyers, C. Targeted cancer therapy. Nature 2004, 432, 294–297. [CrossRef]
2. Camidge, D.R.; Pao, W.; Sequist, L.V. Acquired resistance to TKIs in solid tumours: Learning from lung cancer. Nat. Rev. Clin.

Oncol. 2014, 11, 473–481. [CrossRef]
3. Tukagoshi, S. Cancer chemotherapy; past, present and future—From the aspect of fundamental studies. Gan Kagaku Ryoho 2003,

30, 1398–1403.
4. Asano, T. Drug Resistance in Cancer Therapy and the Role of Epigenetics. J. Nippon Med. Sch. 2020, 87, 244–251. [CrossRef]
5. Hinds, M.; Deisseroth, K.; Mayes, J.; Altschuler, E.; Jansen, R.; Ledley, F.D.; Zwelling, L.A. Identification of a point mutation in the

topoisomerase II gene from a human leukemia cell line containing an amsacrine-resistant form of topoisomerase II. Cancer Res.
1991, 51, 4729–4731.

6. Jhaveri, M.S.; Morrow, C.S. Methylation-mediated regulation of the glutathione S-transferase P1 gene in human breast cancer
cells. Gene 1998, 210, 1–7. [CrossRef]

7. Cabral, F.R.; Brady, R.C.; Schibler, M.J. A mechanism of cellular resistance to drugs that interfere with microtubule assembly. Ann.
N. Y. Acad. Sci. 1986, 466, 745–756. [CrossRef]

8. Moscow, J.A.; Cowan, K.H. Multidrug resistance. J. Natl. Cancer Inst. 1988, 80, 14–20. [CrossRef]
9. Zhang, Y.; Yang, S.H.; Guo, X.L. New insights into Vinca alkaloids resistance mechanism and circumvention in lung cancer.

Biomed. Pharmacother. 2017, 96, 659–666. [CrossRef]
10. Tsuruo, T. Mechanisms of multidrug resistance and implications for therapy. Jpn. J. Cancer Res. 1988, 79, 285–296. [CrossRef]
11. Yao, Y.; Zhou, Y.; Liu, L.; Xu, Y.; Chen, Q.; Wang, Y.; Wu, S.; Deng, Y.; Zhang, J.; Shao, A. Nanoparticle-Based Drug Delivery in

Cancer Therapy and Its Role in Overcoming Drug Resistance. Front. Mol. Biosci. 2020, 7, 193. [CrossRef]
12. Ashrafizadeh, M.; Mirzaei, S.; Gholami, M.H.; Hashemi, F.; Zabolian, A.; Raei, M.; Hushmandi, K.; Zarrabi, A.; Voelcker, N.H.;

Aref, A.R.; et al. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and
resistance suppression. Carbohydr. Polym. 2021, 272, 118491. [CrossRef]

13. Mirzaei, S.; Gholami, M.H.; Hashemi, F.; Zabolian, A.; Farahani, M.V.; Hushmandi, K.; Zarrabi, A.; Goldman, A.; Ashrafizadeh, M.;
Orive, G. Advances in understanding the role of P-gp in doxorubicin resistance: Molecular pathways, therapeutic strategies, and
prospects. Drug Discov. Today 2021. [CrossRef]

14. Maleki Dana, P.; Sadoughi, F.; Asemi, Z.; Yousefi, B. The role of polyphenols in overcoming cancer drug resistance: A comprehen-
sive review. Cell Mol. Biol. Lett. 2022, 27, 1–26. [CrossRef]

15. Villanueva, J.; Vultur, A.; Herlyn, M. Resistance to BRAF inhibitors: Unraveling mechanisms and future treatment options.
Cancer Res. 2011, 71, 7137–7140. [CrossRef]

16. Mok, T.S.; Wu, Y.L.; Thongprasert, S.; Yang, C.H.; Chu, D.T.; Saijo, N.; Sunpaweravong, P.; Han, B.; Margono, B.; Ichinose, Y.; et al.
Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N. Engl. J. Med. 2009, 361, 947–957. [CrossRef]

17. Rosell, R.; Carcereny, E.; Gervais, R.; Vergnenegre, A.; Massuti, B.; Felip, E.; Palmero, R.; Garcia-Gomez, R.; Pallares, C.;
Sanchez, J.M.; et al. Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR
mutation-positive non-small-cell lung cancer (EURTAC): A multicentre, open-label, randomised phase 3 trial. Lancet Oncol. 2012,
13, 239–246. [CrossRef]

18. Lee, S.M.; Khan, I.; Upadhyay, S.; Lewanski, C.; Falk, S.; Skailes, G.; Marshall, E.; Woll, P.J.; Hatton, M.; Lal, R.; et al. First-
line erlotinib in patients with advanced non-small-cell lung cancer unsuitable for chemotherapy (TOPICAL): A double-blind,
placebo-controlled, phase 3 trial. Lancet Oncol. 2012, 13, 1161–1170. [CrossRef]

19. He, C.; Wang, Y. Role of the EGFR-KDD mutation as a possible mechanism of acquired resistance of non-small cell lung cancer to
EGFR tyrosine kinase inhibitors: A case report. Mol. Clin. Oncol. 2022, 16, 30. [CrossRef]

20. Jackman, D.; Pao, W.; Riely, G.J.; Engelman, J.A.; Kris, M.G.; Janne, P.A.; Lynch, T.; Johnson, B.E.; Miller, V.A. Clinical definition of
acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors in non-small-cell lung cancer. J. Clin. Oncol.
2010, 28, 357–360. [CrossRef]

21. West, H.; Oxnard, G.R.; Doebele, R.C. Acquired resistance to targeted therapies in advanced non-small cell lung cancer: New
strategies and new agents. Am. Soc. Clin. Oncol. Educ. Book 2013, 33, e272–e278. [CrossRef]

22. Neel, D.S.; Bivona, T.G. Resistance is futile: Overcoming resistance to targeted therapies in lung adenocarcinoma. NPJ Precis.
Oncol. 2017, 1, 1–6. [CrossRef]

23. Gottesman, M.M.; Lavi, O.; Hall, M.D.; Gillet, J.P. Toward a Better Understanding of the Complexity of Cancer Drug Resistance.
Annu. Rev. Pharmacol. Toxicol. 2016, 56, 85–102. [CrossRef]

24. Obenauf, A.C.; Zou, Y.; Ji, A.L.; Vanharanta, S.; Shu, W.; Shi, H.; Kong, X.; Bosenberg, M.C.; Wiesner, T.; Rosen, N.; et al.
Therapy-induced tumour secretomes promote resistance and tumour progression. Nature 2015, 520, 368–372. [CrossRef]

http://doi.org/10.1038/nature03095
http://doi.org/10.1038/nrclinonc.2014.104
http://doi.org/10.1272/jnms.JNMS.2020_87-508
http://doi.org/10.1016/s0378-1119(98)00021-3
http://doi.org/10.1111/j.1749-6632.1986.tb38456.x
http://doi.org/10.1093/jnci/80.1.14
http://doi.org/10.1016/j.biopha.2017.10.041
http://doi.org/10.1111/j.1349-7006.1988.tb01588.x
http://doi.org/10.3389/fmolb.2020.00193
http://doi.org/10.1016/j.carbpol.2021.118491
http://doi.org/10.1016/j.drudis.2021.09.020
http://doi.org/10.1186/s11658-021-00301-9
http://doi.org/10.1158/0008-5472.CAN-11-1243
http://doi.org/10.1056/NEJMoa0810699
http://doi.org/10.1016/S1470-2045(11)70393-X
http://doi.org/10.1016/S1470-2045(12)70412-6
http://doi.org/10.3892/mco.2021.2463
http://doi.org/10.1200/JCO.2009.24.7049
http://doi.org/10.1200/EdBook_AM.2013.33.e272
http://doi.org/10.1038/s41698-017-0007-0
http://doi.org/10.1146/annurev-pharmtox-010715-103111
http://doi.org/10.1038/nature14336


Pharmaceuticals 2022, 15, 136 15 of 18

25. Straussman, R.; Morikawa, T.; Shee, K.; Barzily-Rokni, M.; Qian, Z.R.; Du, J.; Davis, A.; Mongare, M.M.; Gould, J.;
Frederick, D.T.; et al. Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. Nature 2012,
487, 500–504. [CrossRef]

26. Nayar, U.; Cohen, O.; Kapstad, C.; Cuoco, M.S.; Waks, A.G.; Wander, S.A.; Painter, C.; Freeman, S.; Persky, N.S.; Marini, L.; et al.
Acquired HER2 mutations in ER(+) metastatic breast cancer confer resistance to estrogen receptor-directed therapies. Nat. Genet.
2019, 51, 207–216. [CrossRef]

27. Mao, X.G.; Wang, C.; Liu, D.Y.; Zhang, X.; Wang, L.; Yan, M.; Zhang, W.; Zhu, J.; Li, Z.C.; Mi, C.; et al. Hypoxia upregulates HIG2
expression and contributes to bevacizumab resistance in glioblastoma. Oncotarget 2016, 7, 47808–47820. [CrossRef]

28. Li, L.; Nan, F.; Guo, Q.; Guan, D.; Zhou, C. Resistance to bevacizumab in ovarian cancer SKOV3 xenograft due to EphB4
overexpression. J. Cancer Res. Ther. 2019, 15, 1282–1287. [CrossRef]

29. Barretina, J.; Caponigro, G.; Stransky, N.; Venkatesan, K.; Margolin, A.A.; Kim, S.; Wilson, C.J.; Lehar, J.; Kryukov, G.V.;
Sonkin, D.; et al. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 2012,
483, 603–607. [CrossRef]

30. Yang, W.; Soares, J.; Greninger, P.; Edelman, E.J.; Lightfoot, H.; Forbes, S.; Bindal, N.; Beare, D.; Smith, J.A.; Thompson, I.R.; et al.
Genomics of Drug Sensitivity in Cancer (GDSC): A resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res.
2013, 41, D955–D961. [CrossRef]

31. Basu, A.; Bodycombe, N.E.; Cheah, J.H.; Price, E.V.; Liu, K.; Schaefer, G.I.; Ebright, R.Y.; Stewart, M.L.; Ito, D.; Wang, S.; et al. An
interactive resource to identify cancer genetic and lineage dependencies targeted by small molecules. Cell 2013, 154, 1151–1161.
[CrossRef]

32. Seashore-Ludlow, B.; Rees, M.G.; Cheah, J.H.; Cokol, M.; Price, E.V.; Coletti, M.E.; Jones, V.; Bodycombe, N.E.; Soule, C.K.;
Gould, J.; et al. Harnessing Connectivity in a Large-Scale Small-Molecule Sensitivity Dataset. Cancer Discov. 2015, 5, 1210–1223.
[CrossRef]

33. Garnett, M.J.; Edelman, E.J.; Heidorn, S.J.; Greenman, C.D.; Dastur, A.; Lau, K.W.; Greninger, P.; Thompson, I.R.; Luo, X.;
Soares, J.; et al. Systematic identification of genomic markers of drug sensitivity in cancer cells. Nature 2012, 483, 570–575.
[CrossRef]

34. Iorio, F.; Knijnenburg, T.A.; Vis, D.J.; Bignell, G.R.; Menden, M.P.; Schubert, M.; Aben, N.; Goncalves, E.; Barthorpe, S.;
Lightfoot, H.; et al. A Landscape of Pharmacogenomic Interactions in Cancer. Cell 2016, 166, 740–754. [CrossRef]

35. Cortes-Ciriano, I.; van Westen, G.J.; Bouvier, G.; Nilges, M.; Overington, J.P.; Bender, A.; Malliavin, T.E. Improved large-scale
prediction of growth inhibition patterns using the NCI60 cancer cell line panel. Bioinformatics 2016, 32, 85–95. [CrossRef]

36. Naulaerts, S.; Dang, C.C.; Ballester, P.J. Precision and recall oncology: Combining multiple gene mutations for improved
identification of drug-sensitive tumours. Oncotarget 2017, 8, 97025–97040. [CrossRef]

37. Gayvert, K.M.; Aly, O.; Platt, J.; Bosenberg, M.W.; Stern, D.F.; Elemento, O. A Computational Approach for Identifying Synergistic
Drug Combinations. PLoS Comput. Biol. 2017, 13, e1005308. [CrossRef]

38. Huang, C.; Mezencev, R.; McDonald, J.F.; Vannberg, F. Open source machine-learning algorithms for the prediction of optimal
cancer drug therapies. PLoS ONE 2017, 12, e0186906. [CrossRef]

39. Menden, M.P.; Iorio, F.; Garnett, M.; McDermott, U.; Benes, C.H.; Ballester, P.J.; Saez-Rodriguez, J. Machine learning prediction of
cancer cell sensitivity to drugs based on genomic and chemical properties. PLoS ONE 2013, 8, e61318. [CrossRef]

40. Costello, J.C.; Heiser, L.M.; Georgii, E.; Gonen, M.; Menden, M.P.; Wang, N.J.; Bansal, M.; Ammad-ud-din, M.; Hintsanen, P.;
Khan, S.A.; et al. A community effort to assess and improve drug sensitivity prediction algorithms. Nat. Biotechnol. 2014, 32,
1202–1212. [CrossRef]

41. Gonen, M.; Margolin, A.A. Drug susceptibility prediction against a panel of drugs using kernelized Bayesian multitask learning.
Bioinformatics 2014, 30, i556–i563. [CrossRef]

42. Komarova, N.L.; Wodarz, D. Drug resistance in cancer: Principles of emergence and prevention. Proc. Natl. Acad. Sci. USA 2005,
102, 9714–9719. [CrossRef]

43. Faratian, D.; Goltsov, A.; Lebedeva, G.; Sorokin, A.; Moodie, S.; Mullen, P.; Kay, C.; Um, I.H.; Langdon, S.; Goryanin, I.; et al.
Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of PTEN in resistance to
trastuzumab. Cancer Res. 2009, 69, 6713–6720. [CrossRef]

44. Tomasetti, C.; Levy, D. An elementary approach to modeling drug resistance in cancer. Math. Biosci. Eng. 2010, 7, 905–918.
[CrossRef]

45. Sun, X.; Bao, J.; Nelson, K.C.; Li, K.C.; Kulik, G.; Zhou, X. Systems modeling of anti-apoptotic pathways in prostate cancer:
Psychological stress triggers a synergism pattern switch in drug combination therapy. PLoS Comput. Biol. 2013, 9, e1003358.
[CrossRef]

46. Choi, J.; Park, S.; Ahn, J. RefDNN: A reference drug based neural network for more accurate prediction of anticancer drug
resistance. Sci. Rep. 2020, 10, 1861. [CrossRef]

47. Jimenez, C.R.; Zhang, H.; Kinsinger, C.R.; Nice, E.C. The cancer proteomic landscape and the HUPO Cancer Proteome Project.
Clin. Proteom. 2018, 15, 4. [CrossRef]

48. Kato, S.; Han, S.Y.; Liu, W.; Otsuka, K.; Shibata, H.; Kanamaru, R.; Ishioka, C. Understanding the function-structure and
function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc. Natl. Acad.
Sci. USA 2003, 100, 8424–8429. [CrossRef]

http://doi.org/10.1038/nature11183
http://doi.org/10.1038/s41588-018-0287-5
http://doi.org/10.18632/oncotarget.10029
http://doi.org/10.4103/0973-1482.204896
http://doi.org/10.1038/nature11003
http://doi.org/10.1093/nar/gks1111
http://doi.org/10.1016/j.cell.2013.08.003
http://doi.org/10.1158/2159-8290.CD-15-0235
http://doi.org/10.1038/nature11005
http://doi.org/10.1016/j.cell.2016.06.017
http://doi.org/10.1093/bioinformatics/btv529
http://doi.org/10.18632/oncotarget.20923
http://doi.org/10.1371/journal.pcbi.1005308
http://doi.org/10.1371/journal.pone.0186906
http://doi.org/10.1371/journal.pone.0061318
http://doi.org/10.1038/nbt.2877
http://doi.org/10.1093/bioinformatics/btu464
http://doi.org/10.1073/pnas.0501870102
http://doi.org/10.1158/0008-5472.CAN-09-0777
http://doi.org/10.3934/mbe.2010.7.905
http://doi.org/10.1371/journal.pcbi.1003358
http://doi.org/10.1038/s41598-020-58821-x
http://doi.org/10.1186/s12014-018-9180-6
http://doi.org/10.1073/pnas.1431692100


Pharmaceuticals 2022, 15, 136 16 of 18

49. Soskine, M.; Tawfik, D.S. Mutational effects and the evolution of new protein functions. Nat. Rev. Genet. 2010, 11, 572–582.
[CrossRef]

50. Tate, J.G.; Bamford, S.; Jubb, H.C.; Sondka, Z.; Beare, D.M.; Bindal, N.; Boutselakis, H.; Cole, C.G.; Creatore, C.; Dawson, E.; et al.
COSMIC: The Catalogue Of Somatic Mutations In Cancer. Nucleic Acids Res. 2019, 47, D941–D947. [CrossRef]

51. Wagenaar, T.R.; Ma, L.; Roscoe, B.; Park, S.M.; Bolon, D.N.; Green, M.R. Resistance to vemurafenib resulting from a novel mutation
in the BRAFV600E kinase domain. Pigment. Cell Melanoma Res. 2014, 27, 124–133. [CrossRef]

52. Gou, W.; Zhou, X.; Liu, Z.; Wang, L.; Shen, J.; Xu, X.; Li, Z.; Zhai, X.; Zuo, D.; Wu, Y. CD74-ROS1 G2032R mutation transcriptionally
up-regulates Twist1 in non-small cell lung cancer cells leading to increased migration, invasion, and resistance to crizotinib.
Cancer Lett. 2018, 422, 19–28. [CrossRef]

53. Pratilas, C.A.; Xing, F.; Solit, D.B. Targeting oncogenic BRAF in human cancer. Curr. Top. Microbiol. Immunol. 2012, 355, 83–98.
[CrossRef]

54. Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.J.; et al.
Combined BRAF and MEK inhibition versus BRAF inhibition alone in melanoma. N. Engl. J. Med. 2014, 371, 1877–1888. [CrossRef]

55. Barras, D. BRAF Mutation in Colorectal Cancer: An Update. Biomark Cancer 2015, 7 (Suppl. S1), 9–12. [CrossRef]
56. Brose, M.S.; Volpe, P.; Feldman, M.; Kumar, M.; Rishi, I.; Gerrero, R.; Einhorn, E.; Herlyn, M.; Minna, J.; Nicholson, A.; et al. BRAF

and RAS mutations in human lung cancer and melanoma. Cancer Res. 2002, 62, 6997–7000.
57. Van Allen, E.M.; Wagle, N.; Sucker, A.; Treacy, D.J.; Johannessen, C.M.; Goetz, E.M.; Place, C.S.; Taylor-Weiner, A.; Whittaker, S.;

Kryukov, G.V.; et al. The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma. Cancer Discov. 2014,
4, 94–109. [CrossRef]

58. Wagle, N.; Van Allen, E.M.; Treacy, D.J.; Frederick, D.T.; Cooper, Z.A.; Taylor-Weiner, A.; Rosenberg, M.; Goetz, E.M.; Sullivan, R.J.;
Farlow, D.N.; et al. MAP kinase pathway alterations in BRAF-mutant melanoma patients with acquired resistance to combined
RAF/MEK inhibition. Cancer Discov. 2014, 4, 61–68. [CrossRef]

59. Luebker, S.A.; Koepsell, S.A. Diverse Mechanisms of BRAF Inhibitor Resistance in Melanoma Identified in Clinical and Preclinical
Studies. Front. Oncol. 2019, 9, 268. [CrossRef]

60. Hoogstraat, M.; Gadellaa-van Hooijdonk, C.G.; Ubink, I.; Besselink, N.J.; Pieterse, M.; Veldhuis, W.; van Stralen, M.; Meijer, E.F.;
Willems, S.M.; Hadders, M.A.; et al. Detailed imaging and genetic analysis reveal a secondary BRAF(L505H) resistance mutation
and extensive intrapatient heterogeneity in metastatic BRAF mutant melanoma patients treated with vemurafenib. Pigment. Cell
Melanoma Res. 2015, 28, 318–323. [CrossRef]

61. Rizos, H.; Menzies, A.M.; Pupo, G.M.; Carlino, M.S.; Fung, C.; Hyman, J.; Haydu, L.E.; Mijatov, B.; Becker, T.M.; Boyd, S.C.; et al.
BRAF inhibitor resistance mechanisms in metastatic melanoma: Spectrum and clinical impact. Clin. Cancer Res. 2014, 20,
1965–1977. [CrossRef]

62. Hatzivassiliou, G.; Liu, B.; O’Brien, C.; Spoerke, J.M.; Hoeflich, K.P.; Haverty, P.M.; Soriano, R.; Forrest, W.F.; Heldens, S.;
Chen, H.; et al. ERK inhibition overcomes acquired resistance to MEK inhibitors. Mol. Cancer Ther. 2012, 11, 1143–1154. [CrossRef]

63. Chen, C.C.; Hwang, J.K.; Yang, J.M. (PS)2-v2: Template-based protein structure prediction server. BMC Bioinform. 2009, 10, 366.
[CrossRef]

64. Karoulia, Z.; Wu, Y.; Ahmed, T.A.; Xin, Q.; Bollard, J.; Krepler, C.; Wu, X.; Zhang, C.; Bollag, G.; Herlyn, M.; et al. An Integrated
Model of RAF Inhibitor Action Predicts Inhibitor Activity against Oncogenic BRAF Signaling. Cancer Cell 2016, 30, 485–498.
[CrossRef]

65. Wenglowsky, S.; Ren, L.; Ahrendt, K.A.; Laird, E.R.; Aliagas, I.; Alicke, B.; Buckmelter, A.J.; Choo, E.F.; Dinkel, V.; Feng, B.; et al.
Pyrazolopyridine Inhibitors of B-Raf(V600E). Part 1: The Development of Selective, Orally Bioavailable, and Efficacious Inhibitors.
ACS Med. Chem. Lett. 2011, 2, 342–347. [CrossRef]

66. Ohren, J.F.; Chen, H.; Pavlovsky, A.; Whitehead, C.; Zhang, E.; Kuffa, P.; Yan, C.; McConnell, P.; Spessard, C.; Banotai, C.; et al.
Structures of human MAP kinase kinase 1 (MEK1) and MEK2 describe novel noncompetitive kinase inhibition. Nat. Struct. Mol.
Biol. 2004, 11, 1192–1197. [CrossRef]

67. Awad, M.M.; Katayama, R.; McTigue, M.; Liu, W.; Deng, Y.L.; Brooun, A.; Friboulet, L.; Huang, D.; Falk, M.D.;
Timofeevski, S.; et al. Acquired resistance to crizotinib from a mutation in CD74-ROS1. N. Engl. J. Med. 2013, 368, 2395–2401.
[CrossRef]

68. Davies, K.D.; Doebele, R.C. Molecular pathways: ROS1 fusion proteins in cancer. Clin. Cancer Res. 2013, 19, 4040–4045. [CrossRef]
69. Gainor, J.F.; Tseng, D.; Yoda, S.; Dagogo-Jack, I.; Friboulet, L.; Lin, J.J.; Hubbeling, H.G.; Dardaei, L.; Farago, A.F.;

Schultz, K.R.; et al. Patterns of Metastatic Spread and Mechanisms of Resistance to Crizotinib in ROS1-Positive Non-Small-Cell
Lung Cancer. JCO Precis. Oncol. 2017, 1, 1–13. [CrossRef]

70. Song, A.; Kim, T.M.; Kim, D.W.; Kim, S.; Keam, B.; Lee, S.H.; Heo, D.S. Molecular Changes Associated with Acquired Resistance
to Crizotinib in ROS1-Rearranged Non-Small Cell Lung Cancer. Clin. Cancer Res. 2015, 21, 2379–2387. [CrossRef]

71. Lin, J.J.; Shaw, A.T. Recent Advances in Targeting ROS1 in Lung Cancer. J. Thorac. Oncol. 2017, 12, 1611–1625. [CrossRef]
72. Drilon, A.; Jenkins, C.; Iyer, S.; Schoenfeld, A.; Keddy, C.; Davare, M.A. ROS1-dependent cancers—Biology, diagnostics and

therapeutics. Nat. Rev. Clin. Oncol. 2021, 18, 35–55. [CrossRef]
73. Lee, J.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Park, K.; Choi, Y.; Ahn, M.J. Efficacy and Safety of Lorlatinib in Korean Non-Small-Cell Lung

Cancer Patients With ALK or ROS1 Rearrangement Whose Disease Failed to Respond to a Previous Tyrosine Kinase Inhibitor.
Clin. Lung Cancer 2019, 20, 215–221. [CrossRef]

http://doi.org/10.1038/nrg2808
http://doi.org/10.1093/nar/gky1015
http://doi.org/10.1111/pcmr.12171
http://doi.org/10.1016/j.canlet.2018.02.032
http://doi.org/10.1007/82_2011_162
http://doi.org/10.1056/NEJMoa1406037
http://doi.org/10.4137/BIC.S25248
http://doi.org/10.1158/2159-8290.CD-13-0617
http://doi.org/10.1158/2159-8290.CD-13-0631
http://doi.org/10.3389/fonc.2019.00268
http://doi.org/10.1111/pcmr.12347
http://doi.org/10.1158/1078-0432.CCR-13-3122
http://doi.org/10.1158/1535-7163.MCT-11-1010
http://doi.org/10.1186/1471-2105-10-366
http://doi.org/10.1016/j.ccell.2016.06.024
http://doi.org/10.1021/ml200025q
http://doi.org/10.1038/nsmb859
http://doi.org/10.1056/NEJMoa1215530
http://doi.org/10.1158/1078-0432.CCR-12-2851
http://doi.org/10.1200/PO.17.00063
http://doi.org/10.1158/1078-0432.CCR-14-1350
http://doi.org/10.1016/j.jtho.2017.08.002
http://doi.org/10.1038/s41571-020-0408-9
http://doi.org/10.1016/j.cllc.2018.12.020


Pharmaceuticals 2022, 15, 136 17 of 18

74. Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: An overview.
Cancers 2014, 6, 1769–1792. [CrossRef]

75. Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A
Brief Review. Adv. Pharm. Bull. 2017, 7, 339–348. [CrossRef]

76. Konieczkowski, D.J.; Johannessen, C.M.; Garraway, L.A. A Convergence-Based Framework for Cancer Drug Resistance. Cancer
Cell 2018, 33, 801–815. [CrossRef]

77. Wilmott, J.S.; Tembe, V.; Howle, J.R.; Sharma, R.; Thompson, J.F.; Rizos, H.; Lo, R.S.; Kefford, R.F.; Scolyer, R.A.; Long, G.V.
Intratumoral molecular heterogeneity in a BRAF-mutant, BRAF inhibitor-resistant melanoma: A case illustrating the challenges
for personalized medicine. Mol. Cancer Ther. 2012, 11, 2704–2708. [CrossRef]

78. Burrell, R.A.; McGranahan, N.; Bartek, J.; Swanton, C. The causes and consequences of genetic heterogeneity in cancer evolution.
Nature 2013, 501, 338–345. [CrossRef]

79. Genomes Project, C.; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Kang, H.M.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.;
McVean, G.A.; et al. A global reference for human genetic variation. Nature 2015, 526, 68–74. [CrossRef]

80. Cancer Genome Atlas Research, N.; Weinstein, J.N.; Collisson, E.A.; Mills, G.B.; Shaw, K.R.; Ozenberger, B.A.; Ellrott, K.;
Shmulevich, I.; Sander, C.; Stuart, J.M. The Cancer Genome Atlas Pan-Cancer analysis project. Nat. Genet. 2013, 45, 1113–1120.
[CrossRef]

81. Stank, A.; Kokh, D.B.; Fuller, J.C.; Wade, R.C. Protein Binding Pocket Dynamics. Acc. Chem. Res. 2016, 49, 809–815. [CrossRef]
82. Bianchi, V.; Gherardini, P.F.; Helmer-Citterich, M.; Ausiello, G. Identification of binding pockets in protein structures using a

knowledge-based potential derived from local structural similarities. BMC Bioinform. 2012, 13 (Suppl. S4), S17. [CrossRef]
83. Wu, P.K.; Park, J.I. MEK1/2 Inhibitors: Molecular Activity and Resistance Mechanisms. Semin. Oncol. 2015, 42, 849–862.

[CrossRef]
84. Ng, P.C.; Henikoff, S. SIFT: Predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003, 31, 3812–3814.

[CrossRef]
85. Adzhubei, I.A.; Schmidt, S.; Peshkin, L.; Ramensky, V.E.; Gerasimova, A.; Bork, P.; Kondrashov, A.S.; Sunyaev, S.R. A method and

server for predicting damaging missense mutations. Nat. Methods 2010, 7, 248–249. [CrossRef]
86. Hua, S.; Sun, Z. A novel method of protein secondary structure prediction with high segment overlap measure: Support vector

machine approach. J. Mol. Biol. 2001, 308, 397–407. [CrossRef]
87. Yu, C.S.; Wang, J.Y.; Yang, J.M.; Lyu, P.C.; Lin, C.J.; Hwang, J.K. Fine-grained protein fold assignment by support vector machines

using generalized npeptide coding schemes and jury voting from multiple-parameter sets. Proteins 2003, 50, 531–536. [CrossRef]
88. Yu, C.S.; Lin, C.J.; Hwang, J.K. Predicting subcellular localization of proteins for Gram-negative bacteria by support vector

machines based on n-peptide compositions. Protein Sci. 2004, 13, 1402–1406. [CrossRef]
89. Chen, Y.C.; Lin, Y.S.; Lin, C.J.; Hwang, J.K. Prediction of the bonding states of cysteines using the support vector machines based

on multiple feature vectors and cysteine state sequences. Proteins 2004, 55, 1036–1042. [CrossRef]
90. Lei, Z.; Dai, Y. An SVM-based system for predicting protein subnuclear localizations. BMC Bioinform. 2005, 6, 291. [CrossRef]
91. Ward, J.J.; McGuffin, L.J.; Buxton, B.F.; Jones, D.T. Secondary structure prediction with support vector machines. Bioinformatics

2003, 19, 1650–1655.
92. Chang, C.C.; Lin, C.J. LIBSVM: A Library for Support Vector Machines. ACM Trans. Intell. Syst. Technol. 2011, 2, 1–27. [CrossRef]
93. Lin, C.-J. Formulations of support vector machines: A note from an optimization point of view. Neural Comput. 2001, 13, 307–317.
94. Lu, C.H.; Chen, Y.C.; Yu, C.S.; Hwang, J.K. Predicting disulfide connectivity patterns. Proteins 2007, 67, 262–270. [CrossRef]
95. Yu, C.S.; Lu, C.H. Identification of antifreeze proteins and their functional residues by support vector machine and genetic

algorithms based on n-peptide compositions. PLoS ONE 2011, 6, e20445. [CrossRef]
96. Liu, J.J.; Yu, C.S.; Wu, H.W.; Chang, Y.J.; Lin, C.P.; Lu, C.H. The structure-based cancer-related single amino acid variation

prediction. Sci. Rep. 2021, 11, 13599. [CrossRef]
97. Yang, J.-M.; Chen, C.-C. GEMDOCK: A generic evolutionary method for molecular docking. Proteins Struct. Funct. Bioinform.

2004, 55, 288–304. [CrossRef]
98. Lin, C.P.; Huang, S.W.; Lai, Y.L.; Yen, S.C.; Shih, C.H.; Lu, C.H.; Huang, C.C.; Hwang, J.K. Deriving protein dynamical properties

from weighted protein contact number. Proteins 2008, 72, 929–935. [CrossRef]
99. Shih, C.H.; Chang, C.M.; Lin, Y.S.; Lo, W.C.; Hwang, J.K. Evolutionary information hidden in a single protein structure. Proteins

2012, 80, 1647–1657. [CrossRef]
100. Yu, C.S.; Chen, Y.C.; Lu, C.H.; Hwang, J.K. Prediction of protein subcellular localization. Proteins 2006, 64, 643–651. [CrossRef]
101. Cheng, J.; Randall, A.Z.; Sweredoski, M.J.; Baldi, P. SCRATCH: A protein structure and structural feature prediction server.

Nucleic Acids Res. 2005, 33, W72–W76. [CrossRef]
102. Kabsch, W.; Sander, C. Dictionary of protein secondary structure: Pattern recognition of hydrogen-bonded and geometrical

features. Biopolymers 1983, 22, 2577–2637. [CrossRef]
103. Choi, Y.; Sims, G.E.; Murphy, S.; Miller, J.R.; Chan, A.P. Predicting the functional effect of amino acid substitutions and indels.

PLoS ONE 2012, 7, e46688. [CrossRef]
104. Henikoff, S.; Henikoff, J.G. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 1992, 89, 10915–10919.

http://doi.org/10.3390/cancers6031769
http://doi.org/10.15171/apb.2017.041
http://doi.org/10.1016/j.ccell.2018.03.025
http://doi.org/10.1158/1535-7163.MCT-12-0530
http://doi.org/10.1038/nature12625
http://doi.org/10.1038/nature15393
http://doi.org/10.1038/ng.2764
http://doi.org/10.1021/acs.accounts.5b00516
http://doi.org/10.1186/1471-2105-13-S4-S17
http://doi.org/10.1053/j.seminoncol.2015.09.023
http://doi.org/10.1093/nar/gkg509
http://doi.org/10.1038/nmeth0410-248
http://doi.org/10.1006/jmbi.2001.4580
http://doi.org/10.1002/prot.10313
http://doi.org/10.1110/ps.03479604
http://doi.org/10.1002/prot.20079
http://doi.org/10.1186/1471-2105-6-291
http://doi.org/10.1145/1961189.1961199
http://doi.org/10.1002/prot.21309
http://doi.org/10.1371/journal.pone.0020445
http://doi.org/10.1038/s41598-021-92793-w
http://doi.org/10.1002/prot.20035
http://doi.org/10.1002/prot.21983
http://doi.org/10.1002/prot.24058
http://doi.org/10.1002/prot.21018
http://doi.org/10.1093/nar/gki396
http://doi.org/10.1002/bip.360221211
http://doi.org/10.1371/journal.pone.0046688


Pharmaceuticals 2022, 15, 136 18 of 18

105. Jones, D.T.; Taylor, W.R.; Thornton, J.M. The rapid generation of mutation data matrices from protein sequences. Comput. Appl.
Biosci. 1992, 8, 275–282.

106. Altschul, S.F.; Madden, T.L.; Schaffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: A new
generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389–3402. [CrossRef]

http://doi.org/10.1093/nar/25.17.3389

	Introduction 
	Results 
	Performance Evaluation of the Training Set 
	Performance Evaluation of the Testing Set 
	Case Study: L505 in BRAF and V215E in MAP2K2 
	Case Study: The ROS1-G2032R Mutation 

	Discussion 
	Materials and Methods 
	Dataset Preparation 
	Construction of Prediction Systems 
	Machine Learning Method 
	Feature Selection 
	Generation of Feature Sets 

	Conclusions 
	References

