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Immunotherapy, particularly immune checkpoint blockade and chimeric antigen receptor
(CAR)-T cells, holds a great promise against cancer. These treatments have markedly
improved survival in solid as well as in hematologic tumors previously considered
incurable. However, durable responses occur in a fraction of patients, and existing
biomarkers (e.g. PD-L1) have shown limited prediction power. This scenario highlights
the need to dissect the complex interplay between immune and tumor cells to identify
reliable biomarkers of response to be used for patients’ selection. In this context, systems
immunology represents indeed the new frontier to address important clinical challenges in
biomarker discovery. Through the integration of multiple layers of data obtained with
several high-throughput approaches, systems immunology may give insights on the vast
range of inter-individual differences and on the influences of genes and factors that
cooperatively shape the individual immune response to a given treatment. In this Mini
Review, we give an overview of the current high-throughput methodologies, including
genomics, epigenomics, transcriptomics, metabolomics, proteomics, and multi-
parametric phenotyping suitable for systems immunology as well as on the key steps of
data integration and biological interpretation. Additionally, we review recent studies in
which multi-omics technologies have been used to characterize mechanisms of response
and to identify powerful biomarkers of response to checkpoint inhibitors, CAR-T cell
therapy, dendritic cell-based and peptide-based cancer vaccines. We also highlight the
need of favoring the collaboration of researchers with complementary expertise and of
integrating multi-omics data into biological networks with the final goal of developing
accurate markers of therapeutic response.

Keywords: immunotherapy, chimeric antigen receptor T (CAR-T), immune-checkpoints, multi-parametric analysis,
multi-omics, deep immunophenotyping
INTRODUCTION

In the last few years, immune-based cancer therapies have been rediscovered as powerful clinical
strategies against cancer. This breakthrough has begun with the discovery and clinical application of
immune-checkpoint inhibitors (ICIs) that have changed radically the management of several types of
once considered incurable cancers (1). The concept to target immune cells rather than cancer cells has
org October 2020 | Volume 11 | Article 5827441
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achieved unexpected success especially with monoclonal
antibodies against cytotoxic T-lymphocyte-associated antigen 4
(CTLA-4) and programmed cell death protein (PD-1) and its
ligand PD-L1, improving enormously the survival rates of patients
with metastatic melanoma, lung, renal, and urothelial cancers (2).
In addition to ICIs, other immunotherapies such as peptide-based
or dendritic cell (DC)-based vaccination and adoptive
immunotherapy have been largely used, although clinical
responses have been limited thus far (1, 3). Despite the
beneficial effects of immunotherapies, immune-related adverse
events are often observed and only a minority of patients
display long-term responses (4, 5). Several variables determine
the efficacy of immunotherapies and in particular, of ICIs. Among
the others, one of the most important is the heterogeneity of the
host immune response both at the tumor level and in the
circulation (6). The nature and function of peripheral and
tumor-infiltrating immune cell populations as well as tumor
immune signatures and neo-antigen burden dynamically shape
the immune contexture driving therapeutic responses (7).
However, none of the above-mentioned parameters uniquely
associates to immunotherapy responsiveness (8). Therefore, the
development of models predicting therapy efficacy by identifying
and correlating specific immune elements and functions at the
time of diagnosis is central for selecting patients that would benefit
from immunotherapeutic treatments. Systems immunology has
the objective to generate reliable models predicting therapeutic
responses and outcomes by integration of multi-layers immune
analyses and advanced bioinformatics approaches (9). In the
present review, we will provide an overview of the key
technological approaches exploited by systems immunology
analysis and will provide examples of application in the urgent
search for reliable markers to select cancer patients for
personalized immunotherapy approaches (10).
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OVERVIEW OF CURRENT HIGH-
THROUGHPUT TECHNOLOGIES FOR
SYSTEMS IMMUNOLOGY

Several high-throughput technologies are used to characterize
the immune status of cancer patients either before or throughout
immunotherapy treatment (Figure 1). In the past years, gene
expression profiling by microarray was extensively used to
evaluate the transcriptome of tissues in numerous biomedical
investigations (11). It employs a collection of DNA spots
attached to a solid surface. One of the limitations of
microarray is the large amount of input RNA required, and it
is therefore usually applied to whole blood or to heterogeneous
tissue samples. More recently, RNA sequencing (RNA-seq) has
completely revolutionized transcriptomic analysis. RNA-seq
protocols in general involve the following steps: isolation of
RNA, reverse transcription (RT), amplification, library
generation, and sequencing (12). RNA-seq has several
advantages over microarray technology: i) high coverage and
sensitivity (detecting low-abundance transcripts), ii) detection of
small RNAs, iii) low background noise and batch effects, iv) low
RNA input (12). However, bulk-based profiling performed by
averaging results from thousands of cells of distinct types
represents a problem for data analysis and interpretation. The
advent of single-cell-RNAseq (scRNA-seq) overcame this
challenge by quantifying molecular features at the single-cell
resolution (13). Individual cells are encapsulated in droplets in a
microfluidic device, where the RT reaction takes place. Each
droplet carries a “barcode” that uniquely labels the cDNAs
derived from a single cell. The ability to read and annotate
transcriptomes at single-cell resolution has been coupled with
the development of computational methodologies for data
analysis and processing that present several challenges (14).
FIGURE 1 | Overview of high-throughput technologies exploited by systems immunology to characterize the immune system at bulk tissue and single-cell levels.
Large datasets are integrated by computational analysis and algorithms and allow the identification of biomarkers exploitable to design personalized immunotherapy
treatments. MS, mass spectometry; NMR, nuclear magnetic resonance; mIHC, multiplex immunohistochemistry; RNAseq, RNA sequencing; DNAseq, DNA
sequencing; WGS, whole genome sequencing; WES, whole exome sequencing; TMB, tumor mutational burden; TCRseq, TCR sequencing; ChIP-seq, chromatin
immunoprecipitation sequencing; ATAC-seq, assay for transposase-accessible chromatin using sequencing; BS-seq, bisulfite sequencing; CyTOF, cytometry by time
of flight; mFC, multiparametric flow cytometry.
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Recently, the SIDEseq has been introduced as new measure to
evaluate pairwise similarities between cells using scRNA seq data
(15). The SIDEseq identifies the lists of putative differentially
expressed genes (DEGs) between each pair of cells and uses the
consistency between the two lists of DEGs to define their
similarity. Through the analysis of simulated and real datasets
with varying degrees of complexity, the SIDEseq allows the
identification of thin but meaningful differences between small
cell subpopulations.

A new technology termed “spatial transcriptomics” allows
visualization and quantitative analysis of the transcriptome with
spatial resolution in individual tissue sections. It uses primers of
cDNA spatially barcoded for full-transcriptome capture on tissue
sections giving a comprehensive 2D or 3D visualization of all
mRNAs in tissue sections (16). This method is easy to perform
and can be applied alone or in combination with single-
cell technologies.

Epigenomics together with transcriptomics enlarge the
characterization of the heterogeneity, plasticity, and functional
diversity of the immune system as transcriptional regulation is
thought to be the proximal effect of epigenomic modifications.
Chromatin immunoprecipitation (ChIP-seq) reveals DNA
binding sites of specific transcription factors or histone
modifications by IP with specific antibodies (Abs). Recently, a
high-throughput droplet microfluidics platform to profile
chromatin landscapes at single-cell resolution has been
described (17). Assay for Transposition of Accessible
Chromatin (ATAC-seq) is an alternative to DNase-seq that
uses an engineered Tn5 transposase to cleave DNA and to
integrate primer DNA sequences into the cleaved genomic
DNA. Notably, ATAC-seq has opened the door to the study of
tumor-infiltrating lymphocytes (TILs) from the epigenetic
perspective (18). Improvements of ATAC-seq have been
reported (19).

Chromatin remodeling can be revealed by the analysis of
methylome. Pyrosequencing and direct sequencing have been the
most widely used methods for analysis of promoter region or
CpG islands. The limitations of these techniques include low
quantitative accuracy, short read length, and low sample
throughput. Emerging next generation sequencing (NGS)
platforms allow for massive analysis of the methylation status
of almost every CpG site and construction of DNAmethylation’s
genomic maps at a single base resolution. Modern techniques for
DNA methylation mapping use the same software as those that
were developed for genetic and genomic analyses (20).

Many reports have shown that the tumor mutational
burden (TMB) correlates with the response to ICIs (21). Non-
synonymous mutations, in fact, can produce novel tumor-
specific antigens (neoantigens) recognized by the host immune
system. Although whole exome sequencing (WES) is the gold
standard technique, given the global measurement potential, its
clinical use is hampered by high cost. Panel sequencing, with
various approaches to extrapolate the global TMB from the
narrow sequencing, is more used in clinical application and
includes several oncopanels, such as Trusight170, Oncomine
Tumor Mutation Load Assay, MSK-IMPACT and FoundationOne
Frontiers in Immunology | www.frontiersin.org 3
(22). Possible neoantigens are then predicted in silico according to
their affinity to the MHC class I alleles (23).

The adaptive immune response generates a large repertoire of
T and B cells with different T-cell receptors (TCRs) and B-cell
receptors/immunoglobulin (BCRs/Ig). The repertoire changes in
response to different antigens (24), diseases and therapies (25).
Conventional methods include: i) spectratyping, which analyzes
the variation in the lengths of RT-PCR products generated from
the third complementarity-determining region (CDR3) region in
TCR Vb family (26) and BCR/Ig heavy chain, ii) flow cytometry,
and iii) immunohistochemistry (IHC). To overcome the limited
sensitivity/accuracy of these methods, high-throughput NGS has
been developed to profile TCR and BCR/Ig repertoires at the
single-cell level. TCR-seq (27) and BCR/Ig-seq (28) is a three-
step process: i) PCR amplification of V–D–J (for TCRb, TCRd,
and IgH) or V–J (for TCRa, TCRg, and IgL) gene segments, ii)
massive parallel sequencing of the PCR amplicons, and iii)
alignment of the reads by bioinformatics.

It has been recognized that the type and density of TILs is an
important prognostic parameter in numerous cancer types (29).
Compared to traditional single color IHC, multiplexed IHC
(mIHC) enables the contemporary evaluation of multiple
parameters from a single tissue section (30). Of note, a seven-
color multispectral IHC of tumors from patients with melanoma
could select patients for successful TIL generation for adoptive
immunotherapy protocols (31).

Multi-parametric flow cytometry (mFC) is the gold standard
technique for enumerating and identifying cells within
heterogeneous biological samples. It offers the opportunity to
comprehensively characterize the immunologic state of patients
on a single-cell basis by using combinations of fluorescently
labelled monoclonal Abs specific for target molecules. mFC offers
the possibility to differentiate between up to 30 parameters, but
as opposed to IHC, it does not provide information about the
spatial distribution of a given subset in the analyzed sample. The
advent of mass cytometry (cytometry by time-of-flight, CyTOF)
has revolutionized human immune cell profiling. It allows the
simultaneous measurement of >40 markers on a single-cell basis.
This is achieved by using antibodies coupled to rare metal
isotopes providing a unique mass tag for each marker, which is
detected by time-of-flight mass spectroscopy (32). The number
of markers and the absence of relevant spectral overlap are a
major advantage over mFC. CyTOF is particularly valuable when
analyzing samples with a limited number of cells such as
pediatric patients or tumor biopsies. In a recent report, Gadalla
and colleagues demonstrated that using a 40+ parameter panel
on peripheral blood mononuclear cell (PBMC) and tumor tissue
samples, CyTOF is as effective as mFC for the identification of
diverse cell subsets and their subsequent phenotyping (33).

Given the key role of metabolites in modulating T cell
function (34) and in affecting the success of immunotherapies
(35), a comprehensive analysis of metabolites can effectively
complement molecular and phenotyping studies. Metabolomics
studies are based on two major technologies, mass spectrometry
(MS) and nuclear magnetic resonance (NMR) (36). MS can
perform both targeted and untargeted analyses. Targeted
October 2020 | Volume 11 | Article 582744
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analyses follow hundreds of known molecules and quantify key
known compounds. Untargeted metabolomics profile many
thousands of features globally and can discover novel
biomarkers found in specific conditions. Recent advancement
in NMR technology has improved its sensitivity and the
availability of databases has facilitated the identification of
molecules (37).

Proteome profiling allows the contemporary quantification of
hundreds of proteins in cell extracts or body fluids. The latter,
obtainable through noninvasive procedures, are of particular
relevance for biomarker discovery. MS has been extensively
used for comprehensive proteome profiling (38). Alternative
methods, including high-throughput multiplex immunoassays
(Luminex, Bio-Plex) and single cell arrays for secreted cytokines
(39), focus on the detection of key factors regulating immune
response and intercellular communication, such as cytokines,
chemokines, and inflammatory mediators.
INTEGRATION OF LARGE DATASETS AND
BIOLOGICAL INTERPRETATION

All the above described high-throughput technological
approaches create an enormous amount of data that needs to
be computationally analyzed and examined with statistical
algorithms for extracting biologically relevant information. The
first step in this process is data integration, which involves
reformatting the results from multiple assays so that the data
can be analyzed as an integrated whole. Data are further analyzed
with sophisticated mathematical and computational algorithms
to infer biological relationships and to correlate the data with the
clinical outcome. By selection of variables of interest potentially
predicting patient outcome, these steps are crucial to generate a
scientific hypothesis that needs to be tested and validated (40).
Various bioinformatics data analysis tools have been developed
to organize data from multiple high-throughput assays.
However, given the complexity of the immune system and the
non-linear correlation of interconnected immune signals, each
approach presents advantages and disadvantages. As an example,
the analysis of transcriptome data obtained from RNA-seq or
microarray experiments are generally carried out according to a
bioinformatics workflow including differential gene expression
analysis, functional or pathway enrichment, gene set enrichment
analysis. This analytic pipeline leads to data visualization of gene
expression patterns to be correlated to immune functions (41).
Relevant to the analysis of immune transcriptome data are the
deconvolution methods that allow quantifying the relative
fractions of the immune cell types of interest (42). However, as
deconvolution algorithms rely on the assumption that the
expression of a gene in a mixture is the result of a linear
combination of the expression of that gene in the different cell
types, advanced and efficient algorithms remain to be developed
to capture the nonlinear cell-cell correlations. This concept
supports the increased relevance of high-throughput assays
and data collection at single-cell resolution. A recent review
highlighted examples of data-driven systems modeling that
Frontiers in Immunology | www.frontiersin.org 4
characterize, map, or connect components of the immune
system, with application in cancer immunotherapy (43). In the
next sections, we will provide examples of the application of one
or more high-throughput multi-parametric technologies for the
identification of predictors of response to immunotherapy.
INTEGRATIVE, MULTI-OMICS
APPROACHES TO UNRAVEL RESPONSES
TO ICIs AND IDENTIFY PREDICTIVE
BIOMARKERS

The comprehensive analysis of patients’ immune status by
systems immunology uniquely offers the possibility to
understand the complex interplay between tumor and host
cells in the context of successful or ineffective responses to ICIs
and allows the identification of biomarkers for personalized
immunotherapy treatments. Several recent studies have
reported unbiased high-throughput analyses in the attempt to
identify immune correlates of response to ICIs. In a small cohort
of non-small cell lung cancer (NSCLC) patients treated with anti-
PD-1 Abs, expression signatures of immune-related genes were
correlated with durable clinical benefit in 9 out of 21 patients
(44). Of note, up-regulation of macrophage 1 and down-
regulation of peripheral T cell gene signatures showed the best
performance for discriminating between durable and non-
durable clinical responses. In the same tumor histotype, the
response to anti-PD-1 Ab was also shown to correlate with the
molecular smoking signature, high candidate neoantigen burden
and DNA repair pathway mutations (45). In small cell lung
cancer high TMB was associated with improved objective
response, durable clinical benefit, and better progression-free
survival following PD-1 and CTLA-4 blockade (46). Likewise,
TMB, the candidate neoantigen load and the expression of
cytolytic markers in the TME were significantly associated with
clinical benefit in melanoma patients in response to CTLA-4 Ab
(47, 48). More recently, TMB and efficient neoantigen
presentation analyzed by NGS in a cohort of 83 patients with
20 different solid malignancies revealed predictors of response to
ICIs (49). In another study, a deep machine-learning model
integrating TMB, microsatellite instability, and somatic copy-
number alterations was used to subclassify 8,646 tumors from 29
tumor types into four distinct genomic clusters (50). Each cluster
was associated with a unique immune landscape inferred by
deconvolution of RNA-seq TGCA datasets, highlighting the
complex relationship between the tumor genomic landscape
and host immunity. Most importantly, applying this model to
tumors from metastatic melanoma patients treated with ICIs
demonstrated that different genomic clusters were associated
with distinct clinical responses to ICI treatment. Along these
lines, the integration of mFC, gene expression, and mIHC
revealed in lung cancer specimens the presence of a myeloid-
rich subgroup enriched in neutrophils, correlating with the
absence of intratumor T cells, and identified tumor CD8+/
neutrophil ratios as predictors of ICI treatment responsiveness
(51). In another study, among the 36 parameters analyzed across
October 2020 | Volume 11 | Article 582744
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21 cancer types, the estimated CD8+ T-cell abundance in TME
was the most predictive of the response to anti-PD-1/PD-L1
therapy, followed by the TMB and by the fraction of samples
with high PD-1 gene expression. Of note, the combination of
these parameters highly correlated with response to anti-PD-1/
PD-L1 treatment (52). In melanoma patients treated with anti-
PD-1 Abs, immuno-profiling of PBMC by high-dimensional
single-cell CyTOF was used to investigate circulating immune
correlates of response. Indeed, the authors observed a more
prominent increase in monocyte (CD14+CD16−CD33+HLA-
DR+) frequency in responders as compared to non-responders,
thus indicating that blood-based biomarkers can also be relevant
in clinical practice (53).
SYSTEMS IMMUNOLOGY AND
BIOMARKER DISCOVERY IN PATIENTS
TREATED WITH OTHER
IMMUNOTHERAPIES

Among the most promising immunotherapies, chimeric antigen
receptor (CAR-T) cell therapy has seen exceptional success in
several hematologic malignancies. Yet, challenges in translation
to solid tumors still exist. The effectiveness of adoptive
immunotherapy with CAR-T cells depends on a complex
interplay of tumor, immune and stromal cells, which systems
immunology approaches may help to fully elucidate. In a recent
study, TCR-seq, integration site analysis, and scRNA-seq were
used to profile anti-CD19 CAR-T cells before and after infusion,
revealing that clonal diversity declines following infusion and
that expanding clones have higher expression of proliferation
and cytotoxicity genes (54). By analyzing the transcriptional and
cytokine signatures (by means of scRNA-seq and single-cell
multiplex cytokine secretion assay), together with live cell
imaging of cytotoxic activity, Xhangolli et al. demonstrated
that anti-CD19 CAR-T cells display a highly mixed Th1/
Th2 function upon antigen-specific stimulation (55).
Lymphodepleting chemotherapy is routinely administered
prior to CAR-T cell infusion, and has been associated with
improved in vivo cell expansion and persistence (56). We used
microarray analysis and cytokine protein profiling to unravel the
complex systemic effect of preconditioning chemotherapy,
revealing the importance of a type I interferon signature and of
distinct cytokine profiles in the response to adoptive
immunotherapy (57–59). Remarkably, the cytokine profile
induced by preconditioning chemotherapy was shown to
correlate with progression-free survival in patients treated with
anti-CD19 CAR-T cells (60). An integrated systems immunology
approach in the context of CAR-T cell therapy evaluating at the
same time the characteristics of the cell product and the
chemotherapy-induced immune profiles is still lacking, and it
is expected to be crucial to improve the therapeutic efficacy of
CAR-T cell therapies.

Although systems immunology studies are less common in the
context of immunotherapies other than ICIs and CAR-T, several
recent omics studies have contributed to elucidate mechanisms
Frontiers in Immunology | www.frontiersin.org 5
underlying successful DC-based and peptide-based anticancer
vaccination. In malignant pleural mesothelioma patients
undergoing DC-based vaccination, changes in TCRb repertoire
of circulating lymphocytes revealed by NGS, significantly
correlated with patient survival (61). In melanoma patients
treated with adenovirus-transduced DC and high-dose systemic
interferon-alpha-2b (IFN-a2b), a detailed phenotypic and
functional analysis of blood NK cells was carried out by mFC,
multiplex gene expression analysis and serum content analysis.
The results demonstrated that CD56dimCD16−NK cells are a
unique non-cytolytic subset that may positively impact clinical
outcome (62). In a randomized clinical trial in which resected
stage III–IV melanoma patients were treated with peptide-based
vaccination and IFN-a2b, with or without dacarbazine
preconditioning, we have used mFC to reveal parameters
correlating with relapse-free survival. Our treatments induced
an increase of polyfunctionality and of IL-2 production by
vaccine-specific CD8+ T cells and an expansion/activation of
NK cells (CD56dimCD16-CD107a+) only in relapse-free patients
(63). Altogether, these results show that high-throughput multi-
omics technologies are effective to evaluate therapeutic effects and
may be used to guide therapeutic interventions.
CONCLUSIONS

Systems immunology provides unprecedented opportunities for
biomarker discovery stemming from the integration and
statistical analysis of large datasets generated by high-
throughput analysis of biological samples either at single cell or
at bulk tissue level. Notwithstanding the remarkable present
achievements of high-throughput technologies and of in silico
analysis, their full potential to revolutionize immunotherapy has
yet to be fully realized. In fact, the vast majority of recent
immunotherapeutic studies still rely on the use of a single omic
approach at a time. Indeed, integration of large datasets
characterized by inherent format differences generated by
multiple omic platforms is the main bottleneck of systems
immunology. Meaningful biological interpretation of large and
heterogeneous datasets requires a constant evolution of databases
and data analysis tools as well as the collaboration of researchers
with complementary expertise to carry out multidisciplinary
analysis capable of integrating the emerging data into clinically
applicable predictive algorithms. In addition, since measurements
typically involve multiple platforms across multiple laboratories,
standardization and harmonization efforts are needed to allow
comparison of results and maximize the clinical translation of
results. It’s now emerging that the density, spatial distribution,
and functionality of tumor-infiltrating immune cells as well as the
presence of other non-immune components of the TME
(endothelial cells, cancer-associated fibroblasts, etc) are
important predictors of response to immunotherapy. The
future of research for biomarkers of response to
immunotherapy is therefore expected to rely on the analysis of
the TME as a whole, rather than focusing on the analysis of single
components. In this respect, phenotypic and functional analysis
of tumors by mFC or CyTOF may be complemented by high-
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throughput spatial transcriptomics (16) to gain insights on the
relative abundance and spatial distribution of cell subtypes in the
TME. A promising perspective is also represented by the
application of NGS or deep immunophenotyping technologies
to liquid biopsies to identify circulating biomarkers (cancer-
derived DNA, circulating tumor cells, exosomes or immune
cells) of great potential clinical utility due to the non-
invasiveness and repeatability of their measurement. Overall,
we surmise that the continuous implementation of technologies
supporting the advancement of systems immunology represents
an important frontier for understanding human immunity and
foresee its enormous potential to revolutionize cancer treatment
in the near future.
Frontiers in Immunology | www.frontiersin.org 6
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