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Abstract: Flexible dielectric polymer composites have been of great interest as embedded capacitor
materials in the electronic industry. However, a polymer composite has a low relative dielectric
permittivity (ε′ < 100), while its dielectric loss tangent is generally large (tanδ > 0.1). In this study, we
fabricate a novel, high-permittivity polymer nanocomposite system with a low tanδ. The nanocom-
posite system comprises poly(vinylidene fluoride) (PVDF) co-filled with Au nanoparticles and
semiconducting TiO2 nanorods (TNRs) that contain Ti3+ ions. To homogeneously disperse the con-
ductive Au phase, the TNR surface was decorated with Au-NPs ~10–20 nm in size (Au-TNRs) using
a modified Turkevich method. The polar β-PVDF phase was enhanced by the incorporation of the
Au nanoparticles, partially contributing to the enhanced ε′ value. The introduction of the Au-TNRs
in the PVDF matrix provided three-phase Au-TNR/PVDF nanocomposites with excellent dielectric
properties (i.e., high ε′ ≈ 157 and low tanδ ≈ 0.05 at 1.8 vol% of Au and 47.4 vol% of TNRs). The
ε′ of the three-phase Au-TNR/PVDF composite is ~2.4-times higher than that of the two-phase
TNR/PVDF composite, clearly highlighting the primary contribution of the Au nanoparticles at
similar filler loadings. The volume fraction dependence of ε′ is in close agreement with the effective
medium percolation theory model. The significant enhancement in ε′ was primarily caused by
interfacial polarization at the PVDF–conducting Au nanoparticle and PVDF–semiconducting TNR
interfaces, as well as by the induced β-PVDF phase. A low tanδwas achieved due to the inhibited
conducting pathway formed by direct Au nanoparticle contact.

Keywords: gold nanoparticle; titanium dioxide nanorod; poly(vinylidene fluoride); heat treatment;
hybrid nanoparticle; modified Turkevich method

1. Introduction

With recent developments in the electronic industry, dielectric polymer compos-
ite materials have attracted increasing interest for a wide range of applications, such
as energy storage devices, dielectric capacitors, and electromechanical actuators [1,2].
Poly(vinylidene fluoride) (PVDF) has been used as a dielectric polymer material due to
its high energy density, high electric break down field, and flexibility [3,4]. However, the
relative dielectric permittivity (ε′) of PVDF is too low (≈10 [3]) for electronic applications.
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Many studies have attempted to fabricate polymer composites with high ε′ val-
ues by incorporating fillers into the PVDF matrix. Two-phase ceramic/polymer and
metal/polymer composites have been synthesized and widely studied for improving the
dielectric performance of polymer composite materials [5–11]. Several ceramic/polymer com-
posites, such as CaCu3Ti4O12/PVDF [5,12], CaCu3Ti4O12/polystyrene [13], BaTiO3/PVDF [6],
Ba0.5Sr0.5TiO3/P(VDF-CTFE) [14], and Ba0.6Sr0.4TiO3/PVDF [15], have high ε′ values
(~50–80 at 1 kHz). The ε′ of a ceramic/polymer composite is generally below 100 even at
a high ceramic loading (50 vol%), while its dielectric loss tangent (tanδ) is also elevated
(>0.1 at 1 kHz and ~25 ◦C) [5,16]. However, metal/polymer composites, such as Ni/PVDF,
Ni/P(VDF-CTFE) [17,18], MWCNT/PVDF [8,19], and Ag/PVDF [7,20], can exhibit signifi-
cantly higher ε′ at low concentrations of conducting fillers than ceramic/PVDF composites.
It is difficult to maintain the filler loading at the percolation threshold (f c) to achieve a
high relative permittivity. Metal/polymer composites generally exhibit significantly large
tanδ and electrical conductivity (σ) values at f c. It should be noted that the metal/polymer
composites with extreme ε′ values also have high tanδ and σ, which limits the practical
applications of these metal/polymer composites.

Owing to such challenges, developing polymer composites with high ε′ and low tanδ
values is desirable. Several researchers have studied and reported three-component compos-
ites comprising metal, ceramic, and polymer matrices, such as Ba(Fe0.5Nb0.5)O3/Ni/PVDF,
Ni/CaCu3Ti4O12/PVDF, Ni/BaTiO3/PVDF, Na0.5Bi0.5Cu3Ti4O12/MWCNTs/PVDF, and
Ag/Na0.5Bi0.5Cu3Ti4O12 [21–25]. In particular, a novel composite with structured hybrid
fillers has been of great interest. Recently, many studies on PVDF-based composites filled
with hybrid nanoparticles have been reported. Luo et al. [26] reported a novel polymer
composite filled with Ag-BaTiO3 hybrid nanoparticles. This Ag-BaTiO3/PVDF composite
exhibited a high ε′ (160) with tanδ ≈ 0.11 at a filler volume fraction (f Ag-BT) of 0.568. This
tanδ value is much lower than those reported in many conventional three-phase polymer
composites; unfortunately, it is still much larger than 0.05, which is an acceptable value
for capacitor applications. Although incorporating Ag-BaTiO3 hybrid nanoparticles can
increase the ε′ of a composite, the ε′ of ferroelectric BaTiO3 is generally strongly dependent
on its Curie temperature. Furthermore, most ferroelectric oxides are piezoelectric, which
results in mechanical resonance in the device during charging and discharging, thereby
limiting its reliability [27].

Rutile-TiO2 is one of the most widely used oxides in electronic materials, sensors, and
semiconductors [28,29]. Furthermore, rutile-TiO2 can exhibit colossal dielectric properties
when a minor portion of Ti4+ is reduced to Ti3+ due to the existence of oxygen vacancies
and/or substitution by pentavalent ions (e.g., Nb5+ or Ta5+). Polaron-like electron hop-
ping between Ti3+ and Ti4+ ions can cause a significant increase (by a factor of ~104) in
dielectric permittivity [30]. Since TiO2 is not a ferroelectric ceramic, TiO2 nanoparticles
were used as a filler in various polymer composites [31–33]. Unfortunately, the ε′ val-
ues of the TiO2/polymer composites are still significantly low owing to the low ε’ of the
TiO2 nanoparticles. Polymer composites filled with modified TiO2 nanoparticles such as
Ag-TiO2 hybrid particles and Ag@TiO2 core–shell structures were developed to enhance
ε′ [34–37]. Although these composites can exhibit high ε′ values of ~60–150, large tanδ val-
ues are generally obtained (~0.1–1) at high filler concentrations (70 vol%) [34,35]. Among
various metal nanoparticles, gold nanoparticles are widely used as fillers to improve the
insulation properties of polymer materials because they are nontoxic and less likely to be
oxidized [38]. A significantly enhanced ε′ (~54-118) and low tanδ (<0.06) were achieved in
Au-BaTiO3/PVDF [39] and Au-BiFeO3/PVDF, with only a small amount of Au in the third
phase of each polymer composite (f Au < 0.02) [40]. According to previous works [39,40],
the Au-BaTiO3/PVDF and Au-BiFeO3/PVDF composites not only exhibited high ε′ values,
but their tanδ and σwere also suppressed due to the incorporation of the Au nanoparticles.
Therefore, the conductive Au phase nanoparticle is one of the most interesting conductive
phases for use as a filler in three-phase polymer composites.
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To the best of our knowledge, there is a lack of substantial information on polymer
composites incorporated with Au-TiO2 hybrid nanoparticles. Therefore, in this study
we aimed to fabricate a novel nanocomposite comprising a PVDF polymer matrix, Au
nanoparticles, and TiO2 nanorods (TNRs). TNRs have higher surface areas than spherical
TiO2; therefore, they lead to stronger interfacial polarization and a significantly enhanced
ε′. Herein, Au-TNR/PVDF nanocomposites with enhanced ε′ and low tanδ were fab-
ricated. A modified Turkevich method was used to attach Au onto the surfaces of the
TNRs. The Au-TNR/PVDF nanocomposites were prepared through liquid-phase-assisted
dispersion and hot-pressing methods. Several properties of these nanocomposites such
as their morphologies, microstructures, phase structures, chemical stages, and dielectric
properties were investigated, and the significantly improved dielectric properties of the
nanocomposites are discussed.

2. Experimental Section
2.1. Preparation of Heat-Treated TNRs

TNRs (99.5% purity) with particle size <100 nm were purchased from Sigma-Aldrich.
Heat treatment at 500 ◦C for 3 h in air was performed on the TNRs to evaporate the
moisture.

2.2. Preparation of Au-TNR Hybrid Nanoparticles

Au-TNR hybrid nanoparticles were prepared through a modified Turkevich method.
The corresponding procedure is described as follows: heat treatment of TNR powder was
carried out by ultrasonically dispersing the powder in deionized water for 30 min. Then,
the white TNR suspension was stirred using a magnetic stirrer at ~25 ◦C for 30 min, after
which 1 mM HAuCl4·3H2O was dissolved in the TNR solution under constant stirring.
After the solution was heated to 300 ◦C, 38.8 mM of sodium citrate (>99.0%, Sigma-Aldrich)
solution was dissolved in the TNR solution. To ensure a complete reaction, the suspension
was stirred until its color changed from white to purple. The purple suspension was
sequentially cooled to room temperature, centrifuged at 8500 rpm, and washed several
times with deionized water. Finally, Au-TNR hybrid nanoparticles were obtained without
agglomeration by freeze-drying.

2.3. Preparation of Au-TNR/PVDF Nanocomposites

Au-TNR/PVDF nanocomposites containing Au-TNR fillers with different f Au and
f TNRs values were prepared through liquid-phase-assisted dispersion and hot-pressing
methods. First, Au-TNR hybrid nanoparticles and the PVDF powder (Mw ~ 534,000, Sigma-
Aldrich) were mixed by ball-milling with ZrO2 in ethanol for 3 h. Second, the mixture was
dried at 80 ◦C to evaporate ethanol, after which the mixed powder was pressed at 200 ◦C
for 30 min at 10 MPa. Finally, the Au-TNR/PVDF nanocomposite sample, with a diameter
and thickness of ~12 mm and ~0.5–1 mm, respectively, was obtained at room temperature.
Au-TNR/PVDF nanocomposite samples with f Au-TNRs = 0.094, 0.216, 0.294, 0.383, 0.492,
and 0.624 are referred to as Au-TNRs/PVDF-1, Au-TNRs/PVDF-2, Au-TNRs/PVDF-3, Au-
TNRs/PVDF-4, Au-TNRs/PVDF-5, and Au-TNRs/PVDF-6, respectively. The separated
volume fractions of Au and TNRs for each composite sample are listed in Table 1.
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Table 1. Volume fraction of Au (f Au), TNRs (f TNRs), Au-TNRs (f Au-TNRs), ε′, tanδ, and σac at 1 kHz
and room temperature for nanocomposites with varying filler amounts.

Sample f Au f TNRs f Au-TNRs ε′ tanδ σac (10−11 S·cm−1)

PVDF 0 0 0 10.8 0.020 4.1
Au-TNR/PVDF-1 0.005 0.089 0.094 29.1 0.012 20.3
Au-TNR/PVDF-2 0.010 0.206 0.216 37.1 0.028 59.1
Au-TNR/PVDF-3 0.013 0.281 0.294 53.8 0.062 188.6
Au-TNR/PVDF-4 0.016 0.367 0.383 57.7 0.075 242.8
Au-TNR/PVDF-5 0.018 0.474 0.492 156.7 0.048 427.7
Au-TNR/PVDF-6 0.021 0.603 0.624 226.3 0.052 657.6

TNR/PVDF 0 0.5 0 65.9 0.028 103.5

2.4. Characterization

The phase structures of the PVDF filler and Au-TNR/PVDF nanocomposites were
characterized by X-ray diffractometry (XRD, PANalytical, EMPYREAN). The surface mor-
phologies of Au, TNRs, and the Au-TNR nanoparticles were revealed using transmission
electron microscopy (TEM, FEI Tecnai G2 20). The chemical composition of each element in
the Au-TNR hybrid nanoparticles was analyzed by X-ray photoelectron spectroscopy (XPS,
PHI5000 VersaProbe II, ULVAC-PHI, Japan) at the SUT-NANOTEC-SLRI Joint Research Fa-
cility, Synchrotron Light Research Institute (SLRI), Thailand. The fracture microstructures,
distributions, and percentages of each element in the Au-TNR/PVDF nanocomposites
were investigated by focused ion beam–field emission scanning electron microscopy (FIB–
FESEM, FEI Helios Nanolab G3 CX). The samples were fractured using liquid N2 and their
surfaces were sputtered with Au before SEM characterization. The crystalline phases of the
nanocomposites were determined using Fourier-transform infrared spectroscopy (FTIR,
Bruker, TENSOR27) in the 700–1800 cm−1 wavelength range. The dielectric properties
of the samples were analyzed using an impedance analyzer (KEYSIGHT E4990A) in the
102–106 Hz and −60–150 ◦C frequency and temperature ranges, respectively, with an os-
cillation voltage of 0.5 V. Before any dielectric measurement, both sides of each circular
sample were coated with Ag to form electrodes.

3. Results and Discussion

Figure 1 displays TEM images showing the morphologies of the Au, TNRs, and Au-
TNR hybrid nanoparticles. The Au nanoparticles are spherical with diameters of 10–20 nm.
Meanwhile, the heat-treated TNRs are rod-shaped with slightly different aspect ratios,
while some Au clusters are dotted on the TNR surfaces of the Au-TNR hybrid nanoparticles,
revealing that the Au nanoparticles successfully formed on the TNR surfaces.
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Figure 2 shows XPS spectra of the Au-TNR powder. As shown in Figure 2a, Au
4f peaks were observed at 83.33 and 86.98 eV, which are assigned to Au 4f 7/2 and Au
4f 5/2, respectively [41,42]. This confirmed the existence of Au in the prepared Au-TNR
powder. As shown in Figure 2b, small Ti 2p peaks were observed at binding energies of
457.69 and 461.34 eV, respectively, corresponding to the presence of Ti3+. Ti 2p signals was
observed at binding energies of 458.75 and 464.41 eV, indicating the presence of Ti4+ [43].
The Ti3+/Ti4+ ratio was found to be 7.52%. Figure 2c shows three of O 1s XPS peaks; the
peak at 529.99 eV can be attributed to the oxygen lattice (Ti–O) [28,43]. Additional peaks
were observed at 531.29 and 532.32 eV, which can be attributed to the oxygen vacancy
in the rutile structure [28] and hydroxyl groups [43], respectively. The detected Ti3+ in
the Au-TNR powder is likely to have originated from oxygen vacancies, which can be
explained by Equations (1) and (2).

Ox
O →

1
2

O2 + V••O + 2e− (1)

Ti4+ + e− → Ti3+ (2)

The presence of the Ti3+ ions can cause a significant increase in conductivity, thereby
leading to electron hopping between the Ti3+ and Ti4+ ions under an applied electric field.
The XPS results confirmed the existence of Au, Ti3+, and oxygen vacancies, which affected
ε′ enhancement in the Au-TNR/PVDF nanocomposites.
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The XRD patterns of Au, PVDF, TNRs, Au-TNR nanoparticles, and Au-TNR/PVDF
nanocomposites were obtained in the 10–80◦ 2θ range, as shown in Figure 3. The XRD
pattern of the PVDF polymer corresponds to the (100), (020), (110), and (021) planes of the
α-phase [4]. The XRD pattern of the TNRs showed peaks similar to those of the tetrag-
onal structure of the rutile phase according to the standard reported in JCPDS 21-1276;
no impurity phase was detected. In the case of the Au-TNR hybrid nanoparticles and
Au-TNR/PVDF nanocomposites, the XRD peak for Au can be observed at 2θ ≈ 38.11
and assigned as a (111) plane (JCPDS 00-00-1172), confirming the existence of Au in the
hybrid particles and Au-TNR/PVDF nanocomposites. Therefore, the Au nanoparticles
were confirmed to exist in the Au-TNR nanoparticles and Au-TNR/PVDF nanocomposites.
Meanwhile, no PVDF diffraction peaks were observed in the Au-TNR/PVDF nanocom-
posite sample, which can be attributed to the semicrystalline nature of PVDF, which is
shielded by the stronger crystalline diffraction intensity of the TNRs compared to PVDF.
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The FTIR spectra of the PVDF polymer nanocomposites filled with the TNRs and Au-
TNRs are shown in Figure 4. Both nanocomposite systems consisted of α-, β-, and γ-PVDF
phases. Weak transmittance bands observed at 766 and 976 cm−1 are attributed to the
nonpolar α-phase [4], consistent with the XRD result (Figure 3). As the characteristic bands
of the β- and γ-phase overlapped at 840 cm−1, they were difficult to distinguish. However,
the characteristic band at 1279 cm−1 only corresponds to the β-phase [4]. As shown in
Figure 4, the transmittance intensity of the β-phase for the three-phase Au-TNR/PVDF-5
composite is stronger than that of the two-phase TNR/PVDF composite, particularly at
1279 cm−1. To estimate the %β-phases in the nanocomposites, the absorption ratios of the
β- and α-phase were compared. Equation (3) was used to quantify the relative fraction of
the β-phase (F(β)) [4], assuming that only the β- and α-phase exist:

F(β) =
Aβ

(Kβ/Kα)Aα + Aβ
(3)

where Aα and Aβ are the absorption bands at 766 and 840 cm−1, respectively, and Kα and
Kβ are the absorption coefficients of the respective bands (Kα = 6.1 × 104 and Kβ = 7.7 ×
104 cm2·mol−1). The calculated F(β) of the two-phase and three-phase nanocomposites
were 0.220 and 0.331, respectively. The negative charge of the Au nanoparticles causes an
increase in amount of the polar β-phase of the PVDF nanocomposites [44], leading to a
Au-TNR/PVDF nanocomposite with a significantly enhanced ε′ [45].

The fracture cross-sectional images of the nanocomposites containing various Au-TNR
hybrid particles are shown in Figure 5. The microstructure of the PVDF polymer is shown in
Figure 5a and reveals that the PVDF molecules form a continuous phase. Figure 5b,c show
the microstructures of the Au-TNRs/PVDF-2 and Au-TNRs/PVDF-4 nanocomposites. The
Au-TNR hybrid nanoparticles are dispersed homogeneously in the PVDF matrix without
aggregation. Some air voids and Au-TNR nanoparticle aggregation were observed with
increasing Au-TNR hybrid particle content, as exemplified by Au-TNR/PVDF-6, as shown
in Figure 5d.
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SEM element maps and EDS were employed to further confirm the existence of Au
in the three-phase nanocomposites. As shown in Figure 6, the microstructure of Au-
TNR/PVDF-4 exhibited Au clusters dispersed on the TNR surfaces that are surrounded by
the PVDF matrix. EDS was used to determine that Au, Ti, O, C, and F are present in the
nanocomposite at levels of 1.3, 57, 24.5, 14.3, and 2.9 wt%, respectively.
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The frequency dependences of ε′, tanδ, and σac of nanocomposites with different
volume fractions of Au-TNRs (f Au-TNRs) at room temperature are shown in Figure 7. As
shown in Figure 7a, the ε′ increased with increasing f Au-TNRs. A significant enhancement
in ε′ was achieved by incorporating small amounts of Au and TNR nanoparticles in the
nanocomposite. The enhanced ε′ value of the Au-TNR/PVDF-6 composite was ~226 at
1 kHz, which is ~20 times larger than that of a pure PVDF polymer (ε′ ≈ 10.78). The
increase in ε′ for the three-phase Au-TNR/PVDF nanocomposites can be ascribed to the
formation of Au-TNR hybrid nanoparticles. A large amount of blocked charges at the
interface between TNR-PVDF and Au-PVDF can enhance interfacial polarization, which
is known as Maxwell–Wagner–Sillars (MWS) polarization [6,46]. Therefore, in an electric
field, the enhanced interfacial polarization enhances the ε′ of the Au-TNR/PVDF nanocom-
posites. Another factor is the semiconductor nature of the TNR nanoparticles, which can
produce interfacial polarization over a wide range of frequencies. Moreover, the ε′ behav-
ior of each sample exhibits a similar trend in the 102–106 Hz range. Meanwhile, the tanδ
values of the Au-TNR/PVDF nanocomposites decreased as the frequency was increased
to approximately 104 kHz and gradually increased at higher frequencies, as shown in
Figure 7b. This increase in tanδ is generally consistent with the dielectric relaxation of the
pure PVDF polymer [6]. Considering a low-frequency range, tanδ of the Au-TNR/PVDF
nanocomposites increased with increasing f Au-TNRs. The increased tanδ value as a result of
increased filler loading is attributed to the conduction of free charge carriers [6,47], which
corresponds to the increase in f Au-TNRs. Furthermore, for the composites with high filler
loading, it is observed that tanδ continuously increases with decreasing frequency from 103

to 102 Hz. This observation was resulted from the conduction of free charge carriers, which
is more prominent in a low-frequency range. The increase in tanδ in the high-frequency
range is attributed to the αa relaxation from the glass transition in the PVDF polymer [6,48].
Th tanδ of the nanocomposite increases slowly with increasing Au-TNR content. Interest-
ingly, tanδ is exceptionally low for all nanocomposites at 1 kHz. The maximum value of
tanδ is less than 0.08 at a frequency of 1 kHz. The tanδ value of Au-TNR/PVDF-6 is 0.05,
which is much lower than values obtained in other work (tanδ > 0.1) that used Ag@TiO2 as
fillers [34,35,37,49]. As shown in Figure 7c, the σac value of the Au-TNR/PVDF nanocom-
posite increased slightly with increasing Au-TNR content. At f Au-TNRs = 0.624, the σac
value of the nanocomposite was only 6.58× 10−9 S·cm−1 at 1 kHz, which is lower than that
of the other three-phase composite systems (>10−7 S·cm−1) [34,35]. These results confirm
that no conducting network is formed, indicating that the Au-TNR-PVDF nanocomposites
exhibit good insulation properties.
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Figure 7. Frequency dependence of (a) ε′, (b) tanδ, and (c) σ for nanocomposites with varying
amounts of Au-TNRs.

Figure 8 shows the ε′ and tanδ of Au-TNR/PVDF at 1 kHz as functions of temperature.
As shown in Figure 8a, steady values of ε′ were observed for almost all nanocomposites
with increasing temperature. Only Au-TNR/PVDF-5 and Au-TNR/PVDF-6 exhibited ε′

values that were slightly temperature dependent. Figure 8b shows the tanδ relaxation
peaks in the pure PVDF polymer. The first relaxation was observed between −40 and 0 ◦C,
which can be attributed to the β-relaxation of PVDF. The second relaxation was observed
at a temperature above 40 ◦C, which can be attributed to the α-relaxation [50].
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Figure 9a shows the ε′ values of TNR/PVDF and Au-TNR/PVDF-5 as a function
of frequency. The ε′ value of the three-phase nanocomposite (Au-TNR/PVDF-5) was
found to be much higher than that of the two-phase nanocomposite (TNR/PVDF) (with
nearly the same total volume fraction of filler) in the 102–106 Hz frequency range, which
indicates that the addition of a small amount of Au nanoparticles can result in a significant
enhancement in the ε′ of a polymer composite. Interestingly, the tanδ value of the Au-
TNR/PVDF-5 nanocomposite at 1 kHz was 0.048. These excellent dielectric properties of
Au-TNR/PVDF are not only due to the introduction of the Au-TNR hybrid nanoparticles,
but also due to the increasing polar β-phase in the PVDF matrix, which was confirmed
by FTIR spectroscopy (Figure 4). The large interfacial area of the semiconducting TNRs
is one of the most important factors that significantly increases the dielectric response
in the nanocomposite. As shown in Figure 9b, although tanδ of the Au-TNR/PVDF-5
nanocomposite was increased over the measured frequency range compared to that of the
two-phase TNR/PVDF nanocomposite, the obtained tanδ value was lower than 0.08 in the
frequency range of 102–106 Hz.
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The ε′ values of the Au-TNR/PVDF nanocomposites could not be fitted to two-phase
composite models consisting of a ceramic and a polymer (e.g., effective medium theory
(EMT), Maxwell–Garnett, Yamada, logarithmic [5,51]) with high Au-TNR contents, as
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demonstrated in the inset of Figure 10. This is due to interfacial polarization at the interface
between fillers and PVDF polymer matrix. Moreover, the ε′ values of the Au-TNR/PVDF
nanocomposites could not be fitted to the percolation model, which is employed for
metal/polymer dual phases. As shown in Figure 10, the dielectric behavior of the Au-
TNR/PVDF nanocomposites is in good agreement with the EMPT model [35,52], which
combines the EMT model with percolation theory, as shown in Equation (4):

εeff = εPVDF

[
1 +

fTNRs(εTNRs − εPVDF)

εPVDF + n(1− fTNRs)(εTNRs − εPVDF)

]∣∣∣∣ fc − f
f

∣∣∣∣−q
(4)

where εeff is the effective ε′ of the Au-TNR/PVDF composite, f TNRs is the volume fraction
of the TNRs, f c is the percolation threshold, εPVDF is the ε′ of PVDF (εPVDF = 10.78), εTNRs is
the ε′ of TNRs (εTNRs = 150), n is the morphology fitting factor, and q is the critical exponent.
Due to the semiconducting nature of TNRs and conducting nature of Au nanoparticles,
f is assigned as the volume fraction of Au-TNR hybrid particles, which can influence
the percolation behavior of the composites. For the curve fitted using the EMPT model,
the optimum fitting parameters were determined to be: n = 0.11, q = 1.0, and f c = 0.8. It
is worth noting that n and q are very close to those reported for the Ag-BaTiO3/PVDF
(n = 0.11) [52] and the Ni-BaTiO3/PVDF (q = 1.0) [23], respectively. The percolation
threshold is expected to occur at a high filler loading (f c = 0.8), which is much higher than
the maximum filler loading used in this current study, and is due to the small amount
of conductive Au nanoparticles used and the hybrid structure of the Au-TNR particles.
Therefore, the percolation network (or conduction pathway) would not be formed in the
Au-TNR/PVDF composite because the hybrid structures of the Au-TNRs prevent the
formation of conducting pathways because the randomly grown Au nanoparticles do not
continuously coat the TNR surface. The large increase in the ε′ value is primarily attributed
to interfacial polarization between the Au–PVDF, Au–TNR, and TNR–PVDF interfaces.
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Figure 10. Experimental data of ε′ for the Au-TNR/PVDF nanocomposites at 1 kHz and 20 ◦C
fitted by the effective medium theory (EMPT) model; inset is the experimental data of ε′ for the
Au-TNR/PVDF nanocomposites fitted by two-phase various theoretical models.
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4. Conclusions

This study presented a novel method for successfully achieving high ε′ and low tanδ
in three-phase PVDF polymer-matrix nanocomposites. The dielectric properties of a PVDF
polymer improved significantly by incorporating conductive Au nanoparticles and semi-
conductive TNRs with enlarged interfacial areas. The Au nanoparticles were discretely
attached to the TNR surfaces to enhance interfacial polarization and simultaneously prevent
the formation of conducting pathways in the insulative PVDF matrix. As a result, a high ε′

(~157) and low tanδ (~0.05) were obtained in the three-phase nanocomposite filled with
1.8 vol% Au and 47.4 vol% TNRs. The dielectric response in the two-phase TNR/PVDF
composite increased by more than a factor of two after introducing small amounts of Au
nanoparticles. This dielectric behavior is described using the EMPT model. The results
indicate that Au nanoparticles significantly contribute to enhancing interfacial polarization
and creating a more polar β-PVDF phase, which increases ε′. In contrast, due to the small
amount of Au nanoparticles used and their discrete growth on the TNRs, the value of tanδ
remained low. To further investigate the possible use of the Au-TNR/PVDF nanocompos-
ites in capacitor applications, fabrication conditions that produce nanocomposite thin films
need be studied.
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