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Abstract: The combination of the ionic liquid co-lyophilized lipase and microwave irradiation 

was used to improve enzyme performance in enantioselective esterification of α-lipoic acid. 

Effects of various reaction conditions on enzyme activity and enantioselectivity were 

investigated. Under optimal condition, the highest enantioselectivity (E = 41.2) was observed 

with a high enzyme activity (178.1 μmol/h/mg) when using the ionic liquid co-lyophilized 

lipase with microwave assistance. Furthermore, the ionic liquid co-lyophilized lipase exhibited 

excellent reusability under low power microwave. 

Keywords: ionic liquid co-lyophilized lipase; α-lipoic acid; enantioselectivity; enzyme 
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1. Introduction 

As an important cofactor involved in many enzyme-catalyzed reactions [1], α-lipoic acid has already 

been used to treat many diseases [2–4]. Since (R)-α-lipoic acid exhibits higher biological activity than 
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its (S)-enantiomer [5], great attention has been focused on the stereoselective synthesis of its  

(R)-enantiomer. There are two main routes to synthesize (R)-α-lipoic acid, including the chemical 

synthesis and biocatalytic process. The chemical synthesis is usually conducted using asymmetric 

synthesis [6,7] or synthesis from a chiral starting material [8]. Due to the interest in a product with high 

enantiomeric purity, several alternative biocatalytic processes have been developed recently, including 

reductase catalysis [9–12], Bakers’ yeast reduction [13], and lipase-catalyzed kinetic resolution [14–17]. 

Among these processes, lipase-catalyzed kinetic resolution is one of the most attractive methods. Zhou 

and his group had successfully prepared the chiral chlorohydrin precursor of (R)-α-lipoic acid via lipase 

catalyzed enantioselective transesterification [17]. In 1997, Fadnavis firstly reported that the 

commercially available Candida rugosa lipase can catalyze the enzymatic resolution of α-lipoic acid 

directly [14]. Yan and his co-workers have reported that the lipase from Aspergillus oryzae WZ007 is 

another potential candidate for enzymatic resolution of α-lipoic acid [15,16]. However, all these lipases 

exhibited poor enzyme performance (low enzyme activity or unsatisfied enantioselectivity), which may 

increase the reaction time and reduce the yield of the enantiomerically pure product. Thus, novel enzymes 

and new techniques are warranted to improve the performance of enantioselective esterification. 

Microwave irradiation (MW) and ionic liquid (IL) are two important and rapid developing 

technologies in green chemistry [18–25]. The combination of MW and IL has already attracted a great 

deal of attention for enzymatic reactions in recent years [26–28]. In reports, IL was used as reaction 

media due to its excellent microwave-absorbing ability. However, the high viscosity of IL may have an 

adverse effect on the mass transfer of the substrates and worsen enzyme performance [29]. It is well 

known that a small amount of IL can induce dramatic changes in the overall dielectric properties of  

the reaction medium under microwave irradiation [30,31]. Furthermore, lyophilization of enzyme in  

the presence of a small amount of IL can improve the activity, stability, and enantioselectivity of  

enzymes [32–37]. All of the above reports may provide a new breakthrough to improve the activity and 

enantioselectivity of enzyme during biocatalytic synthesis. 

In the present work, the combination of the ionic liquid co-lyophilized lipase and microwave 

irradiation was used to improve the enzyme performance in the enantioselective esterification of  

α-lipoic acid. The enzyme has been firstly co-lyophilized with a small amount of ionic liquid and then 

used as catalyst to carry out the enantioselective esterification of α-lipoic acid under microwave 

irradiation (Scheme 1). The effects of reaction conditions on the activity and enantioselectivity were 

investigated and the reusability of the ionic liquid co-lyophilized lipase under microwave was also studied. 

 

Scheme 1. Enantioselective esterification of α-lipoic acid catalyzed by ionic liquid  

co-lyophilized lipase under microwave. 
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2. Results and Discussion 

2.1. Effect of Lipase Source 

Four commercially available lipases were selected for enantioselective esterification of α-lipoic acid 

and the results were listed in Table 1. All selected lipases could catalyze the enantioselective 

esterification of α-lipoic acid. Moreover, all the enzymes favor the (S)-enantiomer of α-lipoic acid, but 

exhibited poor enantioselectivity. Among the tested lipases, CLL (Candida lipolytic lipase) showed the 

highest enantioselectivity (E = 3.2) and a higher enzyme activity (3.7 μmol/h/mg). Thus, CLL was 

selected as the catalyst for further study. 

Table 1. Effect of lipase source on the enantioselective esterification of α-lipoic acid. 

Lipase 
Reaction 

Time (h) 

Conversion 

(%) 

ees 

(%) 

Enzyme Activity 

(μmol/h/mg) 

Enantioselectivity  

(E value) 
Stereoselectivity 

Candida cylindracea A.Y. lipase (AYL) 12 19.8 8.4 3.3 2.2 S 

Mucor miehei lipase (MML) 20 24.0 6.3 2.4 1.6 S 

Porcine pancreatic lipase (PPL) 30 16.5 5.8 1.1 1.9 S 

Candida lipolytic lipase (CLL) 12 22.2 13.6 3.7 3.2 S 

Reaction conditions: (R,S)-α-lipoic acid (2 mmol), lipase (10 mg), n-octanol (5 mmol) and heptane (10 mL) 

were performed at 30 °C and 150 rpm. 

2.2. Effect of Organic Media 

Organic media can alter the solubility of substrates and affect enzyme performance [38]. In this study, 

organic solvents with different log P were selected to investigate the effect of the reaction medium; log P 

is the most frequently used parameter to denote the polarity or hydrophobicity of a solvent [39]. The 

results shown in Table 2 indicate that the best catalytic performance of CLL was observed when 

cyclohexane was used as the reaction media. When polar solvents were used as the reaction media, they 

could disrupt the functional structure of the enzyme by stripping off the essential water from the protein 

and decrease the enzyme activity and the enantioselectivity [40,41]. 

Other reaction conditions were also investigated (data not shown). Our experimental results indicated 

that n-octanol was the most suitable acyl-acceptor. The optimal substrate molar ratio (α-lipoic acid/n-octanol) 

was 1:2.5 and the enzyme dosage in this reaction system was 10 mg. 

Table 2. Effect of organic solvents on the enantioselective esterification of α-lipoic acid. 

Solvent Log P 
Reaction 
Time (h) 

Conversion (%) ees (%) 
Enzyme Activity 

(μmol/h/mg) 
Enantioselectivity 

(E value) 
Isooctane 4.5 12 25.2 3.0 4.2 1.2 
Heptane 4.0 12 22.2 13.6 3.7 3.2 

Cyclohexane 3.2 12 21.6 17.5 3.6 5.3 
Toluene 2.5 15 15.8 8.5 2.1 2.9 

Acetonitrile −0.33 28 19.6 9.3 1.4 2.4 
1,4-Dioxane −1.1 60 26.8 4.2 0.9 1.3 

Reaction conditions: (R,S)-α-lipoic acid (2 mmol), CLL (10 mg), n-octanol (5 mmol) and organic solvent  

(10 mL) were performed at 30 °C and 150 rpm. 



Molecules 2015, 20 9952 

 

 

2.3. Effect of ILs Used for the Ionic Liquid Co-Lyophilized Enzyme 

Lyophilization of enzyme in the presence of a suitable ionic liquid is a simple method to modify the 

enzyme and can improve enzyme performance in non-aqueous media [32–37]. The ionic liquid  

co-lyophilized enzyme, prepared by different hydrophilic ionic liquids (15%, wt %, IL/enzyme), was 

used to catalyze the enantioselective esterification of α-lipoic acid. As shown in Table 3, CLL showed 

poor enzyme performance when CLL was co-lyophilized with [Bmim] Cl or [Bmim] Ac. This may be 

due to the high hydrogen-bond basicity of these two ionic liquids destroying the enzyme conformation 

and decreasing the activity and the enantioselectivity. Among the different ionic liquids, [Bmim] BF4 

was selected as the most suitable ionic liquid for further study since the best catalytic performance was 

observed when CLL was co-lyophilized with [Bmim] BF4. The activation effect of co-lyophilization might 

be due to the active-site preservation or molecular flexibility increase in organic environments or a 

combination of both [36,38]. 

Table 3. Effect of ionic liquids on the enantioselective esterification of α-lipoic acid. 

Ionic Liquid 
Reaction 
Time (h) 

Conversion (%) ees (%) 
Enzyme Activity 

(μmol/h/mg) 
Enantioselectivity 

(E value) 

[Bmim] Cl 48 16.8 7.4 0.7 2.3 
[Bmim] Ac 30 21.0 11.7 1.4 2.9 
[Bmim] BF4 5 26.5 27.0 10.6 9.1 

None 12 21.6 17.5 3.6 5.3 

Reaction conditions: Reaction conditions: (R,S)-α-lipoic acid (2 mmol), CLL (10 mg) co-lyophilized with 

different ionic liquid (15%, wt %, IL/enzyme), n-octanol (5 mmol) and cyclohexane (10 mL) were performed 

at 30 °C and 150 rpm. 

When the ionic liquid co-lyophilized enzyme catalyzed the enantioselective esterification, the ionic 

liquid content may be an important influencing factor. In this study, the correlation between the content 

of [Bmim] BF4 (0%–40%, wt %, IL/enzyme) and enzyme performance was investigated. Figure 1 showed 

that both the enzyme activity and the enantioselectivity exhibited bell-shaped curves when changing the 

content of [Bmim] BF4, which meant a suitable content of [Bmim] BF4 was necessary for enzyme 

lyophilized preparation. The best enzyme performance was obtained at a content of [Bmim] BF4 (20%, 

wt %, IL/enzyme) with an enzyme activity of 9.8 μmol/h/mg and an enantioselectivity (E value) of 12.5. 

2.4. Microwave Irradiation vs. Conventional Heating 

Compared with the results obtained from conventional heating, microwave irradiation can enhance 

both the enzyme activity and enantioselectivity of the free CLL or the ionic liquid co-lyophilized CLL 

(Table 4). Moreover, the improvement of enzyme performance for the ionic liquid co-lyophilized CLL 

under MW was much greater than that of the free enzyme. The dramatic enhancement of enzyme 

performance might be that microwaves can directly act on the ionic liquid co-lyophilized enzyme 

because of the excellent microwave-absorbing ability of IL [42] and change the protein conformation  

of CLL. 
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Figure 1. Effects of [Bmim] BF4 content during lyophilized preparation on the enzyme 

activity (μmol/h/mg, ○) and the enantioselectivity (E value, ●) in enantioselective esterification 

of α-lipoic acid. Reaction conditions: (R,S)-α-lipoic acid (2 mmol), CLL (10 mg)  

co-lyophilized with different contents of [Bmim] BF4 (wt %, IL/enzyme), n-octanol  

(5 mmol) and cyclohexane (10 mL) were performed at 30 °C and 150 rpm. 

Table 4. Effect of microwaves on the enantioselective esterification of α-lipoic acid. 

 Conventional Heating Microwave 

 
Enzyme Activity 

(μmol/h/mg) 
Enantioselectivity 

(E value) 
Enzyme Activity 

(μmol/h/mg) 
Enantioselectivity 

(E value) 

Free CLL 3.6 5.3 5.1 6.7 
Ionic liquid  

co-lyophilized CLL 
9.8 12.5 170.4 38.6 

Reaction conditions: (R,S)-α-lipoic acid (2 mmol), free CLL (10 mg) or CLL (10 mg) co-lyophilized with 20% 

of [Bmim] BF4 (wt %, IL/enzyme), n-octanol (5 mmol) and cyclohexane (10 mL) were performed at  

30 °C. The microwave was carried out in a microwave bath (480 W). Conventional shaking was performed  

at 150 rpm. 

2.5. Effect of Microwave Power 

The effect of microwave power on the enzyme performance of the ionic liquid co-lyophilized CLL 

was examined in the range of 0–640 W. As shown in Figure 2, ionic liquid co-lyophilized CLL exhibited 

the highest enantioselectivity (E value, 38.6) and a higher enzyme activity (170.4 μmol/h/mg) when the 

microwave power was 480 W. Generally, the higher the microwave power was set, the faster the dipole 

reorientated under the MW, which might make the functional groups obtain a higher reactivity [28,43]. Since 

all of the ionic liquid co-lyophilized enzyme and substrate used in this study had significant dipole 

moments, microwave could significantly impact theses molecules and activate enzyme and substrate. At 

high microwave power, the enzyme activity and the enantioselectivity decreased, possibly due to the 

denaturation of enzymes, caused by the quick change of temperature at the very beginning of the 

reaction. Based on the experimental results, 480 W was chosen as the optimal microwave power. 
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Figure 2. Effect of microwave power on the enzyme activity (μmol/mg/h, ○) and 

enantioselectivity (E value, ●) of ionic liquid co-lyophilized CLL in enantioselective 

esterification of α-lipoic acid. Reaction conditions: (R,S)-α-lipoic acid (2 mmol), CLL  

(10 mg) co-lyophilized with 20% of [Bmim] BF4 (wt %, IL/enzyme), n-octanol (5 mmol) 

and cyclohexane (10 mL) were performed at 30 °C under microwave with various power (W). 

2.6. Effect of Microwave Temperature 

The effect of temperature was examined in the range of 15–50 °C under microwave irradiation. The 

results in Figure 3 demonstrated that the highest enzyme activity (178.1 μmol/h/mg) was obtained, with 

a high enantioselectivity (E = 41.2), at 25 °C for the ionic liquid co-lyophilized lipase. Therefore, 25 °C 

was selected as the optimal microwave temperature. Under optimal conditions, a preparative reaction on 

a twenty-fold-larger scale gave (R)-α-lipoic acid with about 41% yield and 99% ee. 

 

Figure 3. Effect of microwave temperature on the enzyme activity (μmol/mg/h, ○) and 

enantioselectivity (E value, ●) of ionic liquid co-lyophilized CLL in enantioselective 

esterification of α-lipoic acid. Reaction conditions: (R,S)-α-lipoic acid (2 mmol), CLL (10 mg) 

co-lyophilized with 20% of [Bmim] BF4 (wt %, IL/enzyme), n-octanol (5 mmol) and 

cyclohexane (10 mL) were performed at different temperature under microwaves (480 W). 
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2.7. Reusability of the Ionic Liquid Co-Lyophilized Enzyme under Microwave Irradiation 

The ionic liquid co-lyophilized lipase exhibited excellent reusability under low power microwaves.  

As shown in Table 5, the ionic liquid co-lyophilized CLL could still keep 95.2% of its original activity  

and 94.4% of its original enantioselectivity, even after six reaction cycles. 

Table 5. Reusability of ionic liquid co-lyophilized CLL under microwaves. 

Reaction Cycle Relative Activity (%) E value 

1 100 41.2 
2 99.2 40.9 
3 98.5 40.6 
4 97.7 40.3 
5 96.4 39.5 
6 95.2 38.9 

Reaction conditions: (R,S)-α-lipoic acid (2 mmol), CLL (10 mg) co-lyophilized with 20% of [Bmim] BF4  

(wt %, IL/enzyme), n-octanol (5 mmol) and cyclohexane (10 mL) were performed at 25 °C under  

microwaves (480 W). 

3. Experimental Section 

3.1. Materials 

D-phenylalanine, α-lipoic acid and o-phthalaldehyde (OPA) were purchased from Sigma–Aldrich  

(St. Louis, MO, USA). 11-Mercaptoundecanoic acid was also purchased from Sigma–Aldrich and used 

as the internal standard. All the ionic liquids (1-butyl-3-methylimidazolium chloride, [Bmim] Cl;  

1-butyl-3-methylimidazolium acetate [Bmim] Ac; 1-butyl-3-methylimidazolium tetrafluoroborate, 

[Bmim] BF4) were purchased from Shanghai Chengjie Chemical Co., Ltd. (Shanghai, China). Candida 

cylindracea A.Y. lipase (AYL) was purchased from Amano Pharmaceutical Co., Ltd. (Nagoya, Japan). 

Mucor miehei lipase (MML) was purchased from Novo (Bagsvaerd, Denmark). Porcine pancreatic 

lipase (PPL) was purchased from Shanghai Dongfeng Biochemical Reagent Co., Ltd. (Shanghai, China). 

Candida lipolytic lipase (CLL) was provided by Wuxi enzyme preparation plant (Wuxi, China). All the 

other chemicals were obtained from commercial sources and were of analytical reagent grade. 

The OPA-solution (25 mM) was prepared by dissolving OPA (33.5 mg) in 0.5 mL of methanol and 

diluted by 10 mL of a potassium borate buffer (0.4 M, pH 9.9). The internal standard solution was 

prepared by dissolving 10 mg 11-mercaptoundecanoic acid in 10 mL methanol. 

3.2. Microwave Equipment 

Reactions were carried out in a commercial multimode microwave reactor (MCR-3, Shanghai JieSi 

Microwave Chemistry Corporation). The machine consisted of a continuous focused microwave power 

delivery system and an operator selectable power output from 0 to 800 W. The temperature of the 

reaction mixture was monitored and kept constant (±1 °C) by using a contact Teflon platinum resistance 

temperature transducer inserted directly into the reaction mixture. The content of the vessel was stirred 

by a rotating magnetic plate located below the base of the microwave cavity and a Teflon-coated 

magnetic stir bar in the vessel. 
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3.3. Preparation of the Co-Lyophilized Lipase 

Lipase powder (1 g) was dispersed in phosphate buffer (50 mL, pH 8.0, 0.1 M) at 4 °C for 2 h under 

stirring, and the insoluble impurity was removed by centrifugation (8000 rpm, 5 min). The supernatant 

was lyophilized for 48 h. The lyophilized enzyme powder (200 mg) was dissolved again in the above 

phosphate buffer (10 mL). To prepare the co-lyophilized lipase, [Bmim] BF4 (40 mg) was added to the 

enzyme solution and the solution was lyophilized for 12 h. 

3.4. Resolution of α-Lipoic Acid 

The reaction mixture containing cyclohexane (10 mL), (R,S)-α-lipoic acid (2 mmol) and n-octanol  

(5 mmol) was incubated in a microwave oven (480 W, 25 °C, 150 rpm). The reaction was initiated by 

addition of CLL (10 mg) co-lyophilized with [Bmim] BF4 (20%, wt %, IL/enzyme). The reaction mixture 

(100 μL) was withdrawn periodically and extracted by the solution of sodium bicarbonate  

(25 mM, 200 μL) to obtain the un-reacted α-lipoic acid aqueous solution for High Performance Liquid 

Chromatography (HPLC) detection. 

3.5. Reusability of the Co-Lyophilized Lipase 

After each round of reaction, the co-lyophilized lipase was recycled by centrifugation (10,000 rpm,  

5 min, 4 °C) and washed with cyclohexane for three times. Then, the enzyme was repeatedly used in the 

next reaction. The residue activity of the recycled enzyme was compared with the enzyme activity of the 

first cycle (100%). 

3.6. High Performance Liquid Chromatography (HPLC) Analysis 

α-Lipoic acid was determined using OPA derivatization and fluorescence detection, based on the 

previous report [44], with a minor modification. 

The extracted un-reacted α-lipoic acid solution (50 μL) was mixed with 50 μL of the internal standard 

solution and 25 μL of a 0.05 M aqueous solution of NaOH containing 0.5 mg/mL of NaBH4 and incubated 

at 60 °C for 10 min to obtain the reduced α-lipoic acid before OPA derivatization. The OPA derivatizations 

were carried out by mixing the reduced sample solution (25 μL), the D-phenylalanine solution (25 μL, 

25 mM) with the OPA-solution (50 μL, 25 mM) for 60 min, standing at room temperature. The reaction 

was terminated by acidification with 100 µL of phosphate buffer (0.02 M, pH 5.8) before injection. 

The sample analysis was performed on an Agilent 1200 HPLC equipped with a 250 × 4 mm 

LiChrospher 100 RP-18 (5 μm) reversed-phase column (Merck, Darmstadt, Germany). The mobile phase 

was composed of 55% (v/v) phosphate buffer (0.02 M, pH 5.8) and 45% (v/v) acetonitrile/methanol (v/v, 

1:1). A flow rate of 1.8 mL/min was used. Detection was carried out by excitation at 230 nm and emission 

over 418 nm. The injection of samples (20 μL) was performed using an auto-sampler (Jasco 851-AS). 

The enantiomeric excess of the un-reacted α-lipoic acid (ee) was determined by calculating the peak 

areas of the two enantiomers, and the conversion (C) was determined based on the decrease of the 

substrate. The enzyme activity (μmol/h/mg) was defined as the amount (in micromoles) of the decreased 

substrate per hour per milligram of enzyme and was detected while the conversion was controlled in the 
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range of the 15%~30%. The enantiomeric ratio (E value) was calculated according to Chen et al. [45]. 

All experiments were carried out in triplicate and all data were obtained based on the average values. 

(1)

4. Conclusions 

In this study, we take the advantage of the synergistic effect between ionic liquid co-lyophilized lipase 

and microwave irradiation to enhance the enzyme performance in enantioselective esterification of  

α-lipoic acid. Under the optimal reaction conditions, the ionic liquid co-lyophilized lipase exhibited a 

satisfied enzyme performance (E value, 41.2; enzyme activity, 178.1 μmol/h/mg). Furthermore, high 

reusability of the ionic liquid co-lyophilized lipase under low power MW conditions make it more 

attractive for resolution of (R,S)-α-lipoic acid in industry. 
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