

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Dimethylammonium tetraaqua-(hydrogensulfato)sulfatocuprate(II)

Peter Held

Institut für Kristallographie, Universität zu Köln, Greinstrasse 6, D-50939 Köln, Germany

Correspondence e-mail: peter.held@uni-koeln.de

Received 15 February 2014; accepted 26 February 2014

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (N–C) = 0.005 Å; R factor = 0.032; wR factor = 0.092; data-to-parameter ratio = 19.4.

In the title salt, $[(CH_3)_2NH_2][Cu(HSO_4)(SO_4)(H_2O)_4]$, one type of cation and anion is present in the asymmetric unit. The Cu^{II} atom in the complex anion, $[Cu(HSO_4)(SO_4)(H_2O)_4]^-$, has a tetragonal bipyramidal [4 + 2] coordination caused by a Jahn–Teller distortion, with the aqua ligands in equatorial and two O atoms of tetrahedral HSO₄ and SO₄ units in apical positions. Both types of ions form sheets parallel to (010). The interconnection within and between the sheets is reinforced by $O-H\cdots O$ and $N-H\cdots O$ hydrogen bonds, respectively, involving the water molecules, the two types of sulfate anions and the ammonium groups.

Related literature

 H_2N CH_3 OH_2 OH_2

OH.

For related structures, see: Montgomery & Lingafelter (1966);

Montgomery et al. (1967); Held (2003, 2014). For bond-

valence parameters, see: Brown & Altermatt (1985).

Experimental

Crystal data $(C_2H_8N)[Cu(HSO_4)(SO_4)(H_2O)_4]$ $M_r = 374.8$ Orthorhombic, *Pbca* a = 7.1825 (9) Å b = 17.9973 (15) Å c = 19.410 (3) Å

 $V = 2509.0 (6) Å^{3}$ Z = 8Mo K\alpha radiation $\mu = 2.13 \text{ mm}^{-1}$ T = 295 K $0.29 \times 0.27 \times 0.25 \text{ mm}$ $R_{\rm int} = 0.055$

Data collection

```
Nonius MACH3 diffractometer
Absorption correction: \psi scan
(North et al., 1968)
T_{\min} = 0.960, T_{\max} = 0.999
7482 measured reflections
3801 independent reflections
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.092$ S = 0.973801 reflections 196 parameters 8 restraints 3 standard reflections every 100 reflections intensity decay: -1.4%

2231 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of independent and constrained refinement
$$\begin{split} &\Delta\rho_{max}=0.74~e~{\rm \AA}^{-3}\\ &\Delta\rho_{min}=-0.44~e~{\rm \AA}^{-3} \end{split}$$

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N3-H3B\cdotsO13^{i}$	0.90	2.22	2.932 (4)	136
$N3-H3A\cdotsO11^{ii}$	0.90	2.00	2.871 (3)	164
$O1 - H1D \cdots O12^{iii}$	0.84(2)	1.82 (2)	2.656 (3)	175 (4)
$O1 - H1E \cdots O12^{iv}$	0.85(2)	1.85 (2)	2.687 (3)	171 (4)
$O2 - H2D \cdots O24^{v}$	0.85 (2)	1.90 (2)	2.745 (3)	174 (3)
$O2-H2E\cdots O24^{vi}$	0.84(2)	1.94 (2)	2.777 (3)	174 (4)
$O3 - H3D \cdots O23^{vii}$	0.86 (2)	1.87 (2)	2.722 (3)	173 (4)
$O3-H3E\cdots O14^{iv}$	0.85(2)	1.82 (2)	2.661 (3)	167 (4)
$O4-H4D\cdots O23^{vi}$	0.84(2)	1.91 (2)	2.753 (3)	175 (4)
$O4-H4E\cdots O14^{viii}$	0.87 (2)	1.76 (2)	2.627 (3)	171 (5)
$O21 - H21 \cdots O13^{ix}$	0.82	1.71	2.484 (3)	156

Symmetry codes: (i) $-x - \frac{1}{2}, y - \frac{1}{2}, z$; (ii) $-x + \frac{1}{2}, y - \frac{1}{2}, z$; (iii) $x + \frac{1}{2}, y, -z + \frac{1}{2}$; (iv) x + 1, y, z; (v) $x - \frac{1}{2}, y, -z + \frac{1}{2}$; (vi) x - 1, y, z; (vii) -x + 2, -y, -z; (viii) -x + 1, -y, -z; (ix) $-x + \frac{3}{2}, y - \frac{1}{2}, z$.

Data collection: *CAD-4* (Enraf–Nonius, 1989); cell refinement: *CAD-4*; data reduction: *WinGX* (Farrugia, 2012); program(s) used to solve structure: *SIR97* (Altomare *et al.*, 1999); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ATOMS* (Dowty, 2002) and *ORTEP-3 for Windows* (Farrugia, 2012); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Supporting information for this paper is available from the IUCr electronic archives (Reference: WM5006).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115–119.
- Brown, I. D. & Altermatt, D. (1985). Acta Cryst. B41, 244-247.
- Dowty, E. (2002). ATOMS. Shape Software, Kingsport, Tennessee, USA.
- Enraf-Nonius (1989). CAD-4. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.
- Held, P. (2003). Z. Kristallogr. New Cryst. Struct. 218, 13-14.
- Held, P. (2014). Acta Cryst. E70, o129.
- Montgomery, H., Morosin, B., Natt, J. J., Witkowska, A. M. & Lingafelter, E. C. (1967). Acta Cryst. 22, 775–780.
- Montgomery, H. & Lingafelter, E. C. (1966). Acta Cryst. 20, 659-662.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supplementary materials

Acta Cryst. (2014). E70, m119 [doi:10.1107/S1600536814004486]

Dimethylammonium tetraaqua(hydrogensulfato)sulfatocuprate(II)

Peter Held

1. Comment

In the course of a systematic search for new "double salts" of simple secondary amines and monovalent cations of various inorganic acids, the structures of the new compounds $(C_2N_2H_{10})Li_2(SO_4)_2$ and $[NH_2(CH_2CH_3)_2][H_2PO_4]$ have been described (Held, 2003, 2014). In continuation of these studies, ethylenediamine and lithium were replaced with dimethyl-amine and divalent copper, respectively, yielding crystals of the title compound with composition $[(CH_3)_2NH_2][Cu(HSO_4)(H_2O_4)]$.

The structure of the title compound consists of SO_4^{2-} and HSO_4^{-} anions, $NH_2(CH_3)_2^+$ and Cu^{2+} cations as well as water molecules as basic structure units. All atoms are located on general Wykoff position 8*c*. The Cu²⁺ cation is surrounded by six O atoms of four equatorially placed water molecules (averaged distance = 1.952 (17) Å) and of two apical sulfate groups (averaged distance = 2.45 (6) Å), forming a distorted tetragonal bipyramid, $[Cu(H_2O)_4(SO_4)(HSO_4)]$, which is markedly elongated to both apices due to the Jahn-Teller-effect of the Cu²⁺ cation, leading to a pronounced [4 + 2] coordination (Fig. 1) and an overall bond valence sum (Brown & Altermatt, 1985) of 2.17 valence units. Caused by the dissimilar coordination partners, the Cu—O distances vary widely in comparison with more uniform O environments, *e.g.* in the Tutton's salt (NH₄)₂Cu(SO₄)₂(H₂O)₆ with a hexa-coordination of Cu²⁺ by water molecules (Montgomery & Lingafelter (1966); Montgomery *et al.*(1967)). As expected, the S—O distance of the OH-function (1.545 (2) Å) is considerably longer than the other S—O distances (average distance 1.459 (11) Å).

In the title compound, the $[Cu(H_2O)_4Cu(SO_4)_2]^{2-}$ anions form sheets parallel to (010), hold apart from each other by dimethylammonium groups (Fig. 2). Hydrogen bonds of medium strength involving water molecules as donor groups and O atoms of the sulfate anions as acceptor groups interconnect neighbouring $[Cu(H_2O)_4(SO_4)(HSO_4)]^{2-}$ units. Together with N—H···O hydrogen bonds of the ammonium hydrogen atoms, a three-dimensional framework (Fig. 3) is formed.

2. Experimental

The title compound was obtained by reaction of aqueous solution of copper(II) sulfate with dimethylamine and sulfuric acid in the stoichiometric ratio 1:1:1. The solution was kept at room temperature by cooling. The title compound crystallized by slow evaporation of the solvent at room temperature in form of optical clear, light-blue crystals with dimensions up to 5 mm within a few weeks.

3. Refinement

The H atoms were clearly discernible from difference Fourier maps. However, to all hydrogen atoms riding model contraints were applied in the least squares refinement, with C—H = 0.96 Å for methyl H atoms ($U_{iso}(H) = 1.5U_{eq}(C)$), with N—H = 0.90 Å ($U_{iso}(H) = 1.2U_{eq}(N)$) and with O—H = 0.82 Å ($U_{iso}(H) = 1.2U_{eq}(O)$) for the H atom of the HSO₄⁻ anion . All H atoms of the water molecules were refined with a distance restraint of O—H = 0.87 Å.

Figure 1

The molecular entities in the structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

(100)-projection of the crystal structure of the title compound. Colour scheme: $[Cu(H_2O)_4(SO_4)(HSO_4)]$ bipyramids (red), (SO₄) tetrahedra (yellow), N (orange), C (grey) and H (white).

Figure 3

(001)-projection of the crystal structure of the title compound. Colour scheme as in Fig. 2. Hydrogen bonding is indicated by small grey lines.

Dimethylammonium tetraaqua(hydrogensulfato)sulfatocuprate(II)

Crystal data

 $\begin{array}{l} ({\rm C}_{2}{\rm H}_{8}{\rm N})[{\rm Cu}({\rm HSO}_{4})({\rm SO}_{4})({\rm H}_{2}{\rm O})_{4}]\\ M_{r}=374.8\\ {\rm Orthorhombic}, Pbca\\ {\rm Hall symbol: -P 2ac 2ab}\\ a=7.1825 (9) ~{\rm \AA}\\ b=17.9973 (15) ~{\rm \AA}\\ c=19.410 (3) ~{\rm \AA}\\ V=2509.0 (6) ~{\rm \AA}^{3}\\ Z=8 \end{array}$

Data collection

Nonius MACH3	3801 independent reflections
diffractometer	2231 reflections with $I > 2\sigma(I)$
Radiation source: fine-focus sealed tube	$R_{\rm int} = 0.055$
Graphite monochromator	$\theta_{\rm max} = 30.4^{\circ}, \ \theta_{\rm min} = 2.3^{\circ}$
$\omega/2\theta$ scans	$h = -10 \rightarrow 0$
Absorption correction: ψ scan	$k = -25 \rightarrow 0$
(North <i>et al.</i> , 1968)	$l = -27 \rightarrow 27$
$T_{\min} = 0.960, \ T_{\max} = 0.999$	3 standard reflections every 100 reflections
7482 measured reflections	intensity decay: -1.4%

F(000) = 1544

 $\theta = 21.0 - 26.0^{\circ}$

 $\mu = 2.13 \text{ mm}^{-1}$

Parallelepiped, light blue $0.29 \times 0.27 \times 0.25$ mm

T = 295 K

 $D_{\rm x} = 1.985 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 25 reflections

Refinement

Refinement on F^2 Hydrogen site location: inferred from Least-squares matrix: full neighbouring sites $R[F^2 > 2\sigma(F^2)] = 0.032$ H atoms treated by a mixture of independent $wR(F^2) = 0.092$ and constrained refinement S = 0.97 $w = 1/[\sigma^2(F_o^2) + (0.0423P)^2 + 0.4413P]$ where $P = (F_o^2 + 2F_c^2)/3$ 3801 reflections 196 parameters $(\Delta/\sigma)_{\rm max} = 0.001$ 8 restraints $\Delta \rho_{\rm max} = 0.74 \text{ e} \text{ Å}^{-3}$ Primary atom site location: structure-invariant $\Delta \rho_{\rm min} = -0.44 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, direct methods Secondary atom site location: difference Fourier 2008), $Fc^* = kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$ Extinction coefficient: 0.0081 (3) map

Special details

Experimental. A suitable single-crystal was carefully selected under a polarizing microscope and mounted in a glass capillary.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cu	0.73284 (4)	0.015242 (18)	0.126573 (17)	0.01956 (10)

01	0.8740 (3)	0.07478 (12)	0.19257 (11)	0.0228 (4)
O2	0.5919 (3)	-0.02976 (12)	0.20235 (11)	0.0253 (5)
O3	0.8752 (3)	0.06422 (15)	0.05293 (11)	0.0293 (5)
O4	0.5959 (3)	-0.04258 (14)	0.06014 (12)	0.0312 (5)
S1	0.31024 (8)	0.11572 (4)	0.11869 (4)	0.01745 (14)
O11	0.5141 (3)	0.12213 (11)	0.11860 (11)	0.0278 (5)
O12	0.2463 (3)	0.07405 (15)	0.17900 (12)	0.0422 (6)
O13	0.2226 (3)	0.18941 (12)	0.11961 (17)	0.0566 (9)
O14	0.2441 (3)	0.07687 (16)	0.05733 (11)	0.0425 (7)
S2	1.14451 (9)	-0.12021 (4)	0.13213 (4)	0.01923 (15)
O21	1.0717 (3)	-0.20091 (11)	0.13532 (13)	0.0376 (6)
H21	1.1602	-0.2297	0.1359	0.056*
O22	0.9771 (3)	-0.07646 (12)	0.13129 (14)	0.0397 (6)
O23	1.2575 (3)	-0.11363 (13)	0.07020 (10)	0.0326 (5)
O24	1.2594 (3)	-0.10790 (13)	0.19321 (10)	0.0305 (5)
N3	-0.3234 (4)	-0.27683 (14)	0.12215 (14)	0.0310 (6)
H3A	-0.2138	-0.3010	0.1241	0.037*
H3B	-0.4141	-0.3113	0.1212	0.037*
C1	-0.3443 (6)	-0.2325 (2)	0.1854 (2)	0.0477 (10)
H1A	-0.3395	-0.2647	0.2248	0.072*
H1B	-0.4617	-0.2070	0.1845	0.072*
H1C	-0.2452	-0.1968	0.1881	0.072*
C2	-0.3304 (6)	-0.2343 (2)	0.0576 (2)	0.0465 (10)
H2A	-0.3167	-0.2676	0.0192	0.070*
H2B	-0.2312	-0.1986	0.0570	0.070*
H2C	-0.4478	-0.2091	0.0543	0.070*
H1D	0.841 (5)	0.0743 (19)	0.2340 (11)	0.044 (12)*
H1E	0.992 (3)	0.075 (2)	0.193 (2)	0.052 (14)*
H2D	0.651 (4)	-0.0538 (16)	0.2328 (13)	0.026 (9)*
H2E	0.489 (4)	-0.051 (2)	0.198 (2)	0.053 (13)*
H3D	0.827 (5)	0.077 (2)	0.0141 (13)	0.056 (13)*
H3E	0.994 (3)	0.063 (2)	0.050 (2)	0.040 (11)*
H4D	0.490 (3)	-0.062 (2)	0.062 (2)	0.058 (14)*
H4E	0.637 (6)	-0.054 (2)	0.0194 (13)	0.072 (15)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu	0.01968 (17)	0.02313 (17)	0.01587 (14)	-0.00449 (13)	0.00006 (14)	0.00032 (16)
01	0.0208 (11)	0.0291 (11)	0.0184 (10)	-0.0035 (9)	-0.0013 (8)	-0.0016 (9)
O2	0.0204 (11)	0.0325 (13)	0.0230 (10)	-0.0041 (10)	-0.0013 (8)	0.0079 (9)
O3	0.0179 (11)	0.0488 (15)	0.0212 (10)	-0.0047 (11)	-0.0006 (9)	0.0110 (10)
O4	0.0244 (12)	0.0445 (14)	0.0247 (11)	-0.0111 (11)	0.0019 (9)	-0.0131 (10)
S 1	0.0138 (3)	0.0171 (3)	0.0214 (3)	0.0002 (2)	-0.0004 (2)	-0.0004 (3)
011	0.0145 (8)	0.0256 (10)	0.0433 (13)	-0.0021 (7)	-0.0001 (9)	0.0009 (10)
O12	0.0254 (12)	0.0729 (19)	0.0283 (11)	-0.0128 (13)	-0.0034 (10)	0.0189 (12)
O13	0.0242 (11)	0.0190 (10)	0.127 (3)	0.0033 (9)	-0.0063 (16)	-0.0017 (15)
O14	0.0236 (11)	0.0750 (19)	0.0288 (11)	-0.0113 (13)	0.0038 (10)	-0.0206 (12)
S2	0.0168 (3)	0.0172 (3)	0.0237 (3)	0.0008 (2)	-0.0003 (3)	-0.0003 (3)
O21	0.0240 (10)	0.0198 (10)	0.0689 (16)	-0.0024 (8)	0.0041 (11)	-0.0010 (11)

supplementary materials

O22	0.0227 (10)	0.0305 (12)	0.0658 (16)	0.0115 (9)	-0.0030 (12)	-0.0021 (13)	
O23	0.0296 (11)	0.0438 (13)	0.0244 (10)	-0.0043 (12)	0.0014 (9)	0.0018 (9)	
O24	0.0281 (11)	0.0400 (12)	0.0233 (10)	-0.0026 (11)	-0.0024 (9)	-0.0032 (9)	
N3	0.0294 (12)	0.0226 (11)	0.0411 (15)	0.0025 (10)	0.0030 (12)	-0.0047 (12)	
C1	0.037 (2)	0.053 (2)	0.053 (2)	-0.0009 (19)	0.0071 (18)	-0.023 (2)	
C2	0.046 (3)	0.039 (2)	0.055 (2)	-0.0008 (19)	-0.0074 (19)	0.0110 (19)	

Geometric parameters (Å, °)

Cu—O4	1.927 (2)	S1—011	1.4689 (19)	-
Cu—O1	1.954 (2)	S2—O22	1.438 (2)	
Cu—O2	1.961 (2)	S2—O23	1.455 (2)	
Cu—O3	1.966 (2)	S2—O24	1.461 (2)	
Cu—O22	2.410 (2)	S2—O21	1.545 (2)	
Cu—O11	2.489 (2)	O21—H21	0.8200	
O1—H1D	0.838 (18)	N3—C2	1.470 (5)	
O1—H1E	0.846 (18)	N3—C1	1.471 (4)	
O2—H2D	0.848 (18)	N3—H3A	0.9000	
O2—H2E	0.837 (19)	N3—H3B	0.9000	
O3—H3D	0.857 (18)	C1—H1A	0.9600	
O3—H3E	0.852 (18)	C1—H1B	0.9600	
O4—H4D	0.843 (18)	C1—H1C	0.9600	
O4—H4E	0.869 (19)	C2—H2A	0.9600	
S1—O14	1.461 (2)	C2—H2B	0.9600	
S1—O12	1.464 (2)	C2—H2C	0.9600	
S1—O13	1.468 (2)			
O4—Cu—O1	178.97 (10)	O14—S1—O11	111.16 (14)	
O4—Cu—O2	90.88 (10)	O12—S1—O11	110.73 (14)	
O1—Cu—O2	90.15 (9)	O13—S1—O11	110.88 (13)	
O4—Cu—O3	91.21 (11)	S1—O11—Cu	124.65 (12)	
O1—Cu—O3	87.76 (9)	O22—S2—O23	114.37 (15)	
O2—Cu—O3	177.57 (10)	O22—S2—O24	113.48 (15)	
O4—Cu—O22	91.55 (10)	O23—S2—O24	110.06 (12)	
O1—Cu—O22	88.45 (9)	O22—S2—O21	103.44 (13)	
O2—Cu—O22	93.69 (9)	O23—S2—O21	107.35 (14)	
O3—Cu—O22	87.49 (10)	O24—S2—O21	107.53 (14)	
O4—Cu—O11	93.07 (9)	S2—O21—H21	109.5	
O1—Cu—O11	86.81 (8)	S2—O22—Cu	169.84 (15)	
O2—Cu—O11	92.29 (8)	C2—N3—C1	115.2 (3)	
O3—Cu—O11	86.36 (9)	C2—N3—H3A	108.5	
O22—Cu—O11	172.37 (7)	C1—N3—H3A	108.5	
Cu—O1—H1D	118 (3)	C2—N3—H3B	108.5	
Cu—O1—H1E	122 (3)	C1—N3—H3B	108.5	
H1D—O1—H1E	106 (4)	H3A—N3—H3B	107.5	
Cu—O2—H2D	118 (2)	N3—C1—H1A	109.5	
Cu—O2—H2E	125 (3)	N3—C1—H1B	109.5	
H2D—O2—H2E	106 (4)	H1A—C1—H1B	109.5	
Cu—O3—H3D	123 (3)	N3—C1—H1C	109.5	
Cu—O3—H3E	123 (3)	H1A—C1—H1C	109.5	

supplementary materials

H3D—O3—H3E	111 (4)	H1B—C1—H1C	109.5
Cu—O4—H4D	132 (3)	N3—C2—H2A	109.5
Cu—O4—H4E	124 (3)	N3—C2—H2B	109.5
H4D—O4—H4E	104 (4)	H2A—C2—H2B	109.5
O14—S1—O12	107.74 (15)	N3—C2—H2C	109.5
O14—S1—O13	107.63 (17)	H2A—C2—H2C	109.5
O12—S1—O13	108.58 (17)	H2B—C2—H2C	109.5

Hydrogen-bond geometry (Å, °)

	D—H	Н…А	D····A	D—H···A
N3—H3 <i>B</i> ···O13 ⁱ	0.90	2.22	2.932 (4)	136
N3—H3 <i>A</i> ···O11 ⁱⁱ	0.90	2.00	2.871 (3)	164
O1—H1 <i>D</i> …O12 ⁱⁱⁱ	0.84 (2)	1.82 (2)	2.656 (3)	175 (4)
O1—H1E···O12 ^{iv}	0.85 (2)	1.85 (2)	2.687 (3)	171 (4)
O2— $H2D$ ···O24 ^v	0.85 (2)	1.90 (2)	2.745 (3)	174 (3)
O2—H2 <i>E</i> ···O24 ^{vi}	0.84 (2)	1.94 (2)	2.777 (3)	174 (4)
O3—H3D····O23 ^{vii}	0.86 (2)	1.87 (2)	2.722 (3)	173 (4)
O3—H3E····O14 ^{iv}	0.85 (2)	1.82 (2)	2.661 (3)	167 (4)
O4—H4 <i>D</i> ···O23 ^{vi}	0.84 (2)	1.91 (2)	2.753 (3)	175 (4)
O4—H4 <i>E</i> ···O14 ^{viii}	0.87 (2)	1.76 (2)	2.627 (3)	171 (5)
O21—H21…O13 ^{ix}	0.82	1.71	2.484 (3)	156

Symmetry codes: (i) -*x*-1/2, *y*-1/2, *z*; (ii) -*x*+1/2, *y*-1/2, *z*; (iii) *x*+1/2, *y*, -*z*+1/2; (iv) *x*+1, *y*, *z*; (v) *x*-1/2, *y*, -*z*+1/2; (vi) *x*-1, *y*, *z*; (vii) -*x*+2, -*y*, -*z*; (viii) -