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Measurement, manipulation and
modeling of brain-wide neural
population dynamics

Krishna V. Shenoy® 123456 & jonathan C. Kao’8

Neural recording technologies increasingly enable simultaneous measurement of
neural activity from multiple brain areas. To gain insight into distributed neural
computations, a commensurate advance in experimental and analytical methods
is necessary. We discuss two opportunities towards this end: the manipulation
and modeling of neural population dynamics.

Neural circuits comprise networks of individual neurons that perform sensory, cognitive, and
motor functions. Neuronal biophysics, together with these circuits, give rise to neural population
dynamics, which express how the activity of the neural population evolves through time in
principled ways. Neural population dynamics provide a framework for understanding neural
computation. Prior studies have modeled neural population dynamics to gain insight into
computations involved in decision-making, timing, and motor control!. Here, we present
emerging opportunities for new experiments and analyses that use a dynamical systems fra-
mework to better understand brain circuits, how they interact, and how they relate to behavior.

The simplest model of neural population dynamics is a linear dynamical system (LDS). An
LDS (Fig. 1a) is described by a dynamics equation (x(t + 1) = Ax(t) + Bu(t)) and an observation
equation (y(t) = Cx(t) + d). Typically, y(t) reflects experimental measurements, such as a vector
where each element is the number of action potentials fired by a neuron in a brief time bin (e.g.,
10 ms). The vector x(t) is a “neural population state” that captures information in y(t). This
neural population state can be thought of as a representation of the dominant activity patterns in
the experimental neural recordings. Typically, x(t) is an abstract representation in a low-
dimensional subspace (or manifold) found via dimensionality reduction? (Fig. 1b, neural state),
reflecting that the neural activity is correlated and the dominant patterns can be described by a
relatively small number of variables. The neural population state can also represent the activity of
each neuron in the original dimensionality of the measured data (e.g., 100D if 100 neurons). The
observation equation relates the observed action potentials (y(t)) to the neural population state
(x(t)) through an observation matrix (C). The vector, d, is a constant offset (e.g., to model
baseline firing). The neural population state moves through neural state space, constituting a
neural population trajectory. The dynamics equation expresses how the neural population state
(x(t)) progresses through time as a function of a dynamics matrix (A), an input matrix (B) and
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Fig. 1 Overview of neural dynamics and manipulations. a Linear dynamical system using neural recordings. Binned spiking activity, y(t), relates to a latent
neural population state, x(t), that evolves according to linear dynamics, A, with inputs from other cortical areas, Bu(t). The neural population state is
typically a low-dimensional trajectory, and the dynamics can be conceptualized as a flow field. b In many cases, the neural state can be represented as a
low-dimensional trajectory in a subspace of the higher-dimensional recordings. ¢ In this subspace, the neural state evolves according to neural dynamics,
which define a flow field. In a LDS, the dynamics of A can be contractive, expansive, rotational, or a fixed point. Inputs may cause the flow field to exhibit
more complex motifs, such as shown in this panel. Generally, dynamics and dimensionality reduction can also be modeled to be nonlinear. d By electrical or
optogenetic stimulation, or applying perturbations to the sensory-behavior or force-behavior relationship, it is possible to make perturbations to the neural
state, x(1). These perturbations can be “within-manifold”, which perturbs the neural state along its natural modes, or they can be “outside-manifold,” which
perturbs the neural state along dimensions outside the plane spanned by x! and x2. e The neural dynamics (flow field, A) can also be perturbed, for example
by applying pharmacology or lesioning the circuit. The neural state changes as a result of the changing dynamics (highlighted in green). Panels a and b are

modified by J. C. Kao and appeared in Pandarinath and colleagues 201838,

inputs (u(t)) from other brain areas and sensory pathways
(Fig. 1c, neural dynamics). The neural population state and its
dynamics are informative of behavior34.

LDSs and nonlinear dynamical systems models>9, paired with
measurements from populations of individual neurons from one
or more brain areas’~!4, have produced new insights into the
putative computational functions being performed!. Here we
discuss emerging opportunities to expand dynamical systems
insights into brain function. We focus on (1) manipulating neural
dynamics and states, enabling future experiments to causally
probe neural dynamics and their roles in computation, and (2)
modeling multi-area dynamics spanning multiple brain areas,
which leverages brain-wide measurements enabled by new large-
scale electrophysiological neural recording methods®10.

Manipulating neural dynamics

To date, dynamical systems studies have primarily modeled
neural population recordings during behaviors. By building on
work to perturb the neural circuit, future experiments may fur-
ther elucidate properties of the circuit and determine causal cir-
cuit roles. Two important opportunities are to (1) casually
perturb the neural activity, which is present in the neural cir-
cuitry, and (2) causally alter the neural circuit dynamics, which
reflect the neural circuitry.

First, causally perturbing x(t) and observing how the neural
circuit dynamics counteract this perturbation helps us learn more
about Al. We can also gain insight by perturbing inputs from
other brain areas, u(t)!°. There are several ways to casually per-
turb neural activity, including electrical microstimulation!® and

optogenetic stimulation!”>18. Neural activity can also be causally
perturbed through task manipulations, including changing visual
targets during a computation!® and/or during behavior?’, and
changing the sensory-behavior relationship?!22. An emerging
challenge is to perturb a population of neurons with spatio-
temporal patterns that activate the circuit ‘within-manifold.
These within-manifold perturbations (Fig. 1d) alter neural
activity in a manner consistent with the circuit’s natural
activations!”-18:23, Within-manifold perturbations can therefore
be viewed as displacements of the neural state in the activity’s
low-dimensional manifold (Fig. 1d). In contrast, an ‘outside-
manifold’ perturbation?* would result in neural activity that the
circuit would not naturally exhibit. In general, perturbations such
as optogenetic or electrical stimulation that do not explicitly
consider the low-dimensional manifold of the circuit are outside-
manifold. Outside-manifold perturbations may be informative,
for example, by revealing interesting dynamics in unexplored
dimensions previously unaccounted for. We highlight that precise
within-manifold perturbation at millisecond precision will likely
lead to significant insights on computation through dynamics,
enabling experimenters to causally test the impact of the neural
state on behavior®. However, these types of perturbations are
challenging because they generally require the ability to deliver
precise excitation and inhibition to individual neurons at milli-
second precision to induce a desired change in neural state.
Overall, causal perturbation of x(t) and u(t), and examination of
their effects on behavior, may identify dimensions that are cau-
sally linked to behavior and learning, and how neural dynamics
respond to both natural and unusual perturbations in the circuit.
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Fig. 2 Using neural networks to model multi-area computation. a Multi-area, brain-wide electrical recording and stimulation of neural activity is rapidly
becoming possible, and these data require new analyses and modeling to provide new scientific insights and theories of neural computation. High-density
NeuroPixel electrodes are shown inserted in four locations, and many additional insertions are possible in both cortical and subcortical regions®. Each
insertion can access several different brain areas (M). Thus the size of the data is proportional to N x M. The proportionality constant depends on the type
of neural recordings, with full broadband data including low-frequency local field potentials (LFPs) and action potentials (APs, or spikes) requiring the
fastest sampling. For stimulation, it is possible to stimulate arbitrary waveforms on each electrode in each area and thus there are enormous combinatorial
possibilities3®. Single and two photon optical imaging of genetically encoded calcium indicators and voltage indicators, and optogenetic neural modulation,
are also widely used but are not shown for simplicity. b Multi-area RNNs can be trained to model each of these insertions. Visual areas may be modeled via
convolutional neural networks#9 41 or related artificial networks that incorporate recurrence. Areas like the prefrontal and motor cortex are typically

modeled by RNNs®30, Regularizations may be employed so that activity within an RNN area resembles those recorded from each electrode array

recordings.

A related second emerging opportunity is to alter the dynamics
matrix A by experimentally changing the neural circuit. This can
be achieved by local infusion (e.g., muscimol, chemogenetics) or
systemic delivery (e.g., oral methylphenidate) of transiently acting
pharmacological agents, altering local activity by delivering
energy (e.g., continuous optogenetic stimulation, cooling?”,
transcranial stimulation, focal ultrasound stimulation), or
lesioning (which can be performed in a variety of ways). Mod-
ifying A may have diverse effects. For example, cooling appears to
slow down trajectories within-manifold®, while lesioning may
change the manifold and its dynamics by permanently removing
neurons from a circuit. Pharmacological agents may have brain-
wide changes in dynamics across multiple areas, or more local
changes if a local acting agent is used (e.g., muscimol). Under-
standing how modifications to the neural circuit’s dynamics
influence behavior will be important for future treatments of, and
recovery from, neurological and psychiatric disorders.

Models of large scale, brain-wide neural population dynamics
Advanced neural technologies enable recording from many
thousands of neurons across multiple interacting brain areas!?
(Fig. 2a). There are several modeling challenges and opportunities
for dynamical systems analyses, including how to increase the
modeling capacity of dynamical systems models, denoising neural
data from multiple areas!®, incorporating physiological constraints
into dynamical systems models, and interpreting dynamical
models to generate new hypotheses for neural computation. We
focus on one particular opportunity where we believe dynamical
systems modeling is important: modeling distributed brain-wide
computations that span multiple areas, each playing a distinct and
critical role.

In cognitive and motor tasks, task-related activity arises in
multiple brain areas. Evidence shows many brain areas are
necessary to perform tasks at high performance, indicative that
distributed computation between areas plays a critical role°.
Multi-area recordings and analyses ought to enable new insights

into how distributed computation occurs across brain areas,
addressing key questions including the following. What are the
neural dynamics within each area, and how do these relate to the
overall distributed computation and behavior? How are neural
representations similar and different across brain areas, and what
are the computational benefits of these representations? What
types of information are conveyed between brain areas through
inter-area connections? How are dynamics and inter-area con-
nections coordinated? There are significant computational chal-
lenges to answering these questions. Even with multi-area
recordings, information about axonal connectivity between areas
may generally be unknown, requiring new computational
approaches to model multi-area interactions.

Traditionally, inter-area communication between cortical areas
is thought to rely on temporal coordination and communication
through coherences?’. With new multi-area datasets, recent stu-
dies viewing cortical computations as low-dimensional systems
have resulted in new hypotheses for inter-area communication
and multi-area dynamics. To help conceptualize multi-area
dynamics, consider a didactic and oversimplified example of
coupled LDSs for two areas. Here, one LDS models area 1
(subscript 1) and another LDS models area 2 (subscript 2). They
are coupled through axonal projections: x;(t+ 1) = Ayx;(t) +
Biu;(t) + Boo1%(t) and x,(t+ 1) = Apx,(t) + Bouy(t) + By .
2X1(t). By.to.» maps the neural state from area 1 as inputs to
area 2, and vice versa for B, ,_;. Although axonal projections may
not be recorded between areas, dynamical systems models using
recordings from both areas 1 and 2 can provide insight into the
information communicated between areas. In particular, B, »
can be thought of as a communication subspace (CS) that
selectively extracts features of x; to propagate to X,, summarizing
the role of inter-area axonal projections!!"1228, The CS may not
be aligned with neural dimensions of highest variance (such as
the principal components) but may instead communicate activity
along low variance dimensions that are necessary for downstream
computation. By conceptualizing inter-area communication as
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this matrix multiplication, the CS builds on the principle of
“output-null” spaces: information not necessary for downstream
areas may be attenuated through alignment with the effective
nullspace of the CS matrix. This phenomenon was initially
observed for preparatory activity in PMd, which is attenuated in
M1, likely due to its partial alignment with an output-null space”.

There are challenges towards using dynamical system models
to study multi-area computation. One challenge is to design
models that couple within-area dynamics with inter-area con-
nections. For example, what dynamical computations are per-
formed along dimensions that are either orthogonal or read out
by a CS? An important area of future research will be developing
systems identification techniques to learn parameters of coupled
dynamical systems from multi-area neural recordings. Second, it
could be that key inputs to a brain area are not recorded. Future
techniques should consider how to address these missing data if
they are not recorded. One example approach is to couple
dynamical systems and perturbation techniques; a recent motor
learning study demonstrated that disrupting activity in one brain
region can provide insight into the computations performed by
another recurrently-connected brain region, despite not directly
observing the activity of that second region?. Future dynamical
models will need to not only recapitulate multi-area observations,
but also respond to causal manipulations in a consistent manner.
Third, it will be important to disentangle the role of feedforward
and feedback connections. Finally, current approaches assume
linear correlations in neural state between areas, an assumption
that may need to be relaxed.

A related approach likely to be of importance for modeling
multi-area distributed computations is to model nonlinear
dynamical systems via neural networks. Recurrent neural net-
works (RNNs) have been successfully used to model the dynamics
of local, single-area computations in cognitive3?3!, timing32,
navigation33, and motor®3* tasks. Following optimization (e.g.,
with backpropagation-through-time), RNNs often have synthetic
activity that resembles electrophysiological activity, although if
not, regularizations or other training techniques can typically be
applied to induce strong resemblance to neurophysiological
recordings®3. This enables the RNN to act as an in silico model
of the cortical area, where the RNN can be probed to propose
dynamical hypotheses for the neural computations appearing in
an area’l. It is worth noting there exists a realism gap between
RNNs and neural circuits. RNNs typically model network rates
instead of spikes, use deterministic weights in place of dynamic
synaptic connectivity, and are occasionally unconstrained in
architecture. An important area of future research is to bridge the
realism gap by determining what features of neural circuit com-
putation can and cannot be abstracted in RNNs, which involves
comparisons to data and testing of RNN proposed hypotheses.
Another concern may be that RNNs will converge to different
solutions based on experimenter-chosen hyperparameters, like
the size of the networks, the machine learning hyperparameters of
training, or other features. Intriguingly, a recent study suggests
that key dynamical features, including fixed point structure, are
robust to hyperparameter variation3®,

One modeling opportunity to account for brain-wide compu-
tation is to expand RNN models to be multi-area, modeling
within-area dynamics and inter-area communication (Fig. 2b).
RNN s can be straightforwardly extended to incorporate multiple
areas’! at a resolution that enables incorporation of anatomical
constraints, including E-I cell types, proportion of connectivity
between areas, and Dale’s law?”. In these models, distinct RNNs
can be treated as brain areas, with interactions defined by con-
nections that implement CSs. While recent studies have similarly
found that optimization can lead to RNN areas resembling brain
areas?®37, training multi-area RNNs to resemble brain areas may

be challenging and require additional training considerations,
such as regularizing neural population trajectories of each RNN
area to resemble cortical areas. Multi-area RNNs may propose
hypotheses for how within-area dynamics perform computation
and how inter-area connections selectively propagate upstream
activity as inputs to downstream areas’’. Extension of RNN
modeling tools to multiple areas may therefore be an excellent
candidate for generating new hypotheses for how behavior
is shaped through distributed computation across multiple
cortical areas.

Neural population dynamics offer a principled approach to the
study of how neural circuits distributed across many brain areas
orchestrate motor and cognitive function. We believe there are
rich experimental and modeling opportunities to further our
understanding of how multiple areas coordinate their dynamics
to produce behavior.
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