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Abstract

The principles governing the functional organization and development of long-range network 

interactions in the neocortex remain poorly understood. Using in vivo wide-field and 2-photon 

calcium imaging of spontaneous activity patterns in mature ferret visual cortex, we find 

widespread modular correlation patterns that accurately predict the local structure of visually-

evoked orientation columns several millimeters away. Longitudinal imaging demonstrates that 

long-range spontaneous correlations are present early in cortical development prior to the 

elaboration of horizontal connections, and predict mature network structure. Silencing feed-

forward drive through retinal or thalamic blockade does not eliminate early long-range correlated 

activity, suggesting a cortical origin. Circuit models containing only local, but heterogeneous, 
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connections are sufficient to generate long-range correlated activity by confining activity patterns 

to a low-dimensional subspace via multi-synaptic short-range interactions. These results suggest 

that local connections in early cortical circuits can generate structured long-range network 

correlations that guide the formation of visually-evoked distributed functional networks.

Introduction

The cortical networks that underlie behavior exhibit an orderly functional organization at 

local and global scales, which is readily evident in the visual cortex of carnivores and 

primates1–6. Here, neighboring columns of neurons represent the full range of stimulus 

orientations and contribute to distributed networks spanning several millimeters2,7–11. 

Anatomical studies that have probed the organization of horizontal connections in visual 

cortex suggest that network interactions could exhibit considerable functional 

specificity9–11. But the fine scale structure of network interactions, and the degree to which 

the activity of a given cortical locus is reliably coupled with the spatiotemporal patterns of 

activity elsewhere in the network, have yet to be determined. Likewise, the sequence of 

events that leads to the development of mature network interactions is largely unexplored 

since these occur at early stages in development when visual stimuli are ineffective in 

evoking reliable neuronal responses12,13.

Previous studies have suggested that spontaneous activity patterns may be a powerful tool 

for probing network structure independent of stimulus-imposed organization, and one that is 

applicable especially early in development14–18. This approach is further supported by the 

finding that under anesthesia individual spontaneous events can resemble visually-evoked 

activity patterns for stimuli known to engage distributed functional networks19,20.

We therefore sought to exploit the sensitivity and resolution of in vivo calcium imaging to 

probe patterns of spontaneous activity in the mature and developing ferret visual cortex. We 

first show that in the mature cortex, correlated spontaneous activity exhibits precise local 

and long-range similarities to modular, orientation selective responses. By employing 

longitudinal imaging in the developing cortex, we next show this long-range correlated 

activity predicts future evoked responses and is generated within intracortical circuits prior 

to the emergence of long-range horizontal connectivity. Lastly, we demonstrate that a circuit 

model containing only local connections is sufficient to generate long-range correlated 

activity in close agreement with our empirical data. Together, these results demonstrate that 

patterns of spontaneous activity recapitulate the precise local and global organization of 

cortical networks activated by visual stimuli, and suggests large-scale network structure 

arises early in development through local interactions.

Results

Large-scale modular networks revealed by correlated spontaneous activity

In the awake visual cortex imaged near the time of eye-opening, wide-field epifluorescence 

imaging reveals highly dynamic modular patterns of spontaneous activity that cover 

millimeters of cortical surface area (Fig. 1a,b; Supplementary Video 1). Spontaneous activity 
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patterns consist of a distributed set of active domains which become active either near 

simultaneously or in a spatiotemporal sequence spreading across the field of view within a 

few hundred milliseconds.

The strikingly regular modular structure of spontaneous activity patterns suggests a high 

degree of correlation in the activity of neurons making up this distributed network. To 

evaluate this correlation structure, we first detected individual large-scale spontaneous events 

within ongoing spontaneous activity (see Methods), which occurred frequently in the awake 

cortex (inter-event interval: 2.13 (1.33 – 6.53) seconds; duration 1.13 (0.73 – 1.73) seconds; 

median and IQR; n=5 animals, Supplementary Fig. 1a,b). The spatial structure of activity 

was relatively stable with minor fluctuations over the course of an event, and exhibited 

frame-to-frame cross-correlations near 0.5 for a two-second window centered on the peak 

activity (Supplementary Fig. 2). The frequency and duration of spontaneous events is 

reminiscent of synchronous states observed in LFP recordings from awake animals, 

appearing distinct from both the desynchronized activity often observed during active 

attention, as well as the oscillatory activity seen in slow-wave sleep and with certain types of 

anesthesia21.

Spontaneous activity correlation patterns were then computed from detected events by 

choosing a given seed point and computing its correlation in spontaneous activity with the 

remaining locations within the field of view. Correlation patterns for a given seed point show 

a striking widespread modular organization, with patches of positively correlated activity 

separated by patches of negatively correlated activity (Fig. 1c). Correlation patterns 

exhibited significant long-range structure, with statistically significant correlations persisting 

for more than 2 mm (Fig. 1e; p<0.01 vs. surrogate for example shown, p<0.01 for 10 of 10 

animals imaged following eye-opening). The consistency of the correlation patterns is 

evident in the fact that nearby seed points placed in regions that are negatively correlated 

exhibit dramatically different spatial correlation patterns (Fig. 1c, left and middle), while 

seed points placed millimeters away in regions that are positively correlated show quite 

similar spatial correlation patterns (Fig. 1c, middle and right). Moving the seed point across 

the cortical surface revealed a large diversity of correlation patterns (Supplementary Video 

2), consistent with principal component analysis revealing that the overall number of 

relevant global variance components in spontaneous activity patterns is typically larger than 

ten (Supplementary Fig. 3; 13±3 PCs required to explain 75% variance, mean ± standard 

deviation, n=10).

To determine the impact of brain state and anesthesia on the spatial patterns of correlated 

spontaneous activity, we followed awake imaging sessions with imaging under light 

anesthesia (0.5–1% isoflurane). Notably, although spontaneous activity in the awake cortex 

was more dynamic than under anesthesia, (Supplementary Fig. 4a,c; Supplementary Video 

3), the spatial patterns of spontaneous activity, both in extent, modularity, and correlation 

structure were remarkably similar across states (Fig. 1d,h; Supplementary Fig. 4; p=0.031 

one-sided Wilcoxon signed-rank test (T+(4)=15, n=5), with 5 of 5 experiments from 3 

animals individually significant at p<0.001 vs. shuffle). Given this strong similarity, awake 

and anesthetized recordings were pooled in subsequent analyses, and anesthetized 

recordings were performed exclusively in some experiments.
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We next performed 2-photon imaging with cellular resolution in conjunction with wide-field 

imaging in the same animal, finding strong and spatially organized spontaneous activity at 

the cellular level. The duration of events was similar to that observed with wide-field 

imaging (0.88 (0.54–1.32) seconds, median and IQR), and within an event the pattern of 

active cells was largely consistent across time (frame-to-frame correlations >0.5 for one 

second around the peak frame within an event, p<0.01 vs. random epochs, bootstrap test). 

Cellular spontaneous events exhibited similar durations to events detected in wide-field data 

(Supplementary Fig. 1; Supplementary Video 4). bThe modular organization of spontaneous 

activity and the spatial correlation patterns observed in populations of individual layer 2/3 

neurons was well-matched to those found with wide-field imaging, demonstrating that the 

network structures revealed with wide-field epifluorescence imaging reflect the spatial 

activity patterns of individual neurons in superficial cortex (Fig. 1f-g, i; p=0.031 one-sided 

Wilcoxon signed-rank test (T+(4)=15, n=5), with 4 of 5 experiments from 3 animals 

individually significant at p<0.05 vs. shuffle). Together these results indicate that neurons in 

layer 2/3 of visual cortex participate in long-range modular networks whose correlation 

structure appears robust to changes in brain state.

Long-range correlations reflect fine-scale structure of orientation columns

As individual spontaneous events can resemble patterns of activity evoked by oriented 

stimuli19,20, we sought to determine whether this correlated spontaneous activity, 

representing an average over many events and therefore potentially revealing the underlying 

network architecture, accurately reflects the fine-scale structure of modular networks 

representing stimulus orientation. We first compared the patterns of spontaneous correlations 

to the spatial layout of visually-evoked orientation domains in animals imaged 5 or more 

days after eye-opening, when orientation selectivity is robust (Fig. 2a). We observed seed 

points for which the spontaneous correlation pattern closely matched the layout of 

orientation domains, even at remote distances from the seed point (Fig. 2b, Supplementary 

Fig 5, mean similarity of orientation vs. spontaneous: rOP = 0.42 ± 0.03; mean ± SEM; n=8). 

We also found a significantly weaker but above chance similarity of spontaneous 

correlations to the ocular dominance map (Supplementary Fig 5, mean similarity of OD vs. 

spontaneous: rOD = 0.18 ± 0.04; mean ± SEM; n=3; p<0.0001 vs. surrogate for 3 of 3 

animals tested; p=0.02, Mann-Whitney). The strong long-range similarity to orientation 

preference for certain seed points suggests that the orientation tuning at such seed points can 

be predicted from the tuning at remote locations that are correlated in spontaneous activity. 

To test this idea, we computed the sum over tuning curves at distant locations weighted by 

their spontaneous correlation with the seed point and compared this prediction to the seed 

point’s actual tuning curve (Fig. 2c, top left). Correlated spontaneous activity predicted the 

preferred orientation in a small circular patch of radius 0.4mm with a high level of accuracy. 

Notably, orientation predictions remained highly accurate even when only considering 

correlations in regions more than 2.4 mm away from the circle’s center point (Fig. 2c-f, 

p<0.0001 vs. surrogate for all exclusion radii, with 8 of 8 individual animals significant at 

p<0.05 across all exclusion radii), demonstrating a high degree of long-range fidelity in the 

structure of spontaneously active networks and those evoked through oriented visual stimuli.
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Orientation preference displays pronounced heterogeneity in rate of change across the 

cortical surface, most notably at pinwheel centers2,7,22; thus a more stringent test of the 

relation of the spontaneous activity to the fine structure of the orientation map is to ask 

whether spontaneous correlation patterns exhibit an analogous heterogeneity in their rate of 

change that correlates with the orientation preference map. Moving the seed point across the 

cortex shows regions of gradual change in correlation structure punctuated by abrupt shifts 

in the large-scale pattern (Supplementary Video 2). By computing the rate of change of the 

correlation pattern as the seed point was moved (see Methods), we observed peaks of large 

change over relatively small distances (Fig. 3a-b). A systematic mapping across the cortical 

surface revealed a set of lines, which we termed spontaneous fractures (Fig. 3c). Moving the 

seed point across any of these fractures led to strong changes in the global correlation 

pattern, while correlations changed much less when the seed point was moved within the 

regions between the fractures. Notably, the layout of spontaneous fractures was stable even 

when only correlations with remote locations (>2.4 mm from seed point) were used to 

predict the local rate of change (Fig. 3c,f; correlation between fracture patterns for full area 

vs. >2.4mm: r=0.88±0.04, mean ± SEM, n=8). Strikingly, the layout of spontaneous 

fractures followed closely the heterogeneity in the rate of change in preferred orientation 

(Fig. 3d), which also formed an intricate network of lines across the cortical surface, and 

often both appeared in tight register with one another (Fig. 3e; p = 0.0078, Wilcoxon signed-

rank test (T+(7)=35, n=8), with 8 of 8 individual animals significant at p<0.001 vs. shuffle), 

as highlighted by the positions of pinwheel centers (Fig. 3c,d). Thus spontaneous fractures 

are local manifestations of dramatic large-scale diversity in distributed network structure and 

emphasize that both the fine- and large-scale organization of correlated spontaneous activity 

are precisely matched with the structure of the visually-evoked orientation network.

Distributed functional networks exist in the early cortex

Having established that the spontaneous correlation structure faithfully captures key aspects 

of the distributed networks evoked by visual stimulation, we sought to exploit the correlation 

structure to gain insights into the nature of these networks at earlier stages of development 

and determine how they evolve to the mature state. Surprisingly, even at post-natal day 21, 

10 days prior to eye opening (and the earliest time point examined), we observed robust 

spontaneous activity, which exhibited modular patterns that extended for long distances 

across the cortical surface (Fig. 4a; Supplementary Video 5) and with a temporal structure 

similar to that found in older animals (Supplementary Fig. 2c-e). Likewise, we found strong 

correlation patterns that displayed pronounced peaks even several millimeters away from the 

seed point (Fig. 4b), consistent with electrophysiological recordings23.

Indeed, the spatial scale of spontaneous correlations changed marginally with age and 

already 10 days prior to eye opening it was nearly as large as 5 days after eye opening (Fig. 

4d,e; correlation spatial scale: p = 0.86, Kruskal Wallis H-test (Χ2(3)=0.78, n=29); 

correlation strength at 2 mm: p<0.0001 vs. surrogate for all groups; across groups: p = 0.42, 

Kruskal Wallis H-test (Χ2(3)=2.82, n=27)). Moreover, spontaneous fractures were already 

pronounced at the earliest time points, indicating the presence of locally highly organized 

long-range functional networks in the early cortex (Fig. 4c). These observations are 

surprising in light of the limited development of long-range horizontal connections at this 
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early age. Anatomical studies in ferret visual cortex show that layer 2/3 pyramidal cell axons 

exhibit only about two branch points at P2224, extend only up to 1mm from the cell body25, 

and are still lacking spatial clusters of synaptic terminals, which are distributed across 

several millimeters in the mature cortex26, but only start to become evident at about P26–

2725,27.

Early spontaneous correlations predict mature tuning preference

Our finding that modular activity, long-range correlations, and fractures—all the features 

that define the modular distributed network—are evident at this early age could suggest that 

the basic structure of the network may already be similar to its mature state. If so, then we 

should be able to predict the structure of the mature visually evoked network from the 

spontaneous activity correlation patterns at these early time points. To test this possibility, 

we employed chronic recordings starting as early as postnatal day 21, and 10 days prior to 

eye opening, and mapped all imaging data from each animal onto a common reference frame 

via an affine transformation, allowing us to track the structure of spontaneous correlations 

across development (Fig. 5a). We assessed the ability to predict local tuning from remote 

correlated locations—similar to Fig. 2f, but now applied across age—to predict the visually 

evoked orientation map from early spontaneous activity. We found that predictions remained 

fairly accurate up to 5 days prior to eye opening and were above chance even for the 

youngest age group, showing that even at this early stage, signatures of the future visually-

evoked network are apparent (Fig. 5b,c; EO −10 to −5: p<0.0001 vs. surrogate, 4 of 5 

individual data points significant vs. surrogate at p<0.05). At the same time, it is clear that 

there is extensive refinement of the distributed network over this time period (Fig. 5a; 

Supplementary Fig. 6), such that the ability of the spontaneous correlation patterns to predict 

the visually-evoked orientation patterns increases significantly with age (Fig. 5c; p=0.0004, 

Kruskal Wallis H-test (Χ2(3)=18.08, n=31); EO −10 to −5 vs. EO: p=0.004, Wilcoxon rank-

sum (U(10)=0.0, n=12)). It is also clear that the refinement during this period involves a 

rearrangement in the spatial organization of spontaneous fractures (Supplementary Fig. 6c, 

f).

Long-range correlations persist in early cortex despite silencing feed-forward drive

Having demonstrated that modular distributed networks are present prior to the maturation 

of horizontal connectivity, and predict the system of orientation columns in the mature 

cortex, we next considered the potential circuit mechanisms capable of generating such 

large-scale distributed networks in the early cortex. Spontaneous retinal waves are a 

prominent feature of the developing nervous system28, which exhibit highly organized 

structure and have been shown to propagate into visual cortex29. To assess a potential 

contribution of retinal waves to activity patterns in the early cortex, we performed 

intraocular infusions of TTX, in conjunction with wide-field imaging of spontaneous activity 

in the cortex. Despite completely abolishing light-evoked responses (response amplitude, 

pre: 0.357 ± 0.061 ΔF/F, post: 0.023 ± 0.028 ΔF/F, mean ± SEM, bootstrap test vs. baseline: 

pre-inactivation: p<0.008, post: 0.365, n=3, P22–25), we continued to observe large-scale 

spontaneous events, and the spatial correlation structure was significantly more similar to the 

pre-inactivation structure than would be expected by chance (Supplementary Fig. 7, 

similarity vs. shuffle, p<0.001 for 3 of 3 animals, bootstrap test).
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To address the possibility that coordinated thalamic activity drives large-scale correlations in 

the early cortex30, we infused muscimol into the LGN to silence feed-forward inputs to the 

cortex at P22–25 (Fig. 6a). Muscimol completely blocked light-evoked responses (Fig. 6b, 

response amplitude, pre: 0.720±0.105, post: 0.005±0.006, mean ± SEM, bootstrap test vs. 

baseline: pre-inactivation: p=0.0087, post: p=0.2584, n=3), and dramatically decreased the 

frequency of spontaneous events in the cortex (Fig. 6c, < 1 event / minute, with a 713 

± 82 % increase in the inter-event-interval, mean ± SEM, n=3). However, the events 

remaining after geniculate inactivation still showed widespread modular activity patterns 

spanning millimeters, and exhibited spatial correlation structures similar to those observed 

prior to inactivation (Fig. 6d-f, similarity vs. shuffle: p<0.001 for 3 of 3 individual 

experiments, bootstrap test), consistent with prior experiments where silencing was induced 

via optic nerve transection23. In addition, we find that the spatial layout of correlation 

fractures is also similar following LGN inactivation (fracture similarity: 0.164 ± 0.015, 

p=0.04, bootstrap test, n=3 animals), suggesting that the fine-scale structure of correlation 

patterns is also generated within cortical circuits. Notably, the spatial extent of correlations 

was unchanged following muscimol (Fig. 6g, control: 1.04 ± 0.12; inactivation: 1.13 ± 0.20 

mm, mean ± SEM), demonstrating that feedforward drive cannot account for the spatial 

structure and extent of correlated spontaneous activity in the early cortex. These results 

suggest that the modular, large-scale distributed networks present in the early visual cortex 

are intrinsically generated within cortical circuits, rather than being inherited from feed-

forward pathways.

Heterogeneous circuit models produce large-scale organization from local connections

However, as these large-scale cortical networks are present prior to the maturation and 

elaboration of long-range horizontal connectivity, these results also present a conundrum. To 

explore how a developing cortex lacking long-range connectivity could generate long-range 

correlated patterns of activity, we examined dynamical network models of firing rate units31, 

variants of which have been used previously to model spontaneous activity in the mature 

visual cortex32–35. In such models, modular patterns of activity can form via lateral 

suppression and local facilitation. Such an interaction is often assumed to result from lateral 

connections that are identical at each position in cortex, circularly symmetric, and follow a 

‘Mexican-hat’ profile36,37. However, despite producing modular patterns of activity, the 

resulting patterns produced by such connectivity exhibit an unrealistic regular hexagonal 

structure (Supplementary Fig. 8). Furthermore, due to the symmetries of this connectivity, 

sampled activity patterns produce correlation patterns that are nearly identical across seed 

points and decay more rapidly with distance, failing to show long-range structure 

(Supplementary Fig. 8) and correlation fractures (see below), indicating that this mechanism 

alone cannot account for the widespread and diverse correlation patterns we observe in vivo.

Instead the rich structural diversity observed in empirical correlation patterns suggests that 

local network interactions might not be homogeneous across cortex. Moreover, if local 

connections vary, this can bias the interactions between nearby domains, such that some 

show a stronger tendency to be co-active than others. Such biases can propagate across the 

network via multi-synaptic connections and induce correlations even between remote 

locations (Fig. 7a). Thus, local, but heterogeneous synaptic connections may ‘channel’ the 
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spread of activity across cortex, potentially explaining the pronounced correlations found 

between remote network elements.

To test the idea that heterogeneous local connections can produce long-range correlations, 

we modeled cortical spontaneous activity using a dynamical rate network31–35, in which 

model units (representing a local pool of neurons) receive recurrent input from neighboring 

units weighted by an anisotropic Mexican-hat function, whose longer axis varies randomly 

across the cortical surface (Fig. 7b; Methods). To this network, we supplied a constant drive, 

modulated spatially by a Gaussian random field with only local correlations (Fig. 7b, left; 
Methods). For sufficiently strong connections, the network activity evolves towards a 

modular pattern with roughly alternating patches of active and non-active domains (Fig. 7b, 

right). In the regime of strongly heterogeneous connectivity and moderate input modulation 

(see Methods, eq. 21), the model produces pronounced long-range correlations (Fig. 7c-d; 

Supplementary Fig. 9a,b) and correlation fractures (Fig. 7e, Supplementary Fig. 9c,d), both 

in quantitative agreement with experiment (Fig. 7h). The model also predicts that the spatial 

structure of correlated activity should be fairly robust against large changes in input drive 

strength (Fig. 7g), which is consistent with our empirical observations following the 

inactivation of the retina and LGN (Fig. 6a-g, Supplementary Fig. 7). In contrast, these 

properties do not match experimental data if lateral connections are homogeneous and 

isotropic (Fig. 7f,h, left region in diagram).

If local network connections are actually heterogeneous across cortex, we wondered if this 

could leave a signature on the local structure of correlated activity, rendering the correlation 

peak around the seed point anisotropic and variable across space. Indeed, fitting an ellipse to 

the correlation peak in the model and assessing the degree of eccentricity (Supplementary 

Fig. 9g; Methods) demonstrates a high degree of anisotropy in the local correlation structure. 

Notably, our experimental data displays a similar degree of eccentricity in the local 

correlation peaks and matches closely to the values observed in the heterogeneous model 

regime (Fig. 7f; Supplementary Fig. 9g,h).

Moreover, if heterogeneous connections constrain the layout of activity patterns then some 

patterns should occur more frequently while others are suppressed32,33,38, effectively 

reducing the dimensionality of the space spanned by the patterns. To test this prediction, we 

assessed the dimensionality of this activity space in both model and experiment (see 

Methods, eq. 16). We find that whereas when the dimensionality of the input patterns to the 

model is high (by construction), the dimensionality of the output patterns in the 

heterogeneous regime is much smaller and similar to experimental data (Fig. 7g, h; 

Supplementary Fig. 9e,f).

Intriguingly, these results might imply an intimate connection between low dimensionality, 

long-range correlations, anisotropic local correlations and pronounced fractures. To test this 

idea, we studied the correlation structure in a minimal statistical model of an ensemble of 

spatially extended, modular activity patterns that are maximally random, but confined to a 

subspace of predefined dimensionality k (Supplementary Fig. 10; Methods). Indeed, when 

the dimensionality is relatively low, this simple statistical model not only produces long-

range correlations, but also anisotropic local correlations and a network of pronounced 
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correlation fractures (Supplementary Fig. 10c). These results raise the possibility that low-

dimensionality could be an organizing principle that is sufficient to explain the observed 

features of correlated spontaneous activity. This suggests that any mechanism that reduces 

the dimensionality of spontaneous activity could have similar effects on its correlation 

structure, including alternative forms of heterogeneity in connectivity or in cellular 

properties.

So far we have assumed modular activity patterns are generated by Mexican-hat shaped 

connectivity. Although there is some evidence for Mexican-hat structures in early ferret 

visual cortex36, the presence of an anatomical Mexican-hat has yet to be established. To 

address this, we generated an excitatory / inhibitory two-population model in which the 

range of lateral excitation exceeds that of inhibition—an arrangement consistent with 

recordings in mature cortical slices37 (Supplementary Fig. 8; Methods). Consistent with refs. 
39,40, we found that a Mexican-hat is not strictly required for the formation of modular 

patterns, which can arise even if the range of lateral excitation exceeds that of inhibition 

(Supplementary Fig. 8). Importantly, both the Mexican-hat and the excitatory / inhibitory 

two-population model show a similar increase in the spatial range of correlations as the 

heterogeneity in the lateral connections is increased (Supplementary Fig. 11), suggesting 

that the effects of local heterogeneity depend only weakly on the specific form of network 

interactions generating modular activity. Thus, our computational models describe a 

plausible mechanism for how the early cortex, even in the absence of long-range horizontal 

connections, could produce spontaneous activity that is correlated over large distances.

Discussion

Evidence in support of a fundamental modular structure for distributed network interactions 

in visual cortex has been derived from previous studies documenting the orientation 

specificity of long-range horizontal connections9–11, and in the similarity of spontaneous 

activity imaged with voltage sensitive dye to the modular patterns of activity evoked with 

grating stimuli19,20. Our analysis of spontaneous activity in mature visual cortex extends 

these observations by showing the remarkable degree of precision that is evident in the 

correlated activity of long-range network interactions, such that the activity patterns of small 

populations of neurons accurately predict the structure of local functional architecture over 

broad regions of cortex covering millimeters of surface area. Even the finest-scale 

topographic features of orientation maps—the so-called fractures or pinwheel centers—are 

accurately reflected in the long-range network interactions evident from correlated 

spontaneous activity. These results, together with the stability of large-scale correlation 

patterns across awake and anesthetized states, demonstrates an exceptional degree of 

functional coherence in cortical networks, a coherence that transcends the columnar scale 

and likely insures reliable distributed neural representations of sensory input.

Patterns of spontaneous activity also allowed us to characterize the state of distributed 

network structure early in development. Given the strong association of modular activity 

patterns with the modular arrangement of long-range horizontal connections in mature 

cortex9–11, we were surprised to find robust long-range modular patterns of correlated 

activity as early as 10 days prior to eye opening, when horizontal connections are 
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immature24,25,27. We emphasize that the correlated patterns of activity at this developmental 

stage are not identical to the patterns found in the mature cortex, instead undergoing 

significant refinement in this period prior to eye opening. Indeed, developmental changes in 

the patterns of correlated activity are likely to reflect ongoing maturation of multiple 

features of circuit organization including the emergence of long-range horizontal 

connections. Nevertheless, the presence of such long-range modular correlation patterns in 

the absence of a well-developed horizontal network in layer 2/3 challenges the necessity of 

long-range monosynaptic connections for generating distributed modular network 

activity27,41.

Furthermore, our retinal and thalamic inactivation experiments bolster previous work23, and 

definitively establish that early correlated patterns of spontaneous activity cannot be 

attributed to patterns of activity arising from retina or LGN. The finding that modular 

correlation patterns distributed over distances comparable to those found with intact 

feedforward inputs indicates that immature cortical circuits have the capacity to generate 

long-range modular patterns. It is important to emphasize that these observations do not rule 

out a causal role for feedforward inputs in establishing modular cortical network structure. 

Patterns of retinal and geniculocortical activity could play a critical role in guiding the 

development of these cortical activity patterns (e.g. 42–44), but they are clearly not required 

for their expression.

Together, these results present a challenging puzzle: long-range correlated activity in the 

early cortex is generated through intracortical circuits in the absence of long-range 

horizontal connectivity. Our dynamical model suggests a powerful solution by showing that 

long-range correlations can arise as an emergent property in heterogeneous circuits via 

multi-synaptic short-range interactions that tend to favor certain spatially extended activity 

patterns at the expense of others. By confining the space of possible large-scale activity 

patterns to a low-dimensional subspace, long-range order is established in the form of 

distributed coactive domains, explaining our observation of long-range spontaneous 

correlations in the early visual cortex. These results also suggest that the high degree of local 

precision that is evident in mature distributed network interactions could derive from the 

origin of network structure in early local interactions that seed the subsequent emergence of 

clustered long-range horizontal connections via Hebbian plasticity mechanisms.

Online Methods

Animals

All experimental procedures were approved by the Max Planck Florida Institute for 

Neuroscience Institutional Animal Care and Use Committee and were performed in 

accordance with guidelines from the US National Institutes of Health. 24 female ferret kits 

were obtained from Marshall Farms and housed with jills on a 16 h light/8 h dark cycle. See 

Supplementary table 1 for complete list of all animals used in each figure. No statistical 

methods were used to pre-determine sample sizes, but our sample sizes are similar to those 

reported in previous publications (e.g. refs 6,13,45).
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Viral injections

Viral injections were performed as previously described6,45,46. Briefly we expressed 

GCaMP6s47 by microinjecting AAV2/1.hSyn.GCaMP6s.WPRE.SV40 (obtained from 

University of Pennsylvania Vector Core) into visual cortex approximately 6–10 days prior to 

imaging experiments. Anesthesia was induced with either ketamine (12.5 mg/kg) or 

isoflurane (4–5%), and maintained with isoflurane (1–2%). Atropine (0.2mg/kg) and 

bupivacaine were both administered, and animal temperature was maintained at 

approximately 37°C with a homeothermic heating blanket. Animals were also mechanically 

ventilated and both heart rate and end-tidal CO2 were monitored throughout the surgery. 

Using aseptic surgical technique, skin and muscle overlying visual cortex were reflected and 

a small burr hole was made with a hand-held drill (Fordom Electric Co.). Approximately 

1μL of virus contained in a pulled glass pipette was pressure injected into the cortex at two 

depths (~200 μm and 400 μm below the surface) over 20 minutes using a Nanoject-II (World 

Precision Instruments). This procedure reliably produced robust and widespread labelling of 

visual cortex, with GCaMP6 expression typically extending over an area >3 mm in diameter 

(Supplementary Fig. 12).

Cranial window surgery

To allow repeated access to the same imaging field, chronic cranial windows were implanted 

in each animal 0–2 days prior to the first imaging session. Animals were anesthetized and 

prepared for surgery as described above. Using aseptic surgical technique, skin and muscle 

overlying visual cortex were reflected and a custom-designed metal headplate was implanted 

over the injected region with MetaBond (Parkell Inc.). Then both a craniotomy (~5mm) and 

a subsequent durotomy were performed, and the underlying brain stabilized with a 1.4 mm 

thick 3 mm diameter stacked glass coverslip46. The headplate was hermetically sealed with a 

stainless steel retaining ring (5/16” internal retaining ring, McMaster-Carr) and glue 

(VetBond, 3M). Unless the animal was immediately imaged after a cranial window surgery, 

the imaging headplate was filled with a silicone polymer (Kwik-kast, World Precision 

Instruments) to protect it between imaging experiments.

Wide-field epifluorescence and two-photon imaging

Wide-field epifluoresence imaging was achieved with a Zyla 5.5 sCMOS camera (Andor) 

controlled by μManager48. Images were acquired at 15Hz with 4 × 4 binning to yield 640 × 

540 pixels. Two-photon imaging was performed with a B-Scope microscope (ThorLabs) 

driven by a Mai-Tai DeepSee laser (Spectra Physics) at 910 nm. The B-Scope microscope 

was controlled by ScanImage (Vidreo Technologies) in a resonant-galvo configuration with 

single-plane images (512 × 512 pixels) being collected at 30 Hz.

In animals imaged after eye opening, phenylephrine (1.25–5%) and tropicamide (0.5%) were 

applied to the eyes to retract the nictitating membrane and dilate the pupil, and the cornea 

was protected with regular application of eye drops (Systane Ultra, Alcon Laboratories). The 

silicon polymer plug overlying the sealed imaging chamber was then gently peeled off. 

Whenever the imaging quality of the chronic cranial window was found to be suboptimal for 

imaging, the chamber was opened under aseptic conditions, regrown tissue or neomembrane 

was removed and a new coverslip was inserted. In some cases, prior to imaging, animals 

Smith et al. Page 11

Nat Neurosci. Author manuscript; available in PMC 2019 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



were paralyzed with either vecuronium or pancuronium bromide (0.2 mg/kg/h in lactated 

Ringer’s, delivered IV).

For imaging experiments in awake animals, animals were habituated to head fixation 

beginning at least 2 days before imaging. Habituation consisted of exposure to the fixation 

apparatus for brief periods after which animals were returned to their home cage. For 

imaging, animals were head fixed and wide-field and two-photon imaging was performed as 

above. In experiments where both awake and anesthetized imaging were performed, awake 

imaging was always performed first, followed by anesthesia induction as described above. 

Awake recordings of spontaneous activity were performed in a darkened room and eye 

position not monitored.

For anesthetized, longitudinal imaging experiments, anesthesia was induced with either 

ketamine (12.5 mg/kg) or isoflurane (4–5%), and atropine (0.2mg/kg) was administered. 

Animals were intubated and ventilated, and an IV catheter was placed in the cephalic vein. 

In some imaging sessions, it was not possible to catheterize the cephalic vein; in these cases, 

an IP catheter was inserted. Anesthesia was then maintained with isoflurane (0.5–0.75%).

Following imaging, animals were recovered from anesthesia and returned to their home 

cages. During recovery, neostigmine was occasionally administered to animals that were 

paralyzed (0.01–0.1μL/kg per dose).

Visual stimulation

Visual stimuli were delivered on a LCD screen placed approximately 25–30cm in front of 

the eyes using PsychoPy49. For evoking orientation responses, stimuli were full-field 

sinusoidal gratings at 100% contrast, at 0.015–0.06 cycles per degree, drifting at 1 or 4 Hz, 

and presented at each of eight directions of motion, for 5s, repeated 8–16 times. In addition, 

“blank” stimuli of 0% contrast were also presented. Stimuli were randomly interleaved and 

were presented for 5s followed by a 5–10s gray screen. Spontaneous activity was recorded in 

a darkened room, with the visual stimulus set to a black screen.

Analysis software

Data analysis was performed in Python, ImageJ, and Matlab (The Mathworks).

Signal extraction for wide-field epifluorescence imaging

To correct for mild brain movement during imaging (especially in the awake state), we 

registered each imaging frame by maximizing phase correlation to a common reference 

frame. Furthermore, all imaging experiments acquired during a single day were registered 

into one reference frame. The ROI was manually drawn around the cortical region with high 

and robust visually evoked activity. The baseline F0 for each pixel was obtained by applying 

a rank-order filter to the raw fluorescence trace with the rank between 15 to 70 and the time 

window between 10 and 30s (values chosen for each imaging session individually, 

depending on the strength of spontaneous activity). The rank and time window were chosen 

such that the baseline followed faithfully the slow trend of the fluorescence activity. The 

baseline corrected spontaneous activity was calculated as (F-F0)/F0 = ΔF/F0.
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The baseline for each pixel for the visually evoked activity was obtained by taking the 

averaged last 1s of the inter-stimulus interval immediately before stimulus onset. The grating 

evoked response was then calculated as being the average of the fluorescence ΔF/F0 over the 

full stimulus period (5s).

Event detection

To detect spontaneously active events, we first determined active pixels on each frame using 

a pixel-wise threshold set to 4–5 standard deviations above each pixel’s mean value across 

time. Active pixels not part of a contiguous active region of at least 0.01mm2 were 

considered ‘inactive’ for the purpose of event detection. Active frames were taken as frames 

with a spatially extended pattern of activity (>80% of pixels were active). Consecutive active 

frames were combined into a single event starting with the first high activity frame and then 

either ending with the last high activity frame or, if present, an activity frame defining a 

local minimum in the fluorescence activity. In order to assess the spatial pattern of an event, 

we extracted the maximally active frame for each event, defined as the frame with the 

highest activity averaged across the ROI. Importantly, calculating the spontaneous 

correlation patterns (see below) over all frames of all events preserves their spatial structure 

(Supplementary Fig. 13).

Imaging sessions in which less than 10 spontaneous events were detected were excluded 

from further analysis. This threshold was chosen based on randomly sampling (with 

replacement) a varied number of activity patterns, which revealed that spontaneous 

correlation patterns (see below) for subsamples of >10 events were highly similar (second-

order correlation >=0.5) to those obtained from all events (Supplementary Fig. 14).

Spontaneous correlation patterns

To assess the spatial correlation structure of spontaneous activity, we applied a Gaussian 

spatial high-pass filter (with SD of Gaussian filter kernel shigh=195μm) to the maximally 

active frame in each event and down-sampled it to 160 × 135 pixels. The resulting patterns, 

named spontaneous patterns A in the following, were used to compute the spontaneous 

correlation patterns as the pairwise Pearson’s correlation between all locations x within the 

ROI and the seed point s

C s, x = 1
N ∑

i = 1

N Ai s − A s Ai x − A x
σsσx

1

Here the brackets < > denote the average over all events and σx denotes the standard 

deviation of A over all N events i at location x. Note that the spatial structure of spontaneous 

activity was already evident without filtering (Supplementary Fig. 15). High-pass filtering 

allowed us to extract this spatial structure, but our results did not sensitively depend on the 

filtering. For instance, weaker high-pass filtering using a kernel with shigh=520μm resulted 

in a highly similar correlation structure (data not shown).

Smith et al. Page 13

Nat Neurosci. Author manuscript; available in PMC 2019 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Shuffled control ensemble and surrogate correlation patterns

We compared the real ensemble of spontaneous activity patterns from a given experiment 

with a control ensemble, obtained by eliminating most of the spatial relationship between 

the patterns. To this end, all activity patterns were randomly rotated (rotation angle drawn 

from a uniform distribution between 0° and 360° with a step size of 10°), translated (shifts 

drawn from a uniform distribution between ±450 μm in increments of 26 μm, independently 

for x- and y-direction) and reflected (with probability 0.5, independently at the x- and y-axis 

at the center of the ROI), resulting in an equally large control ensemble with similar 

statistical properties, but little systematic interrelation between patterns. Surrogate 

correlation patterns were then computed from these ensembles as described above.

Spatial range of correlations

To assess the spatial range of spontaneous correlations (Figs. 1e and 3d), we identified the 

local maxima (minimum separation between maxima 800 μm) in the correlation pattern for 

each seed point and fitted an exponential decay function

f (x) = e
− x

ξ (1 − c0) + c0 2

to the values of these maxima as a function of distance x to the seed point (Fig. 1e; 

Supplementary Fig 9a). Here ξ is the decay constant, named ‘spatial scale correlation’ in 

Fig. 4d and 7c-f. The baseline c0 accounts for spurious correlations due to a finite number of 

spontaneous patterns and was estimated as the average value at maxima in the surrogate 

correlation patterns described above.

To assess the statistical significance of long-range correlations ~2 mm from the seed point, 

we compared the median correlation strength for maxima located 1.8–2.2 mm away against 

a distribution obtained from 100 surrogate correlation patterns. For individual animals, the 

p-value was taken as the fraction of median correlation strength values from surrogate data 

greater than or equal to the median correlation strength for real correlation patterns. For 2 of 

12 animals, the statistical significance of long-range correlations could not be assessed, due 

to insufficient coverage in rotated and translated surrogate activity patterns caused by an 

irregularly shaped ROI. These animals were excluded from analysis of long-range 

correlation strength.

Comparison of awake and anesthetized correlations

Correlation similarity across awake and anesthetized states was computed for each seed-

point as the Pearson’s correlation coefficient of the spontaneous correlations for that seed 

point across states. For each seed-point, correlations within 400 μm were excluded from 

analysis. These “second-order correlations” (shown for each seed point in Supplementary 

Fig. 4f) were then averaged across all seed points within the ROI. To determine the 

significance of these second-order correlations across state, we shuffled corresponding seed 

points across states 1000 times, and again computed correlation similarity. Likewise, to gain 

an estimate of the expected similarity for a well-matched correlation structure, we computed 
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the similarity of each state to itself. Correlation patterns were first separately computed for 

half of the detected events, and then the two patterns were compared as above.

Comparison of wide-field and cellular correlations

2-photon images were corrected for in plane motion via a 2D cross correlation-based 

approach. For awake imaging, periods of excessive motion were discarded and excluded 

from further analysis. Cellular regions of interest (ROIs) were drawn using custom software 

(Cell Magic Wand, 50) in ImageJ and imported into Matlab via MIJ 51. Fluorescence was 

averaged over all pixels in the ROI and traces were converted to ΔF/F06, where the baseline 

fluorescence, F0, was computed from a filtered fluorescence trace. The raw fluorescence 

trace was filtered by applying a 60 s median filter, followed by a first-order Butterworth 

high-pass filter with a cut-off time of 60 s.

To compute spontaneous correlations (Fig. 1f, g), we first identified frames containing 

spontaneous events, which were defined as frames in which > 30% of imaged neurons 

exhibited activity > 2 standard deviations above their mean. The stability of activity during 

an event was computed as the cross-correlation of each frame with the peak activity frame, 

and was compared to a distribution of 100 randomly chosen intervals of the same length. 

Cellular activity on all event frames was then Z-scored using the mean and standard 

deviation of each frame, and correlation patterns for each cell were computed as the pairwise 

Pearson’s correlation coefficient, using the activity of all neurons on all active frames.

To compare the correlation structure obtained at the cellular level with that obtained via 

wide-field imaging (Fig. 1g) we first aligned the 2-photon field of view (FOV) to the wide-

field image using blood vessel landmarks and applied an affine transformation to obtain the 

pixel coordinates of each imaged neuron in the wide-field frame of reference. Correlation 

similarity was obtained as above by computing the second-order correlation between the 

cellular correlation structure and that of the corresponding wide-field pixels, using all cells 

>200μm from the seed point. Shuffled second-order correlations were obtained by randomly 

rotating and translating the 2P FOV within the full wide-field ROI, 1000 times. To estimate 

the maximum expected degree of similarity, we computed a second-order correlation within 

the cellular correlation structure itself by determining the similarity of correlation structures 

computed using only 50% of detected events (dashed line and blue bar in Fig. 1i).

Orientation preference and ocular dominance maps

The orientation preference maps (Fig. 2a, 5a (right)) were calculated based on the trial-

averaged responses evoked by binocularly presented moving grating stimuli of eight 

directions equally spaced between 0 and 360 degree. Responses were Gaussian band-pass 

filtered (SD: slow=26μm, shigh=195μm) and orientation preference was computed by vector 

summation:

z x = ∑k = 1
8 wk x e

2iϕk 3
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with x = x, y T where wk(x) is the tuning curve at location x, i.e. the trial-averaged response 

to a moving grating with direction ϕk at location x. The preferred orientation at x is 0.5 

arg(z(x)).

Orientation pinwheel centers (Fig 2i, j) were estimated as described in Refs. 52,53. The 

Matlab routine provided by Schottdorf et al. (Ref. 53). was used. Orientation contour lines 

(Fig. 2b, 5a) are the zero-levels of the 0°−90° difference map, obtained by using the 

matplotlib.pyplot.contours routine. Surrogate orientation preference maps were obtained by 

phase shuffling the original maps in the Fourier domain52.

Ocular dominance maps were calculated based on the trial-averaged responses evoked by 

presenting moving grating stimuli of eight directions equally spaced between 0 and 360 

degree either to the contralateral or ipsilateral eye. The trial averaged response to each 

orientation and ocular condition was Gaussian band-pass filtered as described above for the 

orientation map. Contralateral and ipsilateral response maps were computed by respectively 

averaging together the trial-average responses to the stimuli presented either to the 

contralateral or ipsilateral eye. The ocular dominance map was computed as a difference of 

the contralateral and ipsilateral response maps.

Similarity of correlation patterns to the orientation and ocular dominance maps

To quantify how similar patterns of correlated spontaneous activity are to known functional 

maps in visual cortex, we computed the average pairwise similarity of the spontaneous 

correlation patterns either to the ocular dominance map or the orientation preference map 

(Supplementary Fig. 5). The assessment of similarity of each correlation pattern to the 

ocular dominance map is the magnitude of their pairwise coefficient:

rOD x = corr OD y , C x, y 4

where OD(y) is the ocular dominance map at location y and C(x, y) is the spontaneous 

correlation pattern between seed location x and location y and corr denotes Pearson’s 

correlation coefficient. Correspondingly, the similarity of each correlation pattern to the 

orientation map is computed as the magnitude of the pairwise correlation coefficient to the 

real and imaginary components of the vector-summed orientation map z:

rOP x = corr Re z y , C x, y 2 + corr Im z y , C x, y 2 5

Prediction analysis and exclusion areas

To test whether orientation tuning can be predicted from the tuning at remote locations with 

correlated spontaneous activity (Fig. 2c), we estimated the tuning curve at seed point 

s=(sx,sy) by the sum over tuning curves wk at different locations weighted by their 

spontaneous correlation C with the seed point:
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wk
pred s = ∑x w

k
x C s, x 6

where k denotes the orientation of the stimulus. The sum was taken over locations x outside 

a circular area centered at the seed point with radius 0.4, 1.2 or 2.4mm. For this calculation, 

both wk and C are z-scored. To assess the goodness of the prediction, we calculated the 

angular difference between the predicted and the actual preferred orientation (Fig. 2f). Low 

values indicate a high match, whereas 45° indicates chance level.

Statistical significance (Fig. 2f) was determined by repeating this analysis for 100 surrogate 

orientation preference maps, obtained by phase shuffling in the Fourier domain52. For 

individual animals, the p-value was taken as the fraction of values equal or smaller than the 

value for the real orientation map. To pool across animals within an exclusion radius (Fig. 

2f), we then generated 10,000 surrogate group medians by randomly drawing from the 

distributions of surrogate data points (one per animal), and the p-value was taken as the 

fraction of group medians equal or smaller than the median value for the actual data.

Spontaneous fractures

Fracture strength was defined as the rate by which the correlation pattern changes when 

changing the seed point location over some small distance (Fig. 3b (bottom), Fig. 3c). It was 

computed as:

F s = Fdx s 2 + Fdy s 2 7

where Fdx (Fdy) denotes the x(y)-component of the rate of change of the correlation pattern 

at seed point s. We approximated this rate of change by the (second-order) correlation 

between two correlation patterns with seed points at adjacent pixels a distance d apart:

Fdy s =
1 − Cdy s

d 8

Cdy s = corrx C s, x , C s + dey, x 9

where corrx denotes Pearson’s correlation coefficient calculated over all locations x and ey is 

a unit vector in y-direction. The subtraction from 1 in the numerator ensures F=0 at seed 

point locations, around which the correlation pattern does not change, while high values of F 
indicate high changes. We used d=26 μm, the spatial resolution of the correlation patterns.

We defined fracture magnitude (Supplementary Fig. 9c,d, Supplementary Fig. 10f (bottom), 

Supplementary Fig. 11b) as the difference between F, averaged over the fracture lines, and 
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its average in regions >130μm apart from the nearest fracture line. To extract the fracture 

lines from F we first applied a spatial median filter with a window size of 78μm to remove 

outliers. We then applied histogram normalization, contrast enhancement by using Contrast 

Limited Adaptive Histogram Equalization (CLAHE, clip limit=20, size of neighborhood 

260×260 μm2), and a spatial high-pass filter (Gaussian filter, SD shigh=390 μm). The 

resulting values were binarized (threshold=0), and the resulting two-dimensional binary 

array eroded and then dilated (twice) to remove single not-contiguous pixels. We 

skeletonized this binary array to obtain the fracture lines.

We quantified the co-alignment between spontaneous fractures and high orientation gradient 

regions by the fracture selectivity (Fig. 3e), defined as the difference between F at high 

orientation gradient locations (xhigh, >π/5 radians/pixel) and locations far from high 

orientation gradients (xlow, >150μm from xhigh):

FS =
F xhigh − F xlow

F xhigh + F xlow
10

where the brackets denote average over locations xhigh and low xlow, respectively. A value of 

FS of 1 indicates co-alignment between the spontaneous fractures and the orientation 

gradient, whereas a value near 0 indicates no such alignment. To assess significance (Fig. 

3e) we repeated this analysis for 1000 surrogate orientation preference maps, obtained by 

phase shuffling in the Fourier domain. The p-value is the fraction of values equal or larger 

than the value for the orientation map.

In order to test whether spontaneous fractures reflect the correlation structure over remote 

distances and not only in their local neighborhood (Fig. 3c (top), Fig. 3f), we computed F as 

above, but excluding a circular region with radius 0.4, 1.2 or 2.4 mm, centered at the seed 

point s. We then computed the Pearson’s correlation coefficient with the original F.

Registration for longitudinal imaging

To compare spontaneous correlation patterns across days in longitudinally imaged animals, 

we transformed all imaging data into a common reference frame (Supplementary Fig. 6a). 

This transformation corrected for small displacement and expansion of cortical tissue over 

the imaging period, presumably due to cortical growth. We used an affine transformation, 

thereby taking into account rotation, scaling, translation and shear mapping of the cortex:

x' = Tx + h 11

withT = a b
c d

, 12
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h = e, f T 13

The parameter of the transformation matrix T and of the displacement vector h were found 

by minimizing the distance between landmarks determined for each day of experiment. 

Landmarks were found by marking radial blood vessels (i.e. blood vessels oriented 

orthogonally to the imaging plane) by visual inspection. The following expression was 

minimized (least square fit) to find transformation parameters from day t to the reference 

day tref (eye opening):

∑
i = 1

N

Xtre f ,i − xt, i
i

2
= ∑

i = 1

N

x
tre f

, i − Txt,i − h
2

14

with N landmarks (between 10 to 30) in both coordinate systems at coordinates xtref,i in the 

reference coordinate system, and the coordinates xt,i at day t.

Analysis of spontaneous correlation across development

To compare spontaneous correlation patterns across development, we calculated a second-

order correlation (Supplementary Fig. 6d,e) between the correlation patterns on a given day 

and the reference day (eye opening) with the same seed point. Changes in correlation 

fractures over development were quantified as the second order correlation of fracture 

patterns (Supplementary Fig. 6f). In both cases, an estimate of the expected degree of 

similarity was computed by first separately computing correlations and their corresponding 

fracture patterns for half of the detected events, and then computing the second-order 

correlations as above.

To determine whether correlation patterns early in development can predict mature 

orientation preferences (Fig. 5c), we computed orientation tuning predictions as above, using 

the correlation pattern on a given day to weight tuning curves measured following eye 

opening, with an exclusion radius of 400 μm. The predicted orientation preference map was 

compared to the actual map as described above (“Prediction analysis and exclusion areas”) 

for both individual animals and group medians.

To assess the statistical significance of long-range correlation strength at 2 mm across 

development, we compared correlation maxima to those of surrogate correlation patterns as 

described above (“Spatial range of correlations”). To pool across experiments within an age 

group, we then generated 10,000 surrogate group medians by randomly drawing from the 

distributions of surrogate data points (one per experiment), and the p-value was taken as the 

fraction of group medians greater than the median value for the actual data.
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Retinal and LGN inactivation experiments

For retinal inactivation experiments, a cranial window was implanted over visual cortex as 

described above. After imaging spontaneous activity under light isoflurane anesthesia (0.5–

1%) as described above, visually evoked responses were recorded in response to full-field 

luminance steps6. Isoflurane levels were then increased and intraocular infusions of TTX 

were performed into each eye. For each intraocular injection, a small incision was made just 

posterior to the scleral margin using the tip of a 30-gauge needle attached to a Hamilton 

syringe. Each eye was then injected with 2–2.5 μL of 0.75 mM TTX solution (Tocris 

Bioscience) to reach an intraocular dose of 21.45 μM that is roughly comparable the dosage 

used previously in the ferret54. Following infusion of TTX, isoflurane levels were reduced, 

and the animal returned to a stable light anesthetic plane. The efficacy of TTX was tested by 

the absence of visually evoked responses to full-field luminance steps. Following 

confirmation of retinal blockade, spontaneous activity was imaged as above. Following 

collection of spontaneous activity, retinal blockade was again confirmed through the absence 

of cortical responses to visual stimuli.

For LGN inactivation experiments, surgical preparation was as described above. A head-post 

was implanted near bregma, a craniotomy was made over visual cortex, and sealed with a 

coverslip affixed directly to the skull with cyanoacrylate glue and dental cement. A second 

craniotomy was then made over the approximate location of the LGN (Horsley-Clarke 

coordinates: AP −1mm, LM 6mm). The LGN was typically located at a depth of 5–8.5mm, 

and its spatial position mapped by identifying units responsive to a full-field luminance 

stimulus through systematic electrode penetrations. Once the LGN position was determined, 

spontaneous activity in visual cortex was recorded as above, followed by visually-evoked 

responses to luminance steps. A micropipette filled with muscimol (25–100 mM, Tocris 

Biosciences) was lowered into the center of the LGN, and infusions of ~0.5 μL were made at 

three depths along the dorsal-ventral extent of the penetration using a nanoliter injector 

(Nanoject). The efficacy of thalamic inactivation was confirmed by the abolishment of 

visually evoked activity prior to and following imaging of spontaneous activity in the cortex.

Spontaneous activity was analyzed as described above, with one exception: the 10 event 

threshold for inclusion (see above) was not applied to the LGN inactivation experiments as 

in 1 of 3 cases <10 events were recorded following LGN inactivation. Comparisons between 

pre- and post- inactivation patterns made using second-order correlations as described above 

for comparisons of awake and anesthetized activity.

Local correlation structure

To describe the shape of the peak of a correlation pattern around its seed point (Fig. 7f,g; 

Supplementary Fig. 9g), we fitted an ellipse (least-square fit) with orientation φ, major axis 

ς1 and minor axis ς2 to the contour line at correlation=0.7 around the seed point. The 

eccentricity ε of the ellipse is defined as:

ϵ =
ς1

2 − ς2
2

ς1
15
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Its value is 0 for a circle, with increasing values indicating greater elongation of the ellipse.

Dimensionality of spontaneous activity

We estimated the dimensionality deff of the subspace spanned by spontaneous activity 

patterns (Supplementary Fig. 10a) by (see Ref 55):

de f f =
∑

i = 1

N

λi

2

∑
i = 1

N

λi
2

16

where λi are the eigenvalues of the covariance matrix for the N locations (pixels) within the 

ROI (Supplementary Fig. 9e). These values were compared to the dimensionality of 

surrogate spontaneous activity patterns by taking the median value of 100 surrogate 

ensembles generated for each animal as described above (in “Shuffled control ensemble and 

surrogate correlation patterns”).

Statistical Model

To generate a statistical ensemble of spatially extended, modular patterns with predefined 

dimensionality k (Supplementary Fig. 10), we first synthesized k two-dimensional Gaussian 

random fields52 with spectral width matched to that of the experimentally observed 

spontaneous activity patterns (size 100×100 pixel; spatial period Λstat 10 pixel). Interpreting 

these k patterns as vectors vj (j=1,…,k) in the high-dimensional pixel space, we 

orthonormalized them based on a Householder reflection. From these k orthonormal basis 

vectors v, we generated activity patterns Ai (i=1, … 10,000) by linear combinations with 

coefficients ζ drawn independently from a Gaussian distribution with 0 mean and SD equal 

to 1:

Ai = 1
k ∑

j = 1

k

ζi, jv j 17

Over this ensemble we computed the correlation patterns analogously to the analysis of the 

experimental data. From these we computed the fracture strength and magnitude 

(Supplementary Fig. 10f, (bottom)) and the local maxima at a distance of 4Λstat from the 

seed point to estimate the strength of long-range correlations (Supplementary Fig. 10f, 

(top)).

Dynamical Model

The model addresses the question whether short-range lateral connections can give rise to 

patterns of spontaneous activity that are (i) modular, exhibit (ii) long-range correlations and 
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(iii) pronounced spontaneous fractures. Feature (i) can be explained by the Turing-

mechanism, which for simplicity we implemented employing a ‘Mexican hat’ connectivity 

(local excitation, lateral inhibition), but other network motives can be used as well 

(Extended Data Supplementary Notes). The model shows that heterogeneity in the lateral 

connections is sufficient to explain features (ii) and (iii). Heterogeneity was implemented 

using elongated Mexican hats whose properties vary randomly across cortex.

We modeled the early spontaneous activity by a two-dimensional firing rate network (Fig. 7) 

obeying the following dynamics

τdr x, t
dt = − r x, t + γ∑

y

M x, y r y, t + I x

+

18

x + = x   i f   x ≥ 0
0   otherwise

18a

where r(x,t) is the average firing rate in a local pool of neurons at location x, τ is the 

neuronal time constant, M(x,y) are the synaptic weights connecting locations x and y, I(x) is 

the input to location x, and γ a factor controlling the overall strength of synaptic weights. 

The connectivity M is assumed to be short-range and follows a Mexican hat structure. 

Moreover, the Mexican hats are anisotropic, modeled as the difference of two elongated 

Gaussians, whose axis of elongation and scale vary discontinuously across space:

M x, y = 1
2πσ1σ2

exp − 1
2 R x − y TΣ−1R x − y − 1

κ2exp − 1
2κ2 R x − y TΣ−1R x − y

19

with   Σ =
σ1

2 0

0 σ2
2 , 19a

R = cos φ −sin φ
sin φ cos φ 19b
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Here σ1 and σ2 (≤ σ1) denote the SDs of the smaller Gaussian in the direction of its major 

and minor axis, respectively. For the larger Gaussian both SDs are scaled by a factor κ≥1. 

The level sets of the Gaussians are ellipses whose larger (smaller) axis is p roportional to σ1 

(σ2) and so the eccentricity ε (eq. 15) measures the degree of elongation of the Mexican hat. 

The angle φ determines the orientation of the elongated Mexican hat. The dependence of 

these parameters on cortical space x is suppressed in eq. 19 for brevity. M is normalized 

such that the magnitude of its maximal eigenvalue is equal to 1. For all simulations we set 

κ=2, τ=1 and γ=1.02 and used random initial conditions r(x,t=0) drawn from a uniform 

distribution between 0 and 0.1.

We introduced the heterogeneity parameter H to parameterize and systematically vary the 

heterogeneity of elongated Mexican hats across cortical space x. The eccentricity ε was 

drawn from a normal distribution with mean <ε> and standard deviation σε both depending 

linearly on H (<ε>=H, σε=0.13 H). The size of σ1 was drawn from a normal distribution 

with SD 0.1<σ1>H and mean <σ1>=1.8. The orientation φ of the Mexican hat axis was 

drawn from a uniform distribution between 0° and 180°. These three parameters were drawn 

independently at each location.

In the case of isotropic Mexican hat connectivity (σ1=σ2) the eigenvectors of M are plane 

waves and the spectrum is peaked at the wavenumber k=2π/Λ, and thus the typical spatial 

scale Λ of the pattern is given by

Λ2 =
4π2σ1

2 κ2 − 1
4 In κ 20

This defines the spatial scale Λ used as reference in Fig. 7b,c. For comparison between 

model and data we identified 1Λ with 1mm, which is roughly the spatial scale of 

spontaneous patterns observed in experiment.

The input drive I is assumed constant in time for simplicity, consistent with our observation 

that in the early cortex spontaneous patterns were often fairly static during a spontaneous 

event (Supplementary Figure 2 and Video 5). I is modulated in space using a band-pass 

filtered Gaussian random field G with spatial scale Λ, zero mean and unit SD52:

I x = 1 + η G x 21

We varied the input modulation η between 0.004 and 0.4 in Figs. 4k,l the regime over which 

we observed a smooth transition from an input-dominated system to a system dominated by 

the recurrent connections.

To model a spontaneous event, we integrated eq. 18 until a near steady state of the dynamics 

was reached. The results in Fig. 7c-h were obtained for an integration time of 500τ, but 

already a much shorter integration over 50τ resulted in similar solutions and nearly the same 

level of long-range correlations and dimensionality. Different spontaneous events were 

obtained by using different realizations of input drive I and initial conditions (same 
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connectivity M). To generate Figs. 7d,g,h and Supplementary Figs. 9b,d,f,h and 11 we 

furthermore averaged over 10 realizations of connectivity M for each parameter setting.

We numerically integrated the dynamics using a 4th order Runge-Kutta method in a square 

region of size 100 × 100 using periodic boundary conditions. The time step was dt=0.15τ 
and the spatial resolution 10 pixel per Λ.

The simulations were performed on the GPUs GeForce GTX TITAN Black and GeForce 

GTX TITAN X. The code was implemented in Python and Theano (version 0.8.1).

Model of excitatory and inhibitory neural population

To investigate whether modular activity and long-range correlations can be generated 

without Mexican hat connectivity, we generated an excitatory / inhibitory two-population 

model. Building on previous work39,40, the model consists of an excitatory and an inhibitory 

neural population and neurons are linked via local lateral connections (with Gaussian 

profiles). We consider a regime, in which the range of connections formed by excitatory 

neurons is more than 30% larger than that of inhibitory neurons.

Spontaneous activity in the early visual cortex is modelled by the following 
dynamics:

τ
due x, t

dt = − ue x, t + γ∑
y

Mee x, y ue y, t − Mei x, y ui y, t + Je x

+

, 22

τ
dui x, t

dt = − ui x, t + γ∑
y

Mie x, y ue y, t − Mii x, y ui y, t + Ji x

+

, 23

x + = x   i f   x ≥ 0
0   otherwise

24

where ue(x,t) (ui(x,t)) is the average firing rate of an excitatory (inhibitory) unit at location x 
in a two-dimensional model cortex. τ is the neuronal time constant and assumed to be the 

same for excitatory and inhibitory units. Mmn(x,y) are the synaptic weights connecting 

location y in population n to location x in population m (m,n є {e,i}, with e being the 

excitatory and i the inhibitory population). The sum goes over all locations y within the 

network. γ is a factor controlling the overall strength of synaptic weights. Both excitatory 

and inhibitory units cover space uniformly and with equal density. Jm(x) is the input to 

location x in population m.
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The connectivity matrix M consists of the four synaptic weight matrices Mmn(x,y) that are 

assumed to be short-range and modelled by isotropic Gaussians:

M x, y =
Mee x, y −Mei x, y
Mie x, y −Mii x, y 25

Mmn x, y = Mmn x − y =
amn

2πσmn
2 exp − x − y 2

2σmn
2 ,    m, n ϵ  e, i 26

Here σmn denotes the SD and amn the strength of the Gaussian that connects population n to 

m. The amn were normalized such that the maximal eigenvalue of M is equal to 1. Note that 

the Gaussian connectivity profile is isotropic and identical for all units. Thus, the network 

connectivity exhibits rotation and translation symmetry.

To model a spontaneous event, we assumed an input drive constant in time and space with a 

value Je(x) = Ji(x) =J = 1. We set τ=1, γ=1.02 and used random initial conditions ue(x,t=0), 
ui(x,t=0) drawn from a Gaussian distribution with zero mean and unit SD rectified at zero. 

The parameters for the connectivity were set to aee=22.2, aie=aei=21.6, aii=20.8, 
σee=σie=1.9, σei=1.4, σii=0.6. (Changing these values by 10% produced qualitatively similar 

results.)

We integrated the network dynamics until a near steady state of the dynamics was reached. 

The results in Supplemental Figs. 8d-h, 11 were obtained for an integration time of 500τ. 

Different spontaneous events were obtained by using different initial conditions (same 

connectivity M and input J). We numerically integrated the dynamics using a 4th order 

Runge-Kutta method in a square region of size 80 × 80 using periodic boundary conditions 

and a time step dt=0.15τ. As above, the simulations were performed on the GPUs GeForce 

GTX TITAN Black and GeForce GTX TITAN X. The code was implemented in Python and 

Theano (version 0.8.1).

In our numerical simulations, hexagonal activity patterns occurred for a broad range of 

connectivity parameters. For specific choices of parameter combinations, we could even 

obtain this type of solution when setting σii to a similar value as σei, so that the range of 

connectivity from inhibition to excitation is similar to that from inhibition to inhibition, and 

adjusting the strengths aii and aei such that the inhibition to excitation is comparable or 

slightly stronger than inhibition to inhibition56,57. In other regimes, we also observed 

uniform or oscillatory solutions.

Notably, the activity patterns produced by this isotropic model reflect the symmetries of the 

underlying dynamics and thus consist of all translated and rotated versions of a hexagonal 

pattern, thereby leading to a correlation structure inconsistent with experimental data 

(Extended Data Figs. 8h, 11b). To address the impact of heterogeneity in the two-population 

model, we introduce heterogeneity by making the Gaussian connectivity matrices Mmn 
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anisotropic and by varying the strength of elongation, and the orientation and size of its axis 

across space (discontinuously, as in the one-population Mexican hat model):

M x, y =
Mee x, y −Mei x, y
Mie x, y −Mii x, y , 27

Mmn x, y =
amn

2πσmn
1 σmn

2 exp − 1
2 R x − y TΣmn

−1R x − y , 28

with  Σmn =
σmn

1 2 0

0 σmn
2 2 , 29

R = cos φ −sin φ
sin φ cos φ ,            m, n ϵ  e,i . 30

Here, Mmn(x,y) is the connectivity from location y in population n to location x in 

population m. The quantities σmn 1 and σmn 2 denote the SD of the Gaussian in the direction 

of its major and minor axis, respectively. The angle φ determines the orientation of the 

elongated Gaussian. The dependence of these parameters on cortical space x is suppressed 

for clarity. amn denotes the connectivity strength.

To study systematically the effect of heterogeneity, we define a heterogeneity parameter H 
and use eccentricity ε to measure the degree of elongation of the Gaussians, as before (see 

Methods eq. 15). To construct a network, at each location x the eccentricity was drawn from 

a normal distribution with mean <ε> and standard deviation <σε> both depending linearly 

on H (<ε>=H, <σε>=0.025H). The σ1
mn were drawn from normal distributions with average 

values σee=σie=1.9, σei=1.4, σii=0.6, respectively, and identical SD equal to 0.003H. The 

orientation φ of the Gaussian was drawn from a uniform distribution between 0° and 180°. 

All parameters were drawn independently at each location x and were, apart from the offsets 

σ1
mn, identical for all four Gaussians Mmn(x,y). Finally, each synthesized matrix M was 

normalized such that the real part of its principle eigenvalue was equal to 1.

To model a spontaneous event, we applied to both the excitatory and the inhibitory 

population an input drive

Jm x = 1 + η Gm x , ...m ϵ  e,i 31
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that was constant in time and randomly modulated across space, where Gm is Gaussian 

white noise band-pass filtered around the spatial scale Λ, which is the dominant scale of 

activity patterns for the homogeneous isotropic case (H=0). The realization of the Gaussian 

noise Gm was different for the excitatory and inhibitory populations. Different spontaneous 

events were obtained by using different realizations of input drive Jm and different initial 

conditions (same connectivity M). We systematically varied the input modulation strength η 
between 0.0004 and 0.4. All other parameters and the numerical implementation were 

identical to the homogeneous isotropic model described in the previous section.

Statistical analysis

Non-parametric statistical analyses were used throughout the study. All tests were two-sided 

unless otherwise noted. Wilcoxon signed-rank, Kruskal Wallis H-test, Wilcoxon rank-sum 

tests were used were indicated above. Bootstrapping and surrogate approaches were used to 

estimate null distributions for other test statistics as described above. Sample sizes were 

chosen to be similar to prior studies using similar methodologies in non-murine species (e.g. 

Refs: 6,12,13,26,45). All animals in each experiment were treated equivalently, and no 

randomization or blinding was performed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: Correlated spontaneous activity in awake ferret visual cortex reveals large-scale 
modular distributed functional networks.
a. Timecourse of spontaneous activity measured with wide-field epifluorescence in an awake 

ferret (mean across pixels in ROI). b. Representative z-scored images of spontaneous events 

at times indicated in (a). c. Spontaneous activity correlation patterns (Pearson’s correlation) 

shown for 3 different seed points (green circle). Correlation patterns span millimeters, can 

show both rapid changes between nearby seed points (left and middle) and long-range 

similarity for distant seed points (middle and right). d. Correlation patterns are highly 

similar in the awake and anesthetized cortex. e. Correlation values at maxima as a function 

of distance from the seed point showing that correlation amplitude remains strong over long 

distances. f-g. Spontaneous activity is modular and correlated at the cellular level (f) and 

shows good correspondence to spontaneous correlations obtained with wide-field imaging 

(g). h. Correlations measured under anesthesia are statistically similar to those in the awake 

cortex (n=5, grey: individual animals, black: mean ± SEM). Blue shaded region indicates 

within-state similarity (mean ± SEM). i. Cellular correlations are significantly similar to 

wide-field correlations (n=5, grey: individual animals, black: mean ± SEM). Blue region 

indicates within-modality similarity (mean ± SEM).
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Figure 2: Tuning properties can be predicted from correlated network elements several 
millimeters away.
a. Orientation preference map. b. Spontaneous correlation pattern (Pearson’s correlation) for 

indicated seed point. Contour lines from vertical selective domains from (a) reveal that 

spontaneous correlations closely resemble the layout of orientation preference map. c. Local 

orientation tuning for region within black circle in (a) can be accurately predicted from the 

aggregate orientation tuning of distant cortical locations, weighted by long-range 

correlations. (Top left) Observed and predicted tuning for single pixel shown below. (Bottom 
left) Observed orientation tuning. (Right) Accurate orientation predictions based on 

increasingly distant regions of spontaneous correlations (excluding pixels within either 0.4, 

1.2, or 2.4 mm from the seed point). d. The prediction based on correlations >1.2 mm away 

(excluding all correlations <1.2 mm from seed point) matches the actual preferred 

orientation within the entire field of view (see (a)). e. Across animals, the precision of 

predicted orientation tuning remains high, even when based on restricted regions more than 

2.4mm away from the site of prediction (see (c)) f. Prediction error as function of exclusion 

radius (45º is chance level). For e, f: n = 8 animal experiments with 5 days or more of visual 

experience (gray); group data in f is shown as mean ± SEM (black).
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Figure 3: Tight relation between global spontaneous correlation and fine-scale structure of 
orientation columns after eye-opening (EO).
a-b. Fractures in correlated networks. Advancing the seed-point along the black line in (a) 

reveals a punctuated rapid transition in global correlation structure expressed by a high rate 

of change in the correlation pattern between adjacent pixels (b, bottom). c. Locations with 

high rate of change form a set of lines across the cortical surface, which we termed 

spontaneous fractures. d. The layout of spontaneous fractures precisely coincides with the 

high-rate of change regions in the orientation preference map. e. Correlation fractures show 
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selectivity for regions of high orientation gradient. f. Fracture location is independent of 

local correlation structure and remains stable when only long-range correlations are included 

(see Fig. 2c). For e, f: n = 8 animal experiments with 5 days or more of visual experience 

(gray); group data in e, f is shown as mean ± SEM (black).
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Figure 4: Early spontaneous activity exhibits long-range correlations.
a. Representative z-scored images of early spontaneous activity at P23, seven days prior to 

EO. b-c. Early spontaneous activity shows hallmarks of mature spontaneous activity, 

including long-range correlated activity (Pearson’s correlation) (b) and pronounced 

spontaneous fractures (c). d. The spatial scale of correlations in spontaneous activity (decay 

constant fit to correlation maxima as function of distance from seed point) is already large 

early on and changes little across ages. Data points were grouped into four age bins. P 

denotes postnatal age relative to EO. e. The magnitude of long-range correlations for 

maxima 2 mm from the seed point is statistically significant at all ages examined (p<0.0001 

vs. surrogate data). For d, e: n=10 chronically recorded animals; e: asterisks indicate 

p<0.0001, actual vs surrogate data; d,e: group data is shown as mean ± SEM.
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Figure 5: Spontaneous activity prior to eye-opening predicts future evoked responses.
a. Longitudinal imaging of a chronically-implanted animal reveals that early spontaneous 

correlation patterns exhibit signatures of the mature orientation map (right), despite 

considerable reorganization in correlation structure. Contour lines indicate horizontal 

selective domains measured at EO. b. The structure of spontaneous correlations can predict 

the future mature orientation preference map organization as early as 10 days before eye 

opening. c. Spontaneous correlation structure predicts orientation preference significantly 

better than chance, even at the youngest ages examined. For b, c: n=11 chronically recorded 

animals; c: asterisks indicate p<0.0001, actual vs surrogate data; c: group data is shown as 

mean ± SEM.
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Figure 6: Long-range correlations in spontaneous activity persist in the absence of feed-forward 
input.
a. Cortical spontaneous activity was measured before and following LGN inactivation via 

targeted muscimol infusion. b. Cortical responses (averaged across all pixels in ROI) to full-

field luminance changes before (left) and after (right) LGN inactivation. Scale bars: 5 sec, 

0.5 ΔF/F. c. Time-course of spontaneous activity for mean of all pixels before (top) and after 

(bottom) inactivation. Scale bars: 30 sec, 0.5 ΔF/F. d. Representative spontaneous events 

(left) and correlation patterns (Pearson’s correlation) (right) before (top) and after (bottom) 

inactivation. e. Similarity of correlation structure in representative experiment before and 

after inactivation for all cortical locations. f. Correlation structure was significantly more 

similar before and after inactivation than shuffled data (p<0.001 vs. shuffle, for 3 of 3 

individual experiments, n=3 animals, bootstrap test). Error bars: mean ± SEM. g. The spatial 

scale of spontaneous correlations remains long-range following LGN inactivation (n=3 

animals). Error bars: mean ± SEM. Scale bars: 1 mm (d,e).
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Figure 7: Circuit mechanisms for long-range correlations in early visual cortex.
a. Homogenous local connections (arrow) induce moderate correlations (black dots) with all 

nearby domains (black dots), whereas heterogeneity introduces biases, strengthening some 

correlations (large dots) more than others (small dots). b. A dynamical circuit model of 

spontaneous activity in the early cortex: a constant input modulated spatially by filtered 

noise is fed into a recurrent network with short-range, heterogeneous Mexican-hat (MH) 

connectivity. It produces a set of modular output patterns with typical spatial scale Λ 
determined by the MH size (average MH size (2SD of its negative part) illustrated by the 

Smith et al. Page 38

Nat Neurosci. Author manuscript; available in PMC 2019 April 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



green circle). c. In the heterogeneous regime, the model shows long-range correlations in 

agreement with experiment (heterogeneity H=0.8; input modulation (SD of noise 

component) η=0.01; n=100 output patterns, 16% of modelled region shown) (top). d. The 

spatial scale of correlations increases with increasing heterogeneity in the lateral connections 

and also with decreasing input modulation. Red triangle in (d): parameters used in (c). Blue 

circle in (d): isotropic, homogeneous connectivity, inconsistent with the range of 

correlations in experiment (compare d, and Fig. 4d and Supplementary Fig. 8). e. 
Pronounced fracture pattern in the heterogeneous regime (same parameters as in c). f. Match 

of empirical data to model predictions of local correlation eccentricity (same parameters as 

in c). g. Dimensionality of n=100 output patterns produced by the model decreases with 

increasing heterogeneity and decreasing input modulation. h. In the parameter regime where 

the model spontaneous patterns approach the empirically observed dimensionality, their 

short- and long-range correlation structure is in quantitative agreement with the experimental 

data. Shaded regions show parameter regimes in the model in which different properties lie 

within the range (mean ± SD) of the experimental values (using 1Λ=1 mm, linear 

interpolation between simulations). Scale bars: domain spacing 1Λ (b,c,e).
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