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Simple Summary: The causal impact of body fat distribution on female-specific cancers is largely
unknown. For the first time we used a two-sample multivariable Mendelian randomization (MR)
approach to elucidate the role and causal relations of body composition assessed by segmental
bioelectrical impedance analysis on the risks of breast, endometrial and ovarian cancers and their sub-
types. We found that abdominal fat content increases the risk for ovarian cancer and its endometrioid
and clear cell subtypes independent of overall fat content. General adiposity has a protective effect
on risk of breast cancer and its ER- and ER+ subtypes but increases the risk for endometrial cancer,
ovarian cancer, and the endometrioid ovarian cancer subtype. This study extends the literature by
addressing specifically the causal role of visceral fat on female-specific cancers.

Abstract: Background: Mounting evidence shows that adiposity increases female-specific cancer risk,
but the role of body fat distribution is less clear. We used a two-sample Mendelian randomization
(MR) approach to elucidate causal relations of body fat distribution to the risks of breast, endometrial
and ovarian cancers and their subtypes. Methods: Body composition was assessed using segmental
bioelectrical impedance analysis, yielding trunk, arm, and leg fat ratios (TFR, AFR, LFR) and BMI
including 195,043 and 434,794 European women, respectively. The sample sizes for the outcomes
ranged between 58,396 and 228,951. Causal effects were estimated per one standard deviation
increment in the respective exposure within the radial regression framework. Robust sensitivity
analyses were performed to verify MR assumptions. In a multivariable MR setting, the proportion of
risk attributable to overall and abdominal fat content was assessed. Results: TFR, which represents
abdominal fat content, was associated with ovarian cancer and its clear cell and endometrioid
histotypes independent of overall fat content. BMI was inversely associated with breast cancer and
its ER− and ER+ subtypes, but positively with endometrial cancer and ovarian cancer, including its
endometrioid histotype. These estimates were confirmed using AFR as proxy for overall body fat.
Conclusions: Visceral adiposity seems to be a driver of elevated ovarian cancer risk, particularly of
the endometrioid and clear cell ovarian cancer histotypes. General adiposity decreases the risk of
breast cancer but increases the risk of endometrial and ovarian cancer.
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1. Introduction

Breast cancer is the most commonly diagnosed female cancer and endometrial as
well as ovarian cancer incidence rank sixth and eighth, respectively, underscoring the
global impact caused by these cancers [1]. Several meta-analyses and epidemiological
studies implicated obesity as a player in the development of female-specific cancers [2–4].
In observational studies associations between body mass index (BMI) as a measure of
general obesity and an increased risk of postmenopausal breast [5] and a decreasing risk of
premenopausal breast cancer [6] were found. Obesity is the most established risk factor for
endometrial cancer [7,8] and may be positively associated with ovarian cancer [9,10]. In
recent Mendelian randomization (MR) analyses genetically predicted BMI was positively
associated with endometrial cancer [11,12], but (contrary to the findings of observational
studies) inversely associated with both pre- and postmenopausal breast cancer [13–15].
Another MR study reported that genetically predicted BMI was positively associated
with non-high grade serous ovarian cancers but was unrelated to the more common and
aggressive high-grade serous ovarian cancer [16].

A growing body of evidence suggests that body composition may play an important
role in site-specific cancer development [17–19], but the data are inconclusive. Some
investigations focusing on abdominal fat distribution as represented by the waist-to-hip
ratio (WHR) found a positive association with breast cancer [20,21]. In a recent prospective
observational study waist circumference (WC) and BMI were positively associated with
endometrial and premenopausal breast cancers, but not with ovarian cancer [22]. Whether
abdominal fat distribution is associated with the female-specific cancers independently of
BMI remains to be clarified.

The present study is the first MR study using bioelectrical impedance analysis measure-
ments of body fat distribution in addition to BMI as potential risk factors for female-specific
cancers. We sought to generate more comprehensive and robust evidence of the impact of
trunk, arm, and leg fat ratios (TFR, AFR, LFR) on breast, ovarian, as well as endometrial
cancer including their histotypes based on univariable and multivariable MR analyses.

2. Materials and Methods
2.1. Study Design

A two-sample MR design allows for the assessment of a causal relationship using
genome-wide association studies (GWASs) derived from different populations for the
exposure and the outcome of interest. Three key assumptions need to be satisfied in a MR
study: genetic instruments (i) must be associated with the respective risk factor; (ii) must
not be associated with any measured or unmeasured confounder of the exposure-outcome
association; and (iii) must influence the outcome only through the exposure. Details on the
MR-design can be found elsewhere [23,24]. In the present study, we used both a univariable
MR approach to investigate overall effects of general and abdominal fat content on female-
specific cancers and a multivariable MR (MVMR) setting to investigate the direct effects
simultaneously. Analyses were based on women of European ancestry as the underlying
population for exposures and outcomes.

Our analytic approach included: (i) extraction of potential genetic instruments; (ii) con-
ducting univariable and multivariable MR analyses to assess overall and direct effects;
(iii) applying several sensitivity analyses to assess different patterns of pleiotropy and
validate MR assumptions.



Cancers 2021, 13, 5053 3 of 12

2.2. Exposures Definition and Data Availability

Regarding the amount of overall fat and for comparisons with prior MR-studies,
we used BMI. To discriminate fat stored in different parts of the body, we used the fat
ratio indexes TFR, AFR, LFR assessed by a segmental body impedance analysis (BIA)
and calculated by dividing the fat mass in the respective body segments with total body
fat mass [25]. Segmental BIA measurement is a more precise method than common
anthropometric measures to discriminate between adipose and lean mass and regarding
fat storage in different body compartments. Due to a strong correlation [25], AFR could
be used as a measure for overall fat content and therefore replicate the results of BMI,
while TFR could be utilized for investigating the impact of visceral fat content on female-
specific cancers.

Genetic instruments for BMI were obtained from a GWAS (GIANT consortium and
UK Biobank) of 434,794 European women [26] (Table 1). The GWAS of fat ratio indexes
TFR, AFR, and LFR was derived from 195,043 female UK Biobank participants [25].

Table 1. Overview of genome-wide association studies used in the analyses for the exposures and characteristics of the
Single Nucleotide Polymorphisms (SNPs) considered as instrumental variables.

Characteristics BMI AFR TFR LFR

Sample size 434,794 195,043 195,043 195,043
Consortium GIANT, UK Biobank UK Biobank UK Biobank UK Biobank

Number of genetic instruments a 297 116 202 166
Explained variance by

instruments 4.63% 3.13% 6.77% 5.10%

F-statistic, mean (min; max) 60.66 (29.07; 941.37) 51.37 (29.73; 380.64) 63.9 (29.84; 392.04) 58.51 (29.73; 340.77)

Reference Pulit et al., 2018 [26] Rask-Andersen
et al., 2019 [25]

Rask-Andersen et al.,
2019 [25]

Rask-Andersen et al.,
2019 [25]

a Extraction of genetic instruments based on the threshold p = 5 × 10−8, clumping cutoff r2 = 0.001.

2.3. Outcomes Definition and Data Availability

As outcomes we considered breast, ovarian, and endometrial cancer. Additionally, we
performed subgroup analyses of ER-positive (ER+) and ER-negative (ER−) breast cancer
subtypes and the histotypes clear cell, endometrioid as well as high and low grade serous
epithelial ovarian cancers.

The breast cancer GWAS was obtained from BCAC with 122,977 cases (thereof
69,501 ER+ and 21,468 ER−) and 105,974 controls [27] (Table 2). The ovarian cancer
GWAS was attained from OCAC (25,509 cases and 40,941 controls) [28]. For the subgroup
analyses 1366 clear cell, 2810 endometrioid, and 14,049 high or low grade serous ovarian
cancer cases were available. Endometrial cancer GWAS was obtained using studies identi-
fied via the ECAC and E2C2 excluding subjects from UK Biobank with 12,270 cases and
46,126 controls [12]. There were no sample overlaps between the exposure and outcome
datasets, minimizing the weak instrument bias.

Table 2. Overview of genome-wide association studies used in the analyses for the outcomes.

Characteristics Breast Cancer Endometrial Cancer Ovarian Cancer

Sample size 228,951 58,396 66,450
Controls 105,974 46,126 40,941

Cases 122,977 12,270 25,509

Subtypes ER− ER+ Clear cell Endometrioid Low or high
grade serous

Cases 21,468 69,501 1366 2810 14,049
Consortium BCAC ECAC, E2C2 a OCAC
Reference Michailidou et al., 2018 [27] O’Mara et al., 2019 [12] Phelan et al., 2017 [28]

a excluding UK Biobank participants.
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2.4. Selection of Genetic Instruments

We selected single nucleotide polymorphisms (SNPs) associated with the respective
body composition measure below the genome-wide association threshold of p = 5 × 10−8

and an imputation score > 0.8. Independence of the genetic variants was ensured by
performing a clumping algorithm using the stringent linkage disequilibrium (LD) cut-off
r2 = 0.001. For instruments missing from an outcome dataset proxy-SNPs with an LD
r2 > 0.8 were used.

2.5. Statistical Power

We calculated the statistical power according to Brion et al. [29] dependent on un-
known true odds ratios (ORs) for each outcome in the range of 0.6 and 1.4 and using the
type I error rate α = 0.05, outcome-specific proportions of cases and the mean explained
phenotypic variance of exposures by genetic instruments (R2 = 0.05) (Figure S1).

2.6. Statistical Analyses
2.6.1. Univariable MR

As principal analysis, we performed the radial inverse-variance weighted (IVW)
regression with modified second-order weights. This approach provides large statistical
power and allows even for balanced pleiotropy (i.e., zero mean of random pleiotropic
effects). To account for directional horizontal pleiotropy, we performed radial MR-Egger
regression with modified second-order weights and tested the deviation from zero applying
Egger’s intercept test (Table S1).

Since the analyses were carried out iteratively, in each step we calculated SNP-specific
Q-statistics and performed a leave-one-out-analysis to identify and remove outliers. Addi-
tionally, several global heterogeneity statistics were calculated and tested regarding the
appropriate methods for the relationship between body composition and cancer types
(Table S1).

Potential horizontal pleiotropy was assessed using robust MR approaches. The
weighted median method provides a consistent estimate even if up to 50% of selected
genetic instruments are invalid. The MR-PRESSO approach consists of three components,
namely a global, outlier, and distortion test. The global test identifies horizontal pleiotropy
based on the observed residual sum of squares (RSSobs). The outlier test corrects, if present,
horizontal pleiotropy via outlier removal identified by SNP-specific RSSobs. The distortion
test compares estimates before and after outlier removal. A many weak instrument analysis
was done using the Robust Adjusted Profile Score, allowing instruments to be weak.

2.6.2. Multivariable MR

To compare the direct effects and separate out what proportion of female-specific
cancer risk is due to general and visceral fat content, we performed MVMR analyses. AFR
and TFR were utilized as proxies for the degree of overall and abdominal fat content,
respectively. The conditional F-statistics were at least 25.9 implicating absence of weak
instrument bias. Horizontal pleiotropy was quantified and tested using the modified
Cochran’s Q-statistics, while directional pleiotropy was investigated using MR-Egger
intercept tests (Table S2). Causal effect estimates were obtained using the robust IVW
approach with multiplicative random effects as the main method and Median and MR-
Egger methods as sensitivity analyses. Effect estimation after outlier assessment and
deletion was done by the MR-Lasso procedure. Finally, we used the Q-minimization
approach to calculate robust point estimates that account for both weak instruments and
substantial heterogeneity.

All estimates depict ORs per one standard deviation (SD) increments in the exposures.
The type I error was set to α = 0.01 when investigating outliers based on Q-statistics
within the radial framework and to α = 0.05 otherwise. To correct for multiple testing the
Benjamini-Hochberg procedure was applied. Analyses were performed using mainly the
packages TwoSampleMR (0.5.5), MendelianRandomization (0.4.3), RadialMR (1.0), and
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MRPRESSO (1.0) of the statistical Software R (Version: 4.0.3) (the R Foundation is seated in
Vienna, Austria).

3. Results
3.1. Instrument Strength and Statistical Power

As genetic instruments we selected 297 BMI-, 202 TFR-, 116 AFR-, and 166 LFR-
related SNPs (Table 1). For BMI 4.6% of the phenotypic variance was explained by the
genetic instruments. For TFR, AFR, and LFR the explained variances were 6.8%, 3.1%, and
5.1%, respectively. The SNP-specific F-statistics ranging from 29.1 (BMI) to 941.4 (BMI)
(Tables S3–S34), were clearly above the traditional threshold of 10, indicating absence of
weak instrument bias. We determined a statistical power ≥ 0.8 when the true ORs for the
impact of body fat indexes on breast, ovarian, and endometrial cancers were expected to
be ≤ 0.95 or ≥ 1.05, ≤ 0.90 or ≥ 1.10, ≤ 0.88 or ≥ 1.12, respectively. The statistical power
in the subgroup analyses were slightly lower for ER+ and ER− breast cancers and (high or
low grade) serous ovarian cancer.

3.2. Effects of Body Fat on Breast Cancer and Its Subtypes

The Radial IVW models with modified second-order weights as the main method
(point estimates are subsequently referred to as OR_IVW and are given per 1 SD increment
of the respective exposure) found an inverse association between BMI and breast cancer
(ORIVW = 0.86; 95% CI: [0.81, 0.91]) (Figure 1). These results were verified using the AFR as
proxy for general fat content (ORIVW = 0.90; 95% CI: [0.84, 0.96]). However, TFR as a proxy
for visceral fat was positively but weakly associated with breast (ORIVW = 1.05; 95% CI:
[1.00, 1.10]). All corresponding scatterplots of the SNP-effects on both the exposures and
outcomes can be found at Figures S2–S5.
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Although there was evidence for substantial heterogeneity (suggesting the Radial MR-
Egger with multiplicative random effects as the appropriate method) (Table S1), the strong
results (i.e., impact of overall fat content on breast cancer) were supported by sensitivity
analyses using robust methods (Figure S6).

After mutual adjustment, the inverse effect of AFR with breast cancer (Robust IVW
OR = 0.86; 95% CI: [0.77, 0.96]) did not changed remarkably, while the positive association
between TFR and breast cancer attenuated in the multivariable setting (Figure 2).
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Subgroup analyses revealed consistent inverse associations of genetically predicted
BMI and AFR with ER− (ORIVW = 0.86; 95% CI: [0.79, 0.93] and ORIVW = 0.86; 95% CI:
[0.78, 0.95]) as well as ER+ breast cancer (ORIVW = 0.90; 95% CI: [0.84, 0.96] and ORIVW = 0.87;
95% CI: [0.80, 0.94]) (Figure 1) despite heterogeneity in the relationships with the latter.
TFR was positively and LFR inversely related to ER+ (with inconsistent Egger estimates)
but not to ER− breast cancer (Figure S7).

The multivariable analyses confirmed the protective effects of AFR on ER− (Robust
IVW OR = 0.84; 95% CI: [0.73, 0.97]) and ER+ breast cancer (Robust IVW OR = 0.85; 95% CI:
[0.76, 0.95]), while the formerly association between TFR and ER+ breast cancer could not
be substantiated.

3.3. Effects of Body Fat on Endometrial Cancer

Both genetically predicted BMI and AFR were robustly associated with endometrial
cancer with ORIVW = 1.75 (95% CI: [1.57, 1.95]) and ORIVW = 1.43 (95% CI: [1.24, 1.65]),
respectively (Figure 1). These effects were supported by the multivariable analysis, where
the effect of AFR on endometrial cancer were adjusted for TFR (Robust IVW OR = 1.43;
95% CI: [1.16, 1.76]) (Figure 2). No further notable associations were observed.

3.4. Effects of Body Fat on Ovarian Cancer and Its Histotypes

Although there was not a clear association with ovarian cancer, consistently positive
relations were observed of both BMI and AFR to endometrioid ovarian cancer, with
ORIVW = 1.34 (95% CI: [1.11, 1.62]) and ORIVW = 1.33 (95% CI: [1.05, 1.69]), respectively
(Figure 1). Regarding the visceral fat content, genetically predicted TFR was positively
associated with ovarian cancer (ORIVW = 1.10; 95% CI: [1.01, 1.18]) as well as the clear cell
(ORIVW = 1.49; 95% CI: [1.18, 1.89]), and endometrioid histotypes (ORIVW = 1.18; 95% CI:
[1.00, 1.40]. Apart from an inverse association between LFR and clear cell ovarian cancer
(ORIVW = 0.73; 95% CI: [0.56, 0.96]), there were no further notable relations. Again, the
sensitivity analyses supported these findings (Figure S8).

In the multivariable setting, the association between AFR and the endometrioid
ovarian cancer remained positive (Robust IVW OR = 1.39; 95% CI: [1.01, 1.91]). The effect
of TFR on ovarian cancer and its clear cell and endometrioid histotypes were partly even
stronger with Robust IVW OR = 1.14 (95% CI: [1.03, 1.26]), OR = 1.56 (95% CI: [1.10, 2.21]),
and OR = 1.36 (95% CI: [1.08, 1.70]), respectively.
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Although no directional pleiotropy was detected by MR-Egger intercept tests, there
was evidence for substantial heterogeneity quantified by Q-statistics in the multivari-
able models (Table S2). However, all results were supported by sensitivity analyses
(Figures S9–S11). Especially the heterogeneity robust Q-minimization models produced
consistent point estimates to the robust IVW approach as the main method.

4. Discussion

Our MR study showed that visceral adiposity increased the risk of breast cancer,
mainly ER+ breast cancer, and the risk of ovarian cancer, mainly clear cell ovarian cancer.
Relations of genetically predicted visceral adiposity to breast and endometrial cancers were
weaker than those with general adiposity. However, visceral adiposity appears to play a
more important role than general adiposity for the risk of ovarian cancer, in particular the
clear cell and endometrioid cancer subtypes. The findings confirmed a causal protective
effect of general adiposity on breast cancer risk. This effect could be ascribed to associations
with both ER- and ER+ breast cancers and was confirmed in multivariable analyses. In
contrast, general adiposity was a strong causal risk factor for endometrial cancer and a
weaker causal risk factor for ovarian cancer, in particular for the endometrioid histotype.
LFR was not related to overall cancers but showed effects in the same direction as AFR on
ER+ breast cancer and clear cell ovarian cancer.

Epidemiologic studies reported a positive relationship between obesity and post-
menopausal breast cancer and an inverse association with premenopausal breast can-
cer [30–33]. One study using data from two chemoprevention trials found a positive
association in premenopausal women [34]. In contrast, two prior MR studies showed that
adult BMI is inversely related to postmenopausal breast cancer [13,14]. We also found
an inverse causal effect of overall fat content on breast cancer risk; however, we were
unable to distinguish between pre- and postmenopausal breast cancers. The apparent
adverse effect of adult body size on breast cancer risk may be attributable to a large body
size in childhood that persists into adulthood [35]. Of note, childhood BMI showed in-
verse associations with both premenopausal and postmenopausal breast cancer [36,37].
Because adult weight gain is a strong predictor of postmenopausal breast cancer risk [38],
the positive association between adult BMI and postmenopausal breast cancer shown in
epidemiologic studies is likely due to the effect of weight gain in adulthood. Weight gain
may better reflect the dynamics of changes in body shape over time, with increased visceral
and metabolically active fat accumulation, especially during menopause [39]. According to
the WCRF, abdominal obesity and weight gain in adulthood convincingly increases the risk
of postmenopausal breast cancer [31]. Our finding that genetically predicted TFR showed
a positive effect on ER+ breast cancer suggests that body fat distribution plays a particular
role in postmenopausal breast cancer. Supporting the assessment of the IARC Working
Group, [30], we showed that an increasing BMI and AFR had a strongly positive effect on
endometrial cancer. However, we found no evidence for a causal link between abdominal
adiposity and endometrial cancer; this is in contrast to umbrella reviews [3,4,31], in which
the association between WC and WHR and total endometrial cancer was supported by
strong evidence. Our results support the findings of recent MR studies, where geneti-
cally elevated BMI, but not WHR, was found to be causally related to endometrial cancer
risk [11,40].

The evidence relating body fatness to ovarian cancer and its subtypes is inconclu-
sive [41]. The WCRF CUP graded the relationship as probably causal [31] and the IARC
suggested there is strong evidence for a positive association between obesity and ovarian
cancer [30]. Likewise, a systematic review and meta-analysis reported an increased risk
of ovarian cancer with higher BMI, and a marginally significant positive association with
WC, but no association with hip circumference or WHR [42]. An umbrella review of dose-
response meta-analyses rated the evidence for an association between BMI and ovarian
cancer as weak [43], but another umbrella review [2] rated the evidence as suggestive
only [2]. Using a MR approach, Gao et al. [14] found a positive association between BMI
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and ovarian cancer, which is in line with our results; contrary, a one-sample MR study
found no association between both BMI and fat mass and ovarian cancer [44]. However,
our study was two-sampled, included more cases, and used larger GWAS with 201 more ge-
netic instruments for the analyses resulting in higher statistical power. We further showed
a positive association between TFR and ovarian cancer, in particular for the endometrioid
and clear cell histotypes, a result that extends the existing evidence and may contribute to
better understanding of the pathogenesis of this cancer.

Obese adipose tissue seems to create a pro-oncogenic environment. Specific bio-
logical mechanisms to explore the link between obesity and cancer risk are centered
along metabolic and endocrine consequences of body fat accumulation. Changes in the
metabolism of sex hormones, insulin and insulin-like growth factor signaling, inflamma-
tory effects and Adipokine-related effects were identified. According to an IARC working
group, the evidence for a role of sex hormones and chronic inflammation was judged as
strong, while the evidence for insulin and IGF was moderate [30]. Among other factors,
obesity-related changes in the tumor microenvironment, cellular perturbations, and the
intestinal microbiome are likely to affect cancer development [45]. In addition, obesity-
related changes in anti-tumor immunity and angiogenesis were observed [46]. Biological
mechanisms that could explain the inverse effects of BMI and AFR on the development of
breast cancer and its subtypes are widely unknown.

Our study has a number of considerable strengths. Using both BMI and AFR we
could replicate the findings of a previous MR study, which provided support for our
estimates. While BMI approximates total fat content, the fat ratio indexes used in our study
discriminated between adipose and lean mass and are therefore more reflective of actual
fat mass and body fat distribution. All exposures were modelled as continuous variables
to avoid residual confounding and to boost statistical power. Sufficiently large F-statistics
reduced the potential for weak instrument bias. The broad range of robust methods
allowed us to strengthen our findings by considering different patterns of pleiotropy. The
multivariable approach allowed us to distinguish between the direct effects of overall and
abdominal fat content.

Our study also has certain limitations. TFR considers the fat content of the entire torso
rather than that of the abdomen only, which may have underestimated causal associations.
MR analyses assume relationships to be linear. Quantitative estimates may be misleading
if the true relationship is non-linear; although estimates are still reflective of the presence
and direction of the population-averaged causal effect [47]. Our analyses were based on
European women and thus, results cannot be transferred to other ethnicities. Finally, we
were unable to distinguish between pre- and postmenopausal breast cancer.

5. Conclusions

In conclusion, our MR study shows a protective effect of general adiposity on risk of
breast cancer and its ER- and ER+ subtypes. In contrast, general adiposity increases the
risk for endometrial cancer, ovarian cancer, and the endometrioid ovarian cancer subtype.
Visceral adiposity is related to an increased risk for ovarian cancer and its endometrioid
and clear cell subtypes and is suggestively associated with increased risk of breast cancer
and its ER+ subtype. These results extend the literature by addressing the role of visceral
adiposity regarding female-specific cancers and support previous findings on general
adiposity. Thus, it can be concluded that different body fat distributions lead to different
risk profiles and not obesity per se, but rather body fat distribution should be taken into
consideration in connection with the risk of female-specific cancers.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cancers13205053/s1, Figure S1: Power analysis, Figure S2: Sensitivity analyses of univariable
Mendelian randomization for main cancer types, Figure S3: Sensitivity analyses of univariable
Mendelian randomization for breast cancer subtypes, Figure S4: Sensitivity analyses of univariable
Mendelian randomization for ovarian cancer subtypes, Figure S5: Sensitivity analyses of multivari-
able Mendelian randomization for main cancer types, Figure S6: Sensitivity analyses of multivariable
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Mendelian randomization for breast cancer subtypes, Figure S7: Sensitivity analyses of multivariable
Mendelian randomization for ovarian cancer subtypes, Figure S8: Scatter plot matrix of SNP effects
on both body mass index and female-specific cancers, Figure S9: Scatter plot matrix of SNP effects
on both arm fat ratio and female-specific cancers, Figure S10: Scatter plot matrix of SNP effects on
both trunk fat ratio and female-specific cancers, Figure S11: Scatter plot matrix of SNP effects on
both leg fat ratio and female-specific cancers, Table S1: Heterogeneity statistics from univariable
Mendelian randomization analyses, Table S2: Instrument strength and heterogeneity from multivari-
able Mendelian randomization, Table S3: BMI related SNP-associations with breast cancer, Table S4:
BMI related SNP-associations with endometrial cancer, Table S5: BMI related SNP-associations with
ovarian cancer, Table S6: BMI related SNP-associations with ER- breast cancer, Table S7: BMI related
SNP-associations with ER+ breast cancer, Table S8: BMI related SNP-associations with clear cell
ovarian cancer, Table S9: BMI related SNP-associations with endometrioid ovarian cancer, Table S10:
BMI related SNP-associations with high or low serous ovarian cancer, Table S11: Arm fat ratio
related SNP-associations with breast cancer, Table S12: Arm fat ratio related SNP-associations with
endometrial cancer, Table S13: Arm fat ratio related SNP-associations with ovarian cancer, Table S14:
Arm fat ratio related SNP-associations with ER- breast cancer, Table S15: Arm fat ratio related SNP-
associations with ER+ breast cancer, Table S16: Arm fat ratio related SNP-associations with clear
cell ovarian cancer, Table S17: Arm fat ratio related SNP-associations with endometrioid ovarian
cancer, Table S18: Arm fat ratio related SNP-associations with high or low serous ovarian cancer,
Table S19: Trunk fat ratio related SNP-associations with breast cancer, Table S20: Trunk fat ratio
related SNP-associations with endometrial cancer, Table S21: Trunk fat ratio related SNP-associations
with ovarian cancer, Table S22: Trunk fat ratio related SNP-associations with ER- breast cancer,
Table S23: Trunk fat ratio related SNP-associations with ER+ breast cancer, Table S24: Trunk fat
ratio related SNP-associations with clear cell ovarian cancer, Table S25: Trunk fat ratio related SNP-
associations with endometrioid ovarian cancer, Table S26: Trunk fat ratio related SNP-associations
with high or low serous ovarian cancer, Table S27: Leg fat ratio related SNP-associations with breast
cancer, Table S28: Leg fat ratio related SNP-associations with endometrial cancer, Table S29: Leg fat
ratio related SNP-associations with ovarian cancer, Table S30: Leg fat ratio related SNP-associations
with ER- breast cancer, Table S31: Leg fat ratio related SNP-associations with ER+ breast cancer,
Table S32: Leg fat ratio related SNP-associations with clear cell ovarian cancer, Table S33: Leg fat
ratio related SNP-associations with endometrioid ovarian cancer, Table S34: Leg fat ratio related
SNP-associations with high or low serous ovarian cancer.
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