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Background: Perioperative neurocognitive disorders (PNDs) occur commonly in older
patients after anesthesia and surgery. Treating astrocytes with general anesthetic drugs
stimulates the release of soluble factors that increase the cell-surface expression and
function of GABAA receptors in neurons. Such crosstalk may contribute to PNDs;
however, the receptor targets in astrocytes for anesthetic drugs have not been identified.
GABAA receptors, which are the major targets of general anesthetic drugs in neurons,
are also expressed in astrocytes, raising the possibility that these drugs act on GABAA

receptors in astrocytes to trigger the release of soluble factors. To date, no study has
directly examined the sensitivity of GABAA receptors in astrocytes to general anesthetic
drugs that are frequently used in clinical practice. Thus, the goal of this study was to
determine whether the function of GABAA receptors in astrocytes was modulated by
the intravenous anesthetic etomidate and the inhaled anesthetic sevoflurane.

Methods: Whole-cell voltage-clamp recordings were performed in astrocytes in the
stratum radiatum of the CA1 region of hippocampal slices isolated from C57BL/6 male
mice. Astrocytes were identified by their morphologic and electrophysiologic properties.
Focal puff application of GABA (300 µM) was applied with a Picospritzer system to
evoke GABA responses. Currents were studied before and during the application of
the non-competitive GABAA receptor antagonist picrotoxin (0.5 mM), or etomidate (100
µM) or sevoflurane (532 µM).

Results: GABA consistently evoked inward currents that were inhibited by picrotoxin.
Etomidate increased the amplitude of the peak current by 35.0 ± 24.4% and prolonged
the decay time by 27.2 ± 24.3% (n = 7, P < 0.05). Sevoflurane prolonged current decay
by 28.3 ± 23.1% (n = 7, P < 0.05) but did not alter the peak amplitude. Etomidate and
sevoflurane increased charge transfer (area) by 71.2 ± 45.9% and 51.8 ± 48.9% (n = 7,
P < 0.05), respectively.
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Conclusion: The function of astrocytic GABAA receptors in the hippocampus was
increased by etomidate and sevoflurane. Future studies will determine whether these
general anesthetic drugs act on astrocytic GABAA receptors to stimulate the release of
soluble factors that may contribute to PNDs.

Keywords: astrocyte, GABAA receptors, general anesthesia, etomidate, sevoflurane, perioperative
neurocognitive disorders, patch-clamp

INTRODUCTION

Astrocytes, which are among the most abundant cells in the
mammalian brain, play an essential role in numerous functions,
from the maintenance of molecular, cellular, and metabolic
homeostasis to the regulation of cognition and behavior
(Verkhratsky and Nedergaard, 2018; Santello et al., 2019). Not
surprisingly, astrocytes are implicated in a variety of neurological
disorders, including neurodegenerative diseases, ischemic stroke,
epilepsy, and depression (Liu and Chopp, 2016; Wang et al., 2017;
Santello et al., 2019; Siracusa et al., 2019; De Majo et al., 2020;
Zhang et al., 2021).

One group of cognitive conditions that is of particular interest
to the fields of anesthesia and critical care is perioperative
neurocognitive disorders (PNDs) (Evered et al., 2018). PNDs
occur most commonly in older patients after anesthesia and
surgery. These patients may experience a range of symptoms,
including delirium, confusion, inattention, and cognitive deficits,
that can persist for days to months (Evered et al., 2018). The
incidence of PNDs is remarkably high, ranging from 10 to 60%;
and these disorders are associated with poor long-term outcomes,
increased healthcare costs, loss of independence, and increased
mortality (Witlox et al., 2010; Moskowitz et al., 2017; Sprung
et al., 2017; Boone et al., 2020). Few effective prevention and
treatment strategies are currently available (Berger et al., 2018;
Mahanna-Gabrielli et al., 2019). Therefore, PNDs represent a
major unmet health concern.

The causes of PNDs are complex and multifactorial, with
general anesthetic drugs likely being one of several key
contributing factors (Weinstein et al., 2018; Memtsoudis et al.,
2019). Interestingly, we and others have postulated that astrocytes
may play a causal role in PNDs (Terrando et al., 2013; Zurek et al.,
2014; Wang et al., 2018; Li et al., 2020). Our previous studies
using primary cultures of astrocytes, neurons, and astrocyte-
neuron co-cultures have suggested that astrocytes contribute
to the cognitive deficits that persist after brief exposure to
general anesthetic drugs (Zurek et al., 2014; Wang et al., 2018).
Indeed, we refer to these in vitro cell culture models that
have demonstrated a crosstalk between astrocytes and neurons
following exposure to anesthetic drugs as “PND in a dish.”
Specifically, both an intravenous anesthetic drug (etomidate) and
an inhalational agent (isoflurane) trigger a sustained increase
in cell-surface expression and hence function of a subtype of
γ-aminobutyric acid type A (GABAA) receptors in neurons
(Zurek et al., 2014; Wang et al., 2018). Such an increase in
GABAA receptor function is sustained after the anesthetic drug
is eliminated and is associated with long-lasting cognitive deficits
(Zurek et al., 2014; Li and Zhang, 2021; Zuo et al., 2021).

Furthermore, in vitro studies have shown that anesthetic drugs
act on astrocytes to stimulate the release of one or more
soluble factors that crosstalk with neurons, triggering a persistent
increase in GABAA receptor function in those neurons (Zurek
et al., 2014; Wang et al., 2018). However, the receptors in
astrocytes that act as targets for general anesthetic drugs have not
yet been identified.

Astrocytes express a wide range of neurotransmitter receptors
and transporters, including GABAA receptors, which allow them
to sense and respond to their surroundings (Verkhratsky and
Nedergaard, 2018; Mederos and Perea, 2019). In contrast to
what typically occurs in neurons, the activation of GABAA
receptors in astrocytes induces membrane depolarization, rather
than hyperpolarization, and an increase in intracellular Ca2+

(Meier et al., 2008; Egawa et al., 2013; Mederos and Perea,
2019). These changes stimulate the release of various signaling
molecules (Verkhratsky and Nedergaard, 2018). Because GABAA
receptors in neurons represent the primary target of most
general anesthetic drugs (Garcia et al., 2010), GABAA receptors
in astrocytes may also be sensitive to commonly used drugs.
These drugs may act upon GABAA receptors in astrocytes
to depolarize the membrane potential and trigger the release
of soluble factors. Indeed, studies showing that pentobarbital,
and the benzodiazepine agonists flunitrazepam and midazolam,
increased the activity of GABAA receptors in astrocytes were first
reported in the 1980s and 1990s (Backus et al., 1988; Bormann
and Kettenmann, 1988; Macvicar et al., 1989; Muller et al., 1994;
Fraser et al., 1995). However, to date, no subsequent studies
have directly examined the sensitivity of GABAA receptors
in astrocytes to modern general anesthetic drugs that are
now in common use.

The goal of this study was to determine whether two
representative general anesthetic drugs, etomidate and
sevoflurane, modulate the function of astrocytic GABAA
receptors in hippocampal slices from mice. Etomidate is an
intravenous agent that is often used for the induction of general
anesthesia in critically ill patients because of its favorable
hemodynamic profile (Hannam et al., 2019). Sevoflurane is
one of the most commonly used inhalational anesthetic drugs
(Brioni et al., 2017). Both these drugs have been shown to
trigger the persistent increase in GABAA receptor function in
neurons (Zurek et al., 2014; Wang et al., 2018). Our results
show that etomidate and sevoflurane increase the function
of GABAA receptors in astrocytes. These results provide the
foundation for future studies, which will define the role of
astrocytic GABAA receptors in the pathophysiology of PNDs
and assist in the development of potential new treatments for
these disorders.
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MATERIALS AND METHODS

Experimental Animals
All experiments were performed with C57BL/6 male mice at
postnatal days 21–27 (Charles River, Montreal, QC, Canada).
This age was selected because astrocytes have reached maturity
(Zhou et al., 2006), and the quality of brain slices significantly
reduces with further aging (Lipton et al., 1995; Ting et al., 2014).
Mice were housed in the animal care facility at the University of
Toronto (Toronto, Ontario, Canada).

Hippocampal Slice Preparation
Mice brains were obtained by decapitation after the mice were
euthanized with a brief exposure to isoflurane. Sagittal brain
slices (300 µm) containing hippocampus were prepared using
a VT1200S vibratome (Leica, Deerfield, Illinois). Hippocampal
slices were prepared in ice-cold sucrose-based cutting solution
that contained (in mM): 212 sucrose, 25 NaHCO3, 5 KCl,
1.25 NaH2PO4, 10 glucose, 2 sodium pyruvate, 1.2 sodium
ascorbate, 3.5 MgCl2, and 0.5 CaCl2. Slices were immediately
transferred to a chamber containing artificial cerebrospinal fluid
(aCSF) that contained (in mM): 125 NaCl, 25 NaHCO3, 2.5
KCl, 1.25 NaH2PO4, 10 glucose, 1.3 MgCl2, and 2.5 CaCl2. The
slice chamber was first placed in a water bath (32◦C, 30 min)
for recovery of neuronal activities, and later placed at room
temperature. All solutions were aerated with 95% O2/5% CO2
throughout the procedures.

Whole-Cell Recordings of Astrocytes
Whole-cell patch-clamp recordings were performed at room
temperature from astrocytes located in the stratum radiatum
of the CA1 region of the hippocampus. Slices were transferred
to a submersion recording chamber, where they were perfused
with aCSF at 3–4 ml/min and were visualized using a 400x
microscope (BX50WI; Olympus, Tokyo, Japan). Glass pipette
resistance ranged between 3 and 5 M�. All recordings were
performed using a MultiClamp 700B amplifier (Molecular
Devices, Sunnyvale, California, United States), and data were
acquired with pCLAMP 10.6 (Molecular Devices) via a Digidata
1550A interface (Molecular Devices).

Recordings were conducted with a KCl-based internal solution
that contained (in mM): 140 KCl, 0.5 CaCl2, 1 MgCl2, 5 EGTA,
10 HEPES, 3 Mg2+-ATP (pH 7.3 using KOH at 290 mOsm).
Upon achieving the whole-cell patch configuration, cells were
confirmed as astrocytes based on the unique electrophysiological
properties including a low membrane resistance (RM < 15 M�),
a low resting membrane potential (VM < -70 mV), and a
unique linear I-V relationship (Zhou et al., 2006, 2009; Du et al.,
2016). The RM and Ra were measured with “membrane test”
protocol that is built into the pCLAMP 10.6 software (Molecular
Devices). The resting membrane potential was measured in
“I = 0” mode. The I-V relationship was tested by measuring
currents that were generated in response to voltage steps from
holding potentials that ranged from −180 to 0 mV, in 20 mV
increments. Astrocytes were then voltage-clamped at their resting
membrane potentials.

All slices were continuously perfused with aCSF
that contained TTX (tetrodotoxin, 0.5 µM), APV
([2R]-amino-5-phosphonovaleric acid, 20 µM), and CNQX (6-
Cyano-7-nitroquinoxaline-2,3-dione, 10 µM). Only recordings
with an initial Ra less than 25 M� that varied less than 20%
throughout the experiments were included in the analyses.

Drugs and Chemicals
TTX was purchased from Alomone Labs (Jerusalem, Israel).
APV and CNQX were obtained from Hello Bio Inc. (Princeton,
NJ, United States). GABA and picrotoxin were from Sigma–
Aldrich (Oakville, ON, Canada), while etomidate was purchased
from US Pharmacopeia (Rockville, MD, United States) and
sevoflurane was obtained from Abbott Laboratories (North
Chicago, IL, United States).

Stock solutions of etomidate (100 mM) were prepared by
dissolving etomidate powder in propylene glycol (35% v/v in
physiological saline) and were stored at 4◦C (Sprung et al.,
2000). A final concentration of etomidate at 100 µM was used
for the studies. Sevoflurane (532 µM) was diluted from the
saturated aqueous phase of sevoflurane and was prepared at
room temperature, as previously described (Lecker et al., 2013).
This concentration of sevoflurane is twice the MAC (Minimum
Alveolar Concentration of anesthetics) value for sevoflurane
and was selected to ensure adequate drug levels in the slices
(Nishikawa and MacIver, 2001; Lecker et al., 2013). In brief,
50 ml of sevoflurane was mixed with 100 ml of aCSF in a
gas-tight glass bottle and stored at 4◦C overnight. Sevoflurane
at the saturated aqueous phase was measured at 11.8 mM
(Lecker et al., 2013).

GABA Puff Application
Focal puff applications of GABA (300 µM) were applied to the
soma of the astrocytes using a Picospritzer system (Picospritzer
II, Parker Hannifin, United States). A glass pipette (tip diameter
3–5 µm) that was filled with aCSF containing GABA (300 µM)
was placed approximately 50–100 µm away from the cell soma
before performing whole-cell configuration. The concentration
of GABA was chosen based on a previous study (EC50 = 300
µM) (Ma et al., 2012). Puff pressure was set at 15–20 psi, and
puff duration between 20 and 150 ms to obtain a baseline current
amplitude of approximately 50–100 pA.

Data and Statistical Analyses
The peak amplitude, rise time, decay time, and area of GABA-
evoked responses were analyzed with Clampfit 10.7 software
(Molecular Devices). The rise time was measured as the time
from 10 to 90% of peak amplitude, and the decay time was
defined as the duration from 90 to 40% of peak amplitude due to
fluctuations in late decay phase. The area of the current responses
was measured to the point where currents returned to baseline.

Data are represented as mean ± SD (Standard Deviation).
Statistical analyses were performed using R statistical software
version 3.6.1 (R Foundation for Statistical Computing, Vienna,
Austria). All continuous variables were tested to determine
whether they met conditions of normality (Shapiro-Wilk test)
and homogeneity of variance (Levene’s test). Paired Student’s
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t-test was performed to compare paired data. A two-tailed
hypothesis test was used, and statistical significance was set at
P < 0.05.

RESULTS

Identification of Astrocytes in
Hippocampal Slices
Astrocytes were identified in hippocampal slices based on their
morphology and electrophysiological properties. We recorded
from cells that were relatively small, as astrocytes have a diameter
of approximately 10 µm with round or irregularly shaped
somas (Zhou et al., 2006; Du et al., 2015). Morphology alone
was not sufficient to identify the astrocytes as other cell types,
such as interneurons, have similar structural properties (Zhou
et al., 2006). Thus, we next examined the electrophysiological
properties of each cell to confirm that the recorded cells were
indeed astrocytes. Astrocytes have unique electrophysiological
properties that allow them to be readily distinguished from
other cell types including interneurons. Specifically, astrocytes
have a low membrane resistance (RM < 15 M�), a relatively
hyperpolarized resting membrane potential (VM < -70 mV),
and they generate a linear current-to-voltage (I-V) relationship
in response to voltage steps due to passive K+ membrane
conductances (Zhou et al., 2006, 2009; Ma et al., 2014; Du et al.,
2016). All the cells we recorded from had a low membrane
resistance (3.2 ± 2.2 M�, n = 21) and a hyperpolarized resting
membrane potential (−80.2 ± 3.7 mV, n = 21; Figure 1A).
The cells also displayed a linear I-V relationship in response to
voltage steps (−180–0 mV in 20 mV increments), as shown in
Figures 1B,C.

GABA Activates γ-Aminobutyric Acid
Type A Receptors in Astrocytes
To study the effects of general anesthetic drugs on the function
of GABAA receptors in astrocytes, we first needed to record
stable GABA-evoked responses. We used focal puff applications
of GABA as previous studies have examined GABAA receptor-
dependent currents using similar methods (Ma et al., 2012).
A glass capillary that contained GABA (300 µM) was placed
50–100 µm away from the recorded cell (Figure 2A). After the
whole-cell patch configuration was successfully established in
astrocytes, a focal puff application of GABA was applied. The
application of GABA consistently activated an inward current
(Figure 2B). To confirm the GABA-evoked responses were
generated by GABAA receptors, the non-competitive GABAA
receptor antagonist picrotoxin (0.5 mM) was then added to the
bath solution for 5–10 min and a subsequent puff of GABA was
applied. The amplitude of the peak current was measured before
and during the application of picrotoxin. The peak current was
reduced to 28.9 ± 8.0% of the control (Figure 2B, 85.4 ± 12.0
pA for GABA vs. 24.0 ± 3.2 pA for GABA + picrotoxin,
n = 3; P = 0.019, paired t-test). These results showed that the
inward currents evoked by GABA were primarily generated by
GABAA receptors.

Etomidate Increases the Function of
γ-Aminobutyric Acid Type A Receptors in
Astrocytes
We next sought to examine the effects of etomidate (100 µM)
on GABAA receptor-generated currents in astrocytes. After
obtaining an initial baseline current in response to GABA (300
µM), the slices were perfused for 2 min with aCSF containing
etomidate and a second puff of GABA was applied. The amplitude
of the peak current (pA), the rise time and decay time (s) of the
current, and the area (pA4·ms) under the current response curve
were measured. Notably, we observed that the late decay phase of
current evoked by GABA, both in the absence and the presence of
etomidate, was somewhat unstable. Specifically, the decay current
had several different undulating shapes, as shown in Figure 3A.
This variability in the late phase of current decay differed from
current recorded in hippocampal neurons, as observed by us and
others (Bai et al., 1999; Caraiscos et al., 2004; Domínguez et al.,
2016). To minimize the impact of the baseline instability on the
analysis of current responses, the decay time of the current was
measured from 90 to 40% of the peak amplitude.

Etomidate increased the amplitude of the current by
35.0 ± 24.4% (Figure 3B; control: 77.5 ± 13.0 pA, vs. etomidate:
102.9 ± 15.4 pA, n = 7; P = 0.006, paired t-test). Etomidate
did not alter the current rise time (control: 1.3 ± 0.5 s vs.
etomidate: 1.7 ± 0.8 s, n = 7; P = 0.10, paired t-test) but
prolonged the decay time by 27.2 ± 24.3% (control: 2.6 ± 1.0 s
vs. etomidate: 3.4 ± 1.7 s, n = 7; P = 0.037, paired t-test). The
total charge transfer was also increased by 71.2± 45.9% [control:
3.1 ± 1.4 (×105) pA·ms vs. etomidate: 4.9 ± 1.5 (×105) pA·ms,
n = 7; P = 0.006, paired t-test]. We next confirmed that GABA-
evoked responses in the presence of etomidate were primarily
generated by GABAA receptors. The co-application of etomidate
and picrotoxin (0.5 mM) to the bath solution showed that the
peak current was reduced by 75.3 ± 5.5% (Figure 3C; pre-
picrotoxin: 94.0 ± 19.4 pA vs. picrotoxin: 23.8 ± 9.6 pA, n = 4;
P = 0.001, paired t-test).

Sevoflurane Increases the Function of
γ-Aminobutyric Acid Type A Receptors in
Astrocytes
In the next set of studies, sevoflurane (532 µM) was added to the
bath solution and the changes in the peak amplitude and time
course of GABA-evoked currents were investigated (Figure 4A).
Sevoflurane did not increase the peak current (Figure 4B; control:
75.3 ± 10.4 pA vs. sevoflurane: 71.9 ± 10.4 pA, n = 7; P = 0.21,
paired t-test) nor did it increase the current rise time (Figure 4B;
control: 1.4 ± 0.4 s vs. sevoflurane: 1.5 ± 0.4 s, n = 7; P = 0.33,
paired t-test). However, sevoflurane prolonged the current decay
by 28.3 ± 23.1% (Figure 4B; control: 2.2 ± 0.6 s vs. sevoflurane:
2.8 ± 0.9 s, n = 7; P = 0.030, paired t-test) and increased
the total charge transfer by 51.8 ± 48.9% [Figure 4B; control:
2.86 ± 0.64 (×105) pA·ms vs. sevoflurane: 4.22 ± 1.10 (×105)
pA·ms, n = 7; P = 0.029, paired t-test]. Thus, sevoflurane
increased the GABA-evoked currents. GABA-evoked currents in
the presence of sevoflurane were also inhibited by 64.4 ± 12.5%
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FIGURE 1 | Astrocytes displayed unique electrophysiological properties. After
the whole-cell patch configuration was achieved, cells were confirmed to be
astrocytes based on their low membrane resistance, hyperpolarized resting
membrane potentials, and linear I-V relationships. (A) Summarized data for
membrane resistance and resting membrane potential (n = 21). (B) Linear I-V
relationship of the astrocytes. Representative recordings show current
responses (Right) to voltage steps (500 ms) that ranged from -180 to 0 mV in
20 mV increments (Left). The cell was held at -78 mV between voltage
commands. Current amplitudes were measured 435 ms after initiation of each
step voltage as indicated by the vertical blue dash line. The amplitudes were
normalized to that at -180 mV as indicated by the asterisk. (C) Summarized
I-V plot. Each data point represents the mean of values from 21 recorded
astrocytes. The reversal potential obtained from the fitted I-V plot was -78 mV.
Data are presented as mean ± SD.

when picrotoxin (0.5 mM) was added to the bath solution (no
picrotoxin: 76.9 ± 7.1 pA vs. picrotoxin: 27.4 ± 10.0 pA, n = 4;
P = 0.003, paired t-test), confirming that the currents were mainly
GABAA receptor-dependent (Figure 4C).

DISCUSSION

The goal of this study was to determine whether GABAA
receptors in astrocytes are targets for etomidate and sevoflurane.
We first recorded GABAA receptor–mediated current from
astrocytes in the stratum radiatum of the CA1 region of
hippocampal slices from mice and then showed that both
etomidate and sevoflurane increased the GABA-evoked
responses. More specifically, etomidate increased the peak
amplitude of the current and prolonged its decay, whereas
sevoflurane prolonged current decay but had no effect on the
peak. Overall, both etomidate and sevoflurane increased the total
charge transfer of the GABA-evoked responses. To the best of
our knowledge, these results provide the first direct evidence that
commonly used general anesthetic drugs increase the function of
GABAA receptors in astrocytes.

As noted by others, it is technically challenging to perform
voltage-clamp recording of GABA-evoked responses in astrocytes
(Ma et al., 2014). While patch-clamp recording techniques have
been widely used by us and others to study anesthetic modulation
of GABAA receptors in neurons (Orser et al., 1994; Bai et al.,
1999; Caraiscos et al., 2004; Schools et al., 2006; Zhou et al.,
2021), astrocytes have a low membrane resistance because of
passive K+ conductances and are extensively coupled into a
syncytium through gap junctions (Ma et al., 2016), which makes
patch-clamp recording difficult. Such unfavorable patch-clamp
recording conditions cause the voltage change to occur primarily
at the tip of the recording electrode, rather than across the
cell membrane (Ma et al., 2014). Poor voltage-clamp conditions
also cause instability of baseline currents and prevent accurate
measurement of current responses during long-term whole-cell
recordings. To minimize the impact of such current instability,
we recorded from slices obtained from young mice and used
a Picospritzer perfusion system to focally and rapidly deliver
a transient puff (<150 ms) of GABA. Using this combined
approach, we were able to record relatively stable GABA-evoked
responses that were generated by GABAA receptors.

Our results provide convincing evidence that the function
of astrocytic GABAA receptor is increased by commonly
used general anesthetic drugs. These results are consistent
with findings from several earlier studies that date back to
the 1980s and 1990s of pentobarbital and benzodiazepines
(Backus et al., 1988; Bormann and Kettenmann, 1988; Macvicar
et al., 1989; Muller et al., 1994; Fraser et al., 1995). For
instance, pentobarbital but not diazepam increased GABA-
evoked responses in Bergmann glial cells of cerebellar slices
from young animals (postnatal days 5–12) (Muller et al., 1994).
However, these studies were undertaken at a development stage
when glial cells are still immature (Zhou et al., 2006). In
another study, using hippocampal slices, to which kainic acid
had been applied to reduce the number of neurons, GABA-
evoked responses in CA3 astrocytes increased after pentobarbital
and flunitrazepam treatment (Macvicar et al., 1989). Although
kainic acid helps in isolating astrocytes, it also modifies the
surviving cells into a pathological state (Kim et al., 2007). The
same limitation remains for acutely isolated astrocytes obtained
through enzymatic digestion (Fraser et al., 1995). Surprisingly,
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FIGURE 2 | Focal puff application of GABA to astrocytes induced an inward current that was inhibited by picrotoxin. (A) Schematic drawing shows that a glass
capillary containing GABA (300 µM) was placed 50–100 µm away from the recorded astrocyte in the stratum radiatum of CA1 region of a hippocampal slice.
(B) Left: Representative traces demonstrate current responses to puff applications of GABA before (black) and during addition of picrotoxin (0.5 mM, blue), a
non-competitive GABAA receptor antagonist. Right: Quantified data show the inhibitory effects of picrotoxin (PTX). n = 3, *P = 0.019, paired Student’s t-test. Data
are presented as mean ± SD.

since those earlier studies, little progress has been made regarding
anesthetic modulation of astrocytic GABAA receptors, probably
because of the technical challenges outlined above. We overcame
these limitations by recording currents in mature astrocytes in
brain slices from young mice.

Interestingly, we observed that etomidate, but not sevoflurane,
increased the peak amplitude of GABA responses in astrocytes.
At least three factors could contribute to this difference
including drug bioavailability, the effects of the drugs on GABAA
receptor kinetics, and the subunit composition of the underlying
receptors. For instance, it is unlikely that “MAC equivalent”
concentrations of etomidate and sevoflurane were present at the
tip of the recording electrode as the physical properties of the
drugs differ. Etomidate is stable in aqueous solution but requires
a considerable time to penetrate the brain slices. Indeed, it can
take as long as 1–2 h to reach an equilibrium in brain slices
(Benkwitz et al., 2007). In contrast, sevoflurane readily diffuses
into brain tissues, but rapidly evaporates from the perfusion
solution (Nishikawa and MacIver, 2001; Sebel et al., 2006).
Another reason could be differences in drug action on GABAA
receptor kinetics. Anesthetic drugs generally increase the potency
of GABA, increase the rate of receptor activation, and slow the
rate of receptor deactivation (Orser et al., 1994; Yang and Uchida,
1996; Belelli et al., 1997; Bai et al., 1999; Benkwitz et al., 2004).

However, etomidate, similar to other intravenous anesthetics
including propofol, reduced desensitization, whereas volatile
anesthetics increased receptor desensitization (Wu et al., 1996;
Liu et al., 2015). Since the peak current reflects the summed
effects of receptor activation, deactivation and desensitization,
differences in the peak current could result from differences in
drug action on receptor kinetics. Finally, the effects of anesthetic
drugs on GABAA receptor kinetics are highly dependent on
the subunit composition of the receptors. Thus, the subunit
composition of the heterogeneous GABAA receptors influences
the response to anesthetic drugs (Uchida et al., 1995; Krasowski
et al., 1998; Jenkins et al., 2001; Nishikawa and Harrison, 2003;
Benkwitz et al., 2004; Zhong et al., 2008; Hoft et al., 2014; Woll
et al., 2018; Liao et al., 2019).

Our results raise some interesting questions that are worthy
of future studies. It would be of interest to examine the
concentration-dependence of anesthetic modulation of astrocytic
GABAA receptors and whether the anesthetic sensitivity of
astrocytic and neuronal GABAA receptors differ. Given technical
challenges with standard whole-cell patch-clamp recordings from
astrocytes, we investigated the effects of just one anesthetic
concentration with one concentration of GABA. A previous
study overcame some of these technical challenges by using a
dual-patch technique that permitted simultaneous recordings
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FIGURE 3 | Etomidate potentiated GABA-evoked current in astrocytes. (A) Representative traces show the GABA-evoked responses before and during etomidate
(ETM) treatment from four different astrocytes. Note the different shapes of the late phase of the current decay in both the absence and the presence of etomidate.
(B) Summarized data for peak amplitude, rise time, decay time, and charge transfer (area). n = 7, *P < 0.05, **P < 0.01, n.s.: not significant, paired Student’s t-test.
CONT: control. (C) Representative traces (top) and summarized data (bottom) show that GABA-evoked current in the presence of etomidate (ETM) is inhibited by
picrotoxin (PTX, 0.5 mM, 5–10 min). n = 4, ***P = 0.001, paired Student’s t-test. Data are presented as mean ± SD.

of membrane currents and potentials in astrocytes (Ma et al.,
2014). Future studies might also investigate GABAA receptors
in astrocytes that are mechanically isolated from brain slices or
macro patches that are excised from astrocytes. These techniques
allow drugs and agonists to be rapidly applied to and then washed
away from the recorded astrocytes. Drug concentrations can
also be more accurately controlled to study the concentration-
dependent effects of anesthetic drugs. Thus, the approaches allow
anesthetic effects on GABAA receptor responses in astrocytes and
neurons to be more effectively compared.

Another important issue that requires further study is
whether astrocytic GABAA receptors play a role in PNDs
in vivo. Given that exposure of astrocytes to anesthetic drugs

triggers a sustained increase in cell-surface expression and
function of GABAA receptors in neurons in vitro, it is
possible the drugs act upon astrocytic GABAA receptors to
cause similar changes in vivo. Indeed, general anesthetic drugs
increase Ca2+ signaling in astrocytes by activating GABAA
receptors in vivo (Meier et al., 2008; Thrane et al., 2012). This
increase in cytosolic Ca2+ may trigger the release of soluble
factor(s) that modify the function of neighboring neurons.
Future studies will determine whether astrocytic GABAA
receptors contribute to this crosstalk with neuronal GABAA
receptors that may contribute to PNDs, as well as identify the
soluble factor(s). Using genetic approaches, such as astrocyte-
specific gene knockdown/knockout, and novel CRISPR-based
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FIGURE 4 | Sevoflurane potentiated GABA-evoked current in astrocytes. (A) Representative traces show the GABA-evoked responses before and during
sevoflurane (SEV) treatment from four different astrocytes. Note the different shapes of the late phase of the current decay in both the absence and presence of
sevoflurane. (B) Summarized data for peak amplitude, rise time, decay time, and charge transfer (area). n = 7, *P < 0.05, n.s.: not significant, paired Student’s t-test.
CONT: control. (C) Representative traces (top) and summarized data (bottom) show that GABA-evoked current in the presence of sevoflurane (SEV) is inhibited by
picrotoxin (PTX, 0.5 mM, 5–10 min). n = 4, **P = 0.003, paired Student’s t-test. Data are presented as mean ± SD.

technology to target anesthetic-sensitive astrocytic GABAA
receptors in vitro and in vivo, may help answer these questions
(Mori et al., 2006; Shinohara et al., 2016; Meneghini et al.,
2021). Such studies may lead to the discovery of novel strategies
to mitigate the cognitive dysfunction experienced by older
patients with PNDs.

This study had some limitations. We were able to test only
the early phase of current decay (90–40% decay time) induced
by puff applications of GABA in astrocytes because the late
phase is highly variable in both the absence and presence
of anesthetic treatment. Such variability could be due to low
membrane resistance of astrocytes and to changes in membrane
resistance caused by secondary inhibition of the K+ channel after
application of GABA (Ma et al., 2012, 2014). As noted above,
performing dual-patch recordings in hippocampal astrocytes

may reduce this variability and may help in further evaluating
the effects of anesthetics on astrocytic GABAA receptors. In
addition, this study focused on the effects of anesthetics in mature
hippocampal astrocytes at a single age of animal. However, a
distinct feature of astrocytes is their heterogeneity across different
brain regions (Matias et al., 2019; Batiuk et al., 2020). Also,
the subunit compositions and expression profiles of GABAA
receptors are heterogeneous across brain regions and at different
developmental stages (Backus et al., 1988; Macvicar et al.,
1989; Muller et al., 1994; Fraser et al., 1995; Hoft et al., 2014;
Zhang et al., 2016). Therefore, the anesthetic effects on GABAA
receptors in astrocytes may differ in different brain regions and
at different ages.

In summary, etomidate and sevoflurane, two modern general
anesthetic drugs used in clinical settings, increased GABAA
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receptor function in hippocampal astrocytes. These results
provide the foundation for future studies that will determine
whether astrocytic GABAA receptors contribute to PNDs.
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