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Communal roosting in Bechstein’s bat colonies is characterized by the
formation of several groups that use different day roosts and that regularly
dissolve and re-merge (fission–fusion dynamics). Analysing data from two
colonies of different sizes over many years, we find that (i) the number of
days that bats stay in the same roost before changing follows an exponential
distribution that is independent of the colony size and (ii) the number and size
of groups that bats formed for roosting depend on the size of the colony, such
that above a critical colony size two to six groups of different sizes are formed.
To model these two observations, we propose an agent-based model in which
agents make their decisions about roosts based on both random and social
influences. For the latter, they copy the roost preference of another agent
which models the transfer of the respective information. Our model is able
to reproduce both the distribution of stay length in the same roost and the
emergence of groups of different sizes dependent on the colony size. More-
over, we are able to predict the critical system size at which the formation
of different groups emerges without global coordination. We further comment
on dynamics that bridge the roosting decisions on short time scales (less than
1 day) with the social structures observed at long time scales (more than 1
year).
1. Introduction
The idea that ‘more is different’ [1] has become a common paradigm to describe a
system whose behaviour changes qualitatively when the number of its elements
increases. As emphasized by Cavagna & Giardina [2], it is also an interesting per-
spective from which to look at animal groups. These groups vary widely in size
and stability, from small social groups with stable individual composition as in
cooperatively breeding mammals to vast aggregations such as kilometre-long
fish shoals containing tens of millions of individuals (e.g. [3]). Large variations
in group size can also be observed within the same species. Increasing group
sizes have been shown to foster division of labour [4,5], transitions from disorder
to order [6] or the accuracy of group decisions [7]. Generally, these questions are
linked to the topic of optimal group size in animal populations [3].

Here we concentrate on Bechstein’s bat (Myotis bechsteinii), a species where
the females form maternity colonies of stable individual composition but with
high fission–fusion dynamics in summer, during the breeding season (for
a detailed species description, see [8]). Fission–fusion dynamics refers to the
regular splitting into and merging of groups within larger social entities such
as colonies in the case of bats [9–11]. Previous studies [12] showed that fis-
sion–fusion dynamics may result from simple association mechanisms, and
often produce right-skewed group size distributions, with many small groups
and very few large ones.
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Compared with the number of empirical studies on
fission–fusion dynamics (e.g. [9,10,13–16]) modelling
approaches are less developed. They can be divided into stat-
istical models and generative models. Statistical models, for
instance regression models, aim to infer from available data
the influences that govern the observed dynamics. For
example, the frequency of fission and fusion events in reindeer
was predicted based on the observed variation in group sizes
[17]. An advanced statistical model, the hierarchical Bayesian
model, was used to disentangle the influence of other individ-
uals (action, sex) on the individual fission and fusion
decisions of spider monkeys [18]. For Bechstein’s bats, pairs
of leading and following animals could be identified by
means of an advanced statistical inference model [19].

The evaluation of statistical models is usually restricted to
comparing the statistical performance of model variants with
and without certain influences. This allows one to estimate
the impact of these influences on explaining the data, but it
gives no insights into the interaction dynamics or decision
rules of individuals. This methodological limitation is
addressed by generative models, for instance agent-based
models. These propose rules, for example, for interactions
or decisions, and then test to what extent such assumptions
are compatible with an observed behaviour, at either the indi-
vidual or the systemic level. Agent-based models have been
applied already to the roosting behaviour of bats, albeit
with a different focus [20–22]. More recently, spatio-temporal
patterns resulting from the swarming activity of the Leisler’s
bat, Nyctalus leisleri, were replicated by means of a swarm
algorithm using species and habitat input parameters [23].
Also, observed patterns of travel distance in red-capped man-
gabeys were reproduced with a model of their seasonal
fission–fusion dynamics [24]. The impact of individual com-
promises between nutritional needs and social interactions
on the social network between individuals and a possible
irreversible fission was simulated [25] with an agent-based
model. These types of models also allow one to test the
impact of certain parameters, for example split rates [26,27],
on the principal outcome of the fission–fusion dynamics. In
most cases, however, the assumed rules cannot be directly
matched to available observations. Therefore, agent-based
models provide a way to develop hypotheses about unob-
served behaviour that can be addressed in subsequent
research. We follow this approach in our paper, with a
specific focus on Bechstein’s bats.

In bats, most species are social and form groups of vari-
able size and composition, and many of the colonies
display fission–fusion behaviour [28]. Female Bechstein’s
bats profit from group formation while roosting as they
obtain thermoregulatory benefits from clustering [29,30].
The size of the roosting groups depends on the size of the
colony [31,32] and can comprise the entire colony or, in
the case of a larger colony that splits into several temporary
subgroups, a subset of the colony members. From field
studies, only data about the sizes and compositions of roost-
ing groups have become available [33], while the mechanisms
of the fission–fusion behaviour are largely unknown. Hence,
we observe the results of roosting decisions, but have to infer
the underlying decision rules.

To better characterize the decisions resulting in the for-
mation of roosting groups, we have to take into account
various aspects. Firstly, not all individuals have the same
information about possible roosting sites. As Bechstein’s
bats forage separately or in pairs at night [34], information
available to each individual about the roosting preferences
of the other colony members is limited. Field experiments
have shown that colony members exchange some infor-
mation about the location of suitable roosts [35]. The
transfer of information in a colony often occurs by forming
pairs of leaders and followers, i.e. by bilateral interactions
between more and less informed bats [19]. Secondly, social
influence is vastly distributed across individuals, reflecting
a consistent ranking. Hence, some individuals are more
actively and more often involved in the information transfer.

These two issues are not adequately reflected in a notion
of ‘collective decision making’, which would suggest a
common democratic procedure. On the one hand, all individ-
uals are involved in the decision process and have to pay
attention to the decisions of others, as they can only choose
roosting sites also shared by other bats. On the other hand,
the decisions do not occur in one joint act, but rather based
on a sequence of bilateral interactions over the duration of
the swarming phase. The result is not one unanimous out-
come, not even one majority-driven decision, but most
often a decision in favour of different roosting groups of
various sizes and at various places [36,37].

In conclusion, roosting decisions follow a daily cycle.
During their nightly foraging bats are alone or in pairs and
distributed over a large area [34]. At dawn, bats return to
the roosting area not all at the same time and have to
decide about the roost where they will stay together with
other colony members for most of the following day. At
dusk, the bats leave their communal day roosts again and
the roosting groups dissolve for nightly foraging. Then, this
cycle starts over again. The existing literature [38–40] suggests
that the decision mechanisms involved in the choice of a com-
munal roosting site may be self-organized. In this paper, we
describe such a self-organized decision-making process in
Bechstein’s bats. Our modelling approach builds on two pre-
vious empirical studies. Kerth et al. [32] analysed the social
structure of two colonies of Bechstein’s bats. It was shown
that Bechstein’s bats, which do not necessarily have high
socio-cognitive abilities, develop multi-layer social structures,
notably persistent long-term network communities that
emerge from roosting associations. Baigger et al. [41] dis-
cussed the possibility that these social structures might
allow colonies of Bechstein’s bats to collectively withstand
adverse events such as a population crash.

In the current work, we set out to explore the link
between the individual behaviour, i.e. the roost switching,
and the emergence of roosting groups of different sizes. To
gain empirical insights, we analyse data on the daily roosting
behaviour of individuals from two colonies (see §2.1 and
Kerth et al. [32] for a full description of the data). These
data report on the size of daily roosting groups. But the
rules that bats follow to make these decisions about their
communal day roosts are largely unknown. Therefore, in
this paper we propose such rules which take individual pre-
ferences and the information transfer between conspecifics
into account. These rules are then applied to develop an
agent-based model.

In addition, we focus on the group sizes that result from
such decision dynamics. The question of how groups form
and how their size is regulated is still a very topical one, as
accurate studies on the temporal dynamics of an animal
group are rarely paired with theoretical justifications derived
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from robust models [42]. The study and characterization of
group sizes are an even larger challenge when the animals
undergo a fission–fusion dynamics, as in the case of
Bechstein’s bats.

Our main interest is to explain how the formation of
roosting groups is influenced by the size of the colonies. If
‘more is different’, we should expect the emergence of specific
collective behaviour once colonies have reached a critical size.
As we report in the empirical findings, the formation of roost-
ing groups of different sizes dependent on the size of the
colony is such an emergent phenomenon. We demonstrate
that this transition in the behaviour of the colony can be well
explained by our model. But we also show that our model is
able to reproduce the distribution of durations that bats
spend in the same roost before switching to another roost.

Finally, in this paper we also investigate how the for-
mation of groups as part of the fission–fusion dynamics can
be related to the emergence of long-term social structures,
such as the existence of communities in social networks of
large colonies of Bechstein’s bats [32].
20220170
2. Methods and data
2.1. Available data and subsequent measures
For our model validation, we have data available for two
different colonies of Bechstein bats (Myotis bechsteinii), a
larger one denoted by GB2 with 34–46 individuals and a
smaller one denoted by BS with 11–18 individuals [32,41].
Both colonies were observed over many years, from 2004 to
2010 for GB2 and from 2004 to 2008 for BS. All bats in both
colonies were individually marked with PIT-tags in their
first year of life [8], i.e. they can be identified by these tags
over years.

Although Bechstein’s bats forage separately or in pairs
during the night, they have to roost together during the
day to benefit from social thermoregulation [29,30]. Specifi-
cally, they form roosting groups that occupy a ‘bat box’ for
some days, but then have to change their box because of
the need to avoid parasites that accumulate in the boxes
[43] and to find optimal roosting temperatures that are
weather dependent [44]. One to six of such roosting groups
per colony are formed, and their composition can alter
every day. These groups can choose from about 150 bat
boxes that were placed in the home range of the two colonies
[32]. Only about 50 different boxes (out of 150 available in
both colonies, together) are occupied by the groups in each
season, and members of different colonies do not roost
together. Each of the occupied boxes is equipped with an
antenna that is connected to an automatic PIT-tag reader
that stores PIT-tag numbers, times and dates of each bat
entering the box. This way, from 2004 onwards, for the breed-
ing season between April and September, we have daily data
about the presence of individual bats in the respective box.

To formalize the information available from the data, we
first introduce three different time scales. The longest time
scale, y, is measured in years, or seasons. One season consists
of about 200 days, during which information about the roost-
ing behaviour of the colony becomes available. This is the
time scale at which long-lasting social structures of the
colony become visible, such as communities [32]. We will
come back to this in §3.3.
The intermediate time scale, t, is measured in days, i.e. it is
also a discrete scale. On this time scale, the fission–fusion
dynamics becomes important. Bats form groups for commu-
nal roosting; however, these groups are not stable over a long
time and dissolve mostly over 1–2 days. The fusion dynamics
refers to the merging of multiple groups into a smaller
number of larger groups or even into one group, while the
fission dynamics refers to an increase in daily roosting
groups. On time scale t bats decide about their (daily)
roost, for which we have information available. The auto-
matic reading resulted in 6655 individual roosting records
for BS and 13 845 for GB2. About 97% of the tagged bats pas-
sing the antenna in the box entrance could be identified [35].

This registration allows us to subsequently calculate pair-
wise roosting associations for each colony. If r∈ {1,…, m} is the
discrete number of the box, then ri(t) tells us that bat i has
roosted in box r at day t. The Kronecker delta δij(t) then indi-
cates whether two individual bats i and j have roosted
together on that particular day t. δij(t) = 1 if ri(t) = rj(t), and δij-
(t) = 0 otherwise. Aggregating over time for a fixed pair of
individuals i, j tells us how often these two bats have roosted
together. If the latter is normalized to the number of days
both of these individuals have been observed in the area, it
yields the Iij index [31].

The shortest time scale, τ, is much shorter than 1 day and
could be measured, for example, in minutes. In comparison
with the time scale t, we can treat this time scale τ as
(quasi) continuous. This is the time scale at which bats
exchange information about suitable roost sites and decide
where to roost. We see this communal roosting as the out-
come of group decisions, for which we can observe the result
(on the time scale t), but do not know the rules which gener-
ate the observed outcome on the time scale τ. To infer a set of
possible decision rules that are compatible with this outcome
is precisely the aim of our paper. This requires us to model
the so-called swarming phase more explicitly, during which
bats exchange the above information. The swarming phase
describes the aggregation of bats that fly around a box at
dawn before they eventually use it as a day roost [45].
During this swarming phase, the bats presumably make
their decisions about where to communally roost. Before we
come to this, we need to take a closer look at the characteristic
features of the roosting data, obtained at time scale t.
2.2. Distribution of duration of stay in a box
As we have already mentioned, Bechstein bats have an incen-
tive to switch boxes. Hence, the first question is about their
average roosting duration in a given box. To calculate this
duration T, measured in days, we have to compare, for each
bat, their daily roosting locations on consecutive days. This
results in a time series of values of Ti for each individual
bat. To characterize the colony, we have to determine the dis-
tribution P(T ) from the histogram of all T values for all bats
from the same colony. The result is shown in figure 1. We
find, for both colonies, the same exponential distribution
P(T )∝ e−αT with almost the same values of α. The statistical
details are given in appendix A.

It can be noted that the distribution of consecutive days
spent roosting in the same box does not differ for the two
colonies of very different sizes, GB2 being about twice as
large as BS. This indicates that biological reasons that are lar-
gely independent of total colony size, such as parasite
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infestation in the roost [43] or the roosts’ micro-climate in
relation to weather conditions [44], determine the duration
of use of the box. In both colonies, we observed that bats
changed boxes on average about every 2 days, because the
mean period is the inverse of the distribution’s rate α. This
is in line with values found in previous studies on Bechstein’s
bats [31,32,46] and in maternity colonies of other species of
forest-dwelling bats (e.g. [16,47]).

2.3. Distribution of group sizes
In a second step, we focus on the size of the groups that roost
together in one box. Both the number and the maximal size of
these groups depend on the size of the colony, which is very
different for GB2 and BS. Hence, we have to distinguish
between three different levels:

— N(y) is the size of the colony, which can vary from year to
year, as figure 2 shows, but is assumed to be fixed for a
given year y because of the high individual stability of
the colonies and the very low mortality of the bats
during summer [48].

— Because of the fission–fusion dynamics, each colony is
composed of groups of different sizes, nk(t), where k is a
group index and nk(t) is the size of the group k at a par-
ticular day t. The boundary condition N ¼ PKðtÞ

k¼1 nkðtÞ
has to be fulfilled for each day. The total number of
groups, K(t), is not a constant, but can vary on a daily
scale. For comparison of colonies with different sizes,
we introduce the relative group size, xk(t) = nk(t)/N, withP

k xkðtÞ ¼ 1.
— On the third level, we have individuals i with i = 1,…, N

that compose the different groups. The composition of
the groups can also vary day by day. Sometimes a
group can only consist of a single individual that roosts
alone and at other times all individuals may form a
single group of the size of the colony; i.e. xk(t) can vary
between 1/N and 1 in the extreme cases, which also
impacts the total number of groups per day, K(t).

In figure 2, we calculate, for each colony separately, how often
relative group sizes xk(t) were observed in a given year. To
highlight the differences, we have then calculated from
these frequencies, aggregated over all years, the distribution
P(x) for the two colonies.
Comparing the two distributions P(x), we already note
that they are clearly different. The small colony BS displayed
a very cohesive behaviour, i.e. all individuals mostly roosted
together. The large colony GB2, on the other hand, showed
the formation of groups of a size smaller than or approxi-
mately equal to one-half of the colony size. Only on very
few occasions did the whole colony roost together. There
are two main observations from figure 2:

(i) In their roost choice Bechstein’s bats indeed have to
take the decisions of others into account, otherwise
the formation of groups and the coordinated roosting
behaviour would not be observed. This confirms pre-
vious findings from empirical studies [36,37].

(ii) Comparing the small and the large colonies, we argue
that there is a critical colony size Ncrit above which the
formation of more than one roosting group per colony
becomes very likely. The graphs indicate that this criti-
cal size is approximately 18, because in the smaller
colony all members most often roost together in a
single group whereas in the larger colony multiple
groups of one-third to one-half of colony size are
most often formed.

2.4. The need to model social influence
In the following, we develop an agent-based model that aims
to reproduce the two previously mentioned empirical obser-
vations: (i) the distribution of consecutive days of staying in
the same box (figure 1) and (ii) the size of the groups that
roost together, dependent on the colony size (figure 2).

To start with the exponential distribution of durations T,
we know that such a distribution can be obtained by assum-
ing a simple Poisson process for the bats’ interactions.
Specifically, we could consider that agents every day
change from their previously occupied roost to another
roost with a fixed probability α, and then they opt for another
box on the next day. Thus, the chance that they stay at the
same roost will decay as 1− α.

One could argue that this decision to leave depends on
the available roost sites in the vicinity. As flying long dis-
tances is energetically costly for broad-winged bat species
(e.g. [49]), Bechstein’s bats may prefer to fly short distances
when switching to another box, thereby minimizing their
energy expenditure. However, in Bechstein’s bats the foraging
area of a bat is typically much larger than its roosting area
and thus roost-switching distances may not be relevant to
its box choice process [50]. Testing for this effect, we found
no effect of the previously occupied box on the next occupied
box in terms of flying distance between boxes. The statistical
details are again given in appendix A. This insight then lends
evidence to the assumption that bats choose randomly, with
respect to distance, among the available roost boxes. Hence,
one could assume that the whole process of leaving a box
and choosing another box can be modelled as a random
process, where the fixed probability α decides when to leave.

With such an assumption, we correctly reproduce the dis-
tribution P(T ) observed in figure 1, independent of the
system size. But, as a consequence of this assumption, we
also get an exponential distribution of group sizes, because
agents find themselves together only at random. There is evi-
dence for such an exponential distribution of group sizes for
other systems [12,51–54], but not for our system of Bechstein’s
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bats, where the distribution of group sizes is very different
from an exponential distribution. As figure 2 shows, in our
case the distribution is not right-skewed as is the case for
an exponential distribution. Further, our distribution also
changes based on the system size, i.e. the number of bats.

Hence, from these considerations we can conclude that
another mechanism is needed in the model to correctly
account for the way in which bats communicate about their
roosting intention, and form these groups. Therefore, in
addition to the random influence already assumed for reprodu-
cing the exponential distribution of durations, P(T ), we have
to add social influence. Only this will allow agents to copy the
roosting intention (or preference) of other agents, as needed
to form groups.
2.5. Modelling the swarming phase
As already argued, social influence is exerted at a time scale τ
shorter than the scale t, specifically during the swarming phase
(at dawn), in which Bechstein’s bats aggregate in flying
around potential roosts with the opportunity of signalling
their preferences for certain day roosts to other colony mem-
bers. We assume that, when the swarming phase starts, each
agent has a roosting preference ri(τ), where r∈ {1,…, m} is the
identity (number) of the preferred box r. The start value for
ri(τ) is the roost number from the last day. This preference
is not fixed, but can change during the swarming phase. In
our model, we assume that this dynamics is governed by
two different processes: (i) a random change, which is mod-
elled again by a Poisson process with a rate λ (equal for all
agents), and (ii) the social influence, which causes an agent i
to change its roost preference ri to the rj of another agent j
at a rate γ.

So, basically these two processes compete: agent i picks a
new preferred roost either randomly or takes the roost prefer-
ence of other bats into account. The latter means that agent i
amplifies the preference rj for a given box by copying the
respective decision from agent j. Which of these processes
dominates depends on the ratio λ/γ, which will be
determined later during the model calibration.

In order to decide when a roosting preference ri(τ) is fina-
lized, i.e. does not change further, we could set an arbitrary
time after which the swarming phase is finished. However,
this would introduce a strict cut-off in the model that can
hardly be justified. It further increases the influence of noise
on the dynamics, because it is rather arbitrary as to which
preferences agents have at a fixed point in time. To avoid
such artefacts, we model a progressive decision process in
which agents switch one by one to the decided state at a
rate ξ. We can set ξ = 1 for simplicity because both λ and γ
are defined relative to ξ. Implementing the decision process
in this way allows rich dynamics in which agents finalize
their preferences at different times. This allows agents
that have already decided about their roost to still influence
agents that have not yet decided where to roost.
3. Results
3.1. Model calibration
To obtain results, we need to calibrate the two parameters
introduced: (i) the rate λ at which agents randomly change
their preferences for a roost site during the swarming phase
and (ii) the rate γ at which agents copy the preferences of
other agents. For this calibration, we use the empirical finding
P(T ) of figure 1 that demonstrates the outcome of the com-
bined processes which jointly determine when agents change
their current roost.

Our model generates for each agent a sequence of roost
sites ri(t) used on consecutive days. From this time series,
we can determine the sequence of durations T̂i that agent i
stays in a given box before changing to another box. We
deem our model correct if it is able to reproduce the empirical
finding P(T ), i.e. if the model-generated distribution PðT̂Þ of
durations matches the observations. This implies three
requirements: (i) PðT̂Þ has to be an exponential distribution,
which is ensured because we have modelled the random
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change of preferences as a Poisson process; (ii) the character-
istic parameter â obtained from PðT̂Þ has to match the
empirical value α = 0.56; and (iii) as an additional constraint,
we need to make sure that the model-generated distribution
PðT̂Þ is also independent of the system size N.

These three requirements can be achieved by adjusting
the model parameters λ and γ such that the match between
model and empirics is as good as possible. Specifically, the
following two errors have to be minimized:

E1 ¼ 1
N

XN2

N¼N1

jaoutðNÞ � aj ð3:1Þ

and

E2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
N2 �N1

XN2

N¼N1

�
aoutðNÞ � aoutðNÞ� ��2

vuut

¼ stdðaoutÞ: ð3:2Þ

E1 measures the difference between aoutðNÞ, the model-
generated decay value of the exponential distribution, and
the empirical value α, which should be as small as possible.
The model output aoutðNÞ depends on the colony size N,
which we have varied in discrete steps between fN1. . .N2g.
Practically, we have chosen N1 = 10 and N2 = 50 because
these are the typical minimum and maximum colony sizes,
respectively [28]. For each value of N, we ran 10 000 simu-
lations of the model, hence aoutðNÞ already gives the
average over 10 000 simulations.

E2 is the standard deviation of the distribution of all
aoutðNÞ obtained in the range N∈ {N1…N2}. This error
should be minimized during the calibration because we
want the model output to be independent of the system
size N. aoutðNÞ� �

is the mean value of aoutðNÞ.
To obtain the pair {λ, γ} that best fits the experimental

data, we minimized the product of the squared error of the
exponential fit by the size-related error, E ¼ E2

1 � E2. Plots of
E1, E2 and E are shown in figure 3. We found a minimum
of E for λ = 0.95 and γ = 22.
3.2. Distribution of group sizes
The agent-based model outlined above shall now allow us to
reproduce, and to understand, the second empirical finding,
namely the distribution of the sizes of groups that roost
together, dependent on the size of the colony, as shown in
figure 2. Specifically, the small study colony roosted mostly
as a single group, while the larger colony roosted in several
groups, with the largest roosting group comprising mostly
about half of the colony.

However, we do not have observations about the transition
from one to several groups. Therefore, in a first step we merge
the information about the group sizes of the two colonies.
Figure 4a shows the complete empirical data. The x-axis
displays the size of the colony, N, varying as before between
N1 = 10 and N2 = 50. The y-axis displays compressed infor-
mation about the size of the groups. The diagonal y= x
shows the maximum size of a group for a given size of the
colony. If all individuals belong to only one group, then we
should find the observed group size very close to this diagonal.
This is indeed the case, as figure 4a shows, but only as long asN
is below 20. Specifically, we plot the probability of an individual
to be part of a group of a given size in terms of a colour code.
The darker the colour, the larger this probability.

For colony sizes N between 18 and 26, we do not have any
empirical data. But for N > 26, we see that the group size
quite often differs from the colony size, i.e. most individuals
are found in groups of sizes much below the diagonal y = x.
This clearly indicates the formation of groups inside the
colony. To better understand how the colony splits into
groups of different sizes, we have plotted in figure 4a the
size of the largest group, n1(t), in the upper part and the
size of the second largest group, n2(t), in the lower part (we
have used the group index k to rank groups according to
their size nk, such that k = 1 refers to the largest and k = 2 to
the second largest group).

Obviously, the maximum size of n2(t) is bound to y= x/2,
otherwise it would be the largest group. We see that the empiri-
cal sizes of the second largest group are close to this line, but
not too close. That means that colonies do not split precisely
into two groups of size N/2, which would also not be realistic.
Instead, we note the formation of the second largest group with
sizes n2(t) comparable to about N/3. The sizes of the largest
group, n1(t), shown in the upper part of figure 4a, are compar-
able to N/2. This means that, if other groups exist, they can
only be of rather small sizes, summing up to about N/6.

Figure 4b shows the same diagram with the results of our
calibrated agent-based model. We note that simulations were
also performed for colony sizes where no empirical data were
available (18–26 individuals). The grey line in figure 4b shows
the most common size obtained for n1(t) in our simulations.
This curve displays a sharp drop for a colony size of N = 18
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Figure 4. Empirical group sizes (a) and modelled group sizes (b) as a function of colony size. Colours represent the probability of an individual belonging to a group
of a certain size. The top part of both figures shows the size of the largest group; the bottom part the size of the second largest group. The line y = x indicates that
there is only one group of the size of the colony. If a second largest group exists, its size can be maximally y = x/2, as indicated in the lower part. The grey line in
(b) represents the most common largest group size in our simulation results.
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individuals. Hence, it marks the transition from a regime
where only one group of the size of the colony is observed
to a regime with multiple groups of different sizes. The critical
size of the colony for this transition is Ncrit = 18.

We note the very good agreement of our model results
with the empirical observations. Despite the fact that we
only used two parameters, λ, γ, to describe the roosting
decision of agents, the model is able to reproduce the findings
about group sizes dependent on colony size. This leads us to
the conclusion that the underlying dynamics for the agents
capture the systemic behaviour to a high degree. In particular,
the simulations allow us to project the dynamics of the colo-
nies to the unobserved cases. In this way, we identified the
critical system size Ncrit = 18 at which the bifurcation in the
systemic behaviour, i.e. the transition from a single to a
multi-group regime, occurs. We further elaborate on this
fact in the Discussion.
3.3. Including the roosting history
So far, the two rates λ and γ have been the same for all agents.
This is justified for λ because random influences are con-
sidered. For γ, however, one would expect that the social
influence between any two agents also depends on their pre-
vious experience together. Hence, instead of an overall rate of
social influence, we introduce a pair-specific social influence
γij(t) that depends on the joint history of agents i and j. If
these agents have roosted together at a particular day t, this
should increase their mutual social influence by an amount
Δγ. If, on the other hand, these agents never roost together
again, this mutual social influence γij(t) should decay over
time at a rate ε. This can be expressed by the following dis-
crete dynamics:

gijðtþ 1Þ ¼ 1
1
[gijðtÞ þ dijðtÞDg]: ð3:3Þ

We recall that δij(t) is the Kronecker delta, which equals
1 whenever ri(t) = rj(t), i.e. when agents i and j roost together
at day t, and zero otherwise.
The dynamics of equation (3.3) follows the idea of reinforce-
ment learning, because a previous joint experience in roosting
increases the mutual social influence, which in turn increases
the future chances that either agent i or j copies the roost pre-
ference of the other agent. Hence, it describes the formation of
social bonds between agents that could also impact the long-
term social structures, as discussed below. Mutual social
influence that is not maintained, however, will decay over time.

γij(0) denotes the start value of the mutual social influ-
ence. To set this value, we account for the fact that social
influence between individuals of the same group is larger
than between individuals of different groups. Hence, initially
we create two groups of equal size N/2. Within these two
groups, we set γij(0) = 0.55 for all individuals in the same
group, and between these two groups we set γij(0) = 0.45.
Further, we choose Δγ = 0.05 and 1/ε = 0.95. The latter
describes an exponential decay of the mutual influence, γij-
(t) = γij(0)exp{[(1/ε)− 1] t}, if i and j never share a roost. By
choosing the parameters this way, we ensure that 0 < γij(t) <
1 for any i and j, regardless of their roosting history.

With this, the individual social influence exerted on agent i
is no longer a constant γ, but an individual parameter,
giðtÞ ¼

P
j gijðtÞ, that changes over time and considerably

depends on the individual roosting history of an agent.
Hence, the dynamics for γij(t) bridges two time scales: the
time scale t at which agents roost together and the time scale
y at which long-lasting social structures of the colonies, such
as communities in the social network [32], become visible
and important. Ideally, we should observe the emergence of
such communities when bridging these two time scales.

Figure 5 illustrates the impact of this model modification.
Figure 5a,b shows the social network of the two colonies as
extracted from roost association data on the time scale y of a
whole year (season) [32]. While the smaller colony, BS, does
not display any community structure, the larger colony,
GB2, clearly has two communities. Figure 5c,d shows the
social network as obtained from our model using the adaptive
γij(t). We note that these structures are observed after the
respective γij(t) have been relaxed to some quasi-stationary
values, i.e. after t ¼ 200 days.



BS (n = 16) GB2 (n = 42)

model (n = 16) model (n = 40)

(b)(a)

(c) (d )

Figure 5. Social network of long-term roosting associations for small (a,c) and large (b,d) colonies. (a,b) Empirical data from the colonies BS (a) and GB2 (b) in the
year 2007. These figures are modified from Kerth et al. [32]. (c,d) Model-generated social network with dynamic γij(t) after t ¼ 200 days. For clarity, in all
networks only the strong ties, with a weight larger than the mean value of the weight distribution, are shown.
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The interesting finding here is not so much the existence of
the two communities in colony GB2. We recall that, in our
initial conditions, we have already introduced two groups of
size N/2 and have argued about slightly different initial
values γij(0) for agents within the same group versus agents
in different groups. With this in mind, we cannot claim the
emergence of two communities. However, we note the very
stable community structure: because this colony GB2 is,
with N = 42, well above the calculated critical colony size,
Ncrit = 18, small initial differences in the social influences,
expressed by γij(0), not only persisted over a long time but
were amplified by the daily fission–fusion dynamics. This
eventually resulted in the appearance of two separate network
communities on the seasonal time scale.

Another more interesting finding is the disappearance of
the same group structure when modelling the smaller
colony BS. This colony had a size N = 16 below the critical
colony size, Ncrit = 18. Hence, even with the same set-up for
γij(0), the daily fission–fusion dynamics was not able to sus-
tain the induced two groups to transform them into stable
communities. Thus, on the seasonal time scale we obtain
with our model the emergence of a single community that
is identical to the colony. This lends strong evidence to the
assumed dynamics for γij(t), and to the agent-based model
of roosting behaviour.
4. Discussion
In this paper, we studied the roosting dynamics of two colo-
nies of Bechstein’s bats, from both the empirical and the
modelling perspective. Our interest was to better understand
the fission–fusion dynamics in forming roosting groups. Fission
means that one colony forms more than one group, while
fusion means that all members of one colony are in the
same group. Such groups facilitate communal roosting on a
daily scale, but do not form social structures that are stable
over a long time; i.e. they are different from long-lasting com-
munity structures that can be detected in larger colonies [32].
This makes communal roosting particularly interesting and
motivates us to model it. Bats forage at night on their own;
nevertheless, they manage to meet in communal roosts in
the morning. If they stayed in a cohesive group for both day
and night, there would be no need to model group formation.

Themain contribution of our paper is in formally establish-
ing the link between a simple, common individual behaviour
(roost switching at a given frequency) and an empirically
observed collective roosting behaviour [32,41] at different
colony sizes. As our model shows, it needs social interactions
and information flow between the interacting individuals to
lead to communal roosting and, subsequently, to long-term
social links among colony members. In the following, we
further discuss some implications of our investigations.
4.1. Emergent structures: group sizes, roosting
durations

With our investigations,we followa bottom-up approach, explain-
ing the emergence of the groups from the interactions of the
individuals that constitute the colonies. These interactions are
described by simple rules that agents follow in making roost
decisions; i.e. our modelling assumptions focus on the micro,
or agent, level and the rules are defined on the shortest time
scale, τ. We want to reproduce the groups observed on the
macro, or system, level on the intermediate time scale, t.



royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

19:20220170

9
Methodologically, we argue that our agent-based model is
correct if it is able to reproduce the observed macroscopic
quantities, which explains their emergence from micro-
interactions. More specifically, we can deduce that our rules
are compatible with the observed system properties, i.e. the
size of the roosting groups. Investigations of how bats
make their decisions need more data at higher temporal res-
olution. Hence, further research is needed to focus on this
specific question. But we can clearly state that the rules that
successfully describe the emergence of the system properties
provide suitable hypotheses for the behaviour of biological
entities.

What kind of emergent properties can we reproduce? The
first one is the exponential distribution of durations T, i.e. the
time spent at the same roost, before switching to another roost.
The quantity Ti is measured for individual bats, but only the
aggregation to the system level allows us to determine the dis-
tribution P(T ), which follows a very simple form with only
one characteristic parameter α. Importantly, our empirical
analysis shows that this distribution is independent of the
colony size N, which also was reproduced by our model.

For the second emergent property, namely the formation
of groups of different sizes inside a colony, we do have a
dependence of the colony size N. Specifically, small colonies
mostly form one roosting group, i.e. all colony members
share the same roost, while the larger colonies mostly split
into roosting groups of different sizes. This emergent behav-
iour was also reproduced by our model.

Hence, our agent-based model is able to reproduce two
very different and not directly related phenomena, which
depend differently on the system size. This lends further
evidence to the model.
4.2. Modelling individual decisions
The dynamic phenomenon we are interested in basically
follows a simplified daily rhythm, already described in §1. It
repeats a cycle of (i) nightly foraging alone or in pairs, (ii) a
decision-making phase at dawn during which bats decide
about the roost where they will stay, and (iii) the formation
of groups which roost together. At dusk, groups dissolve
and this cycle starts over again.

Our agent-based model of roosting group formation
specifically models the decision-making phase occurring at
dawn every day before the bats start roosting. This process is
modelled at the time scale τ. For each agent, the roosting
decision is affected by two parameters: λ describes random
influences, whereas γ describes social influences exerted from
other bats. We note that, with only the random influence, we
would be able to reproduce the distribution P(T ) but not the
observed group structure. This leads to the conclusion that
the influence coming from the roosting decisions of other
bats needs to be explicitly taken into account. Here we
assumed that agents simply copy the roost preference of
other agents at a rate γ. We further considered that agents fina-
lize their roosting decisions at different times, which allows
us to capture the influence of agents that have already decided
on those that have not decided yet.

Individual decisions balance between two concurrent
requirements: the pressure to change roosts, e.g. because pre-
vious roosts are contaminated with parasites [43], and the
pressure to roost together with other colony members, e.g.
for thermoregulatory purposes [29,30,44]. Our model reflects
that information transfer between bats about roosts plays an
important role. We consider that, during the decision-making
phase, one individual may copy this information from
another one, with a fixed rate γ. This way, our model presents
an agent-based approach to a fully decentralized, self-orga-
nized group decision process.

The model contains two free parameters, λ and γ. We
determined these two parameters indirectly, by simulating the
model outcome for the duration of stay in the same roost as
before, which is determined by both parameters. We then
adjusted these two parameters such that (i) the discrepancy
between the observed and the modelled distribution P(T )
and (ii) the variance of this distribution were minimized. We
note that this model calibration does not involve information
about the group sizes. Instead, the comparison between
observed and simulated group size was used to estimate the
model performance, independent of the calibration.

4.3. Interactions in small versus large colonies
A major empirical finding of our study was that colonies split
differently into roosting groups, dependent on their size. This
confirms previous empirical findings on Bechstein’s bats [31].
Small colonies mostly form one group, whereas larger colo-
nies form several groups, the largest one comprising about
half of the size of the colony. The question is whether this
transition in the system dynamics dependent on the system
size can be understood as an emergent phenomenon; i.e. can
this transition be obtained by assuming the same interaction
rules between agents in large and small systems or does it
imply different interaction rules or rules in which an explicit
size dependence is encoded?

With our model, we demonstrated that this transition
indeed is an emerging phenomenon that occurs at a critical
system size Ncrit. Our simulations allowed us to determine
this critical value as Ncrit = 18, which is also in line with
observations.

Moreover, our model is able to reproduce the group sizes
for systems both smaller and larger than Ncrit, using the same
interaction rules. We found that larger colonies form groups
such that the largest group comprises about one-half of the
colony and the second largest group about one-third of the
colony, which is also supported by empirical data.

4.4. Short-term versus long-term social structures
The collective behaviours of Bechstein’s bats have to be
described on three different time scales. The decisions about
roosts occur during the swarming phase, on the time scale
τ, shorter than 1 day. The roosting in groups occurs on the
time scale t measured in days; i.e. every day, the groups
formed before dissolve and new groups are formed. The
question is how this dynamics relates to other dynamical pro-
cesses observed in the colony on longer time scales.
Specifically, Kerth et al. [32] and Baigger et al. [41] already
reported that the long-term social network of larger colonies
of Bechstein’s bats consists of communities. These are quite
stable social structures that can be detected over years.

To bridge between the short-scale and the long-scale
dynamics, we allowed the social influence to evolve over
time, on the day time scale t. Specifically, we turned the
homogeneous parameter, γ, equal for all agents, into an indi-
vidual parameter giðtÞ ¼

P
j gijðtÞ, where γij(t) describes the

mutual social influence of agents i and j as a result of their
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common roosting history. For the dynamics of γij(t), we
adopted reinforcement learning, i.e. γij(t) increases if i and j
roost together and it decreases if they do not.

This dynamics occurs over many days; in this way it
couples the system dynamics on day time scales with the
long-term behaviour. As a result, we could demonstrate
that groups existing on day time scale can translate, over
time, into long-term social structures, such as communities,
if these systems are larger than the critical size Ncrit. In sys-
tems smaller than Ncrit, on the other hand, we could show
that even induced group structures cannot be transformed
into long-term community structures. This agrees with
empirical observations that report the absence of such
community structures in small colonies [32,41].

We note that the daily splitting into multiple groups and
the duration of stay per roost can be modelled with a relatively
simple self-organizing mechanism based on a constant γ. But
for the formation of long-term stable communities in the
larger of the two colonies, we need to introduce an individual
memory effect, expressed in γi(t), that allows the bats in the
model to keep a record of their previous roosting history.

We conclude that our agent-based model is well posed to
capture two different empirical observations in Bechstein’s
bats, namely the distribution of stay lengths and the distri-
bution of group sizes, which are not inherently connected.
This lends evidence to the assumed rules of interactions
because they are able to reproduce these different systemic
properties. Comparing our model with other agent-based
models of fission–fusion dynamics discussed above, we high-
light that none so far has addressed the social and temporal
aspects of the fission–fusion dynamics together. Moreover,
in comparison with formally advanced, but rather abstract
models [26,27] or mere simulation approaches [25], our
model outcome can be directly compared with the respective
empirical observations in Bechstein’s bats. This was also
achieved by the agent-based model of red-capped mangabeys
with respect to travel distance patterns [24]. But their model
relied on a large number of parameters proxied from field
data, whereas our model has the advantage of a simple, yet
convincing approach of the empirical observations.
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Appendix A
A.1. Testing for the distribution of roosting durations
When comparing the distribution of roosting duration
periods from one year to another, we found that 60% of the
time for BS and 48% of the time for GB2 the distributions
were not significantly different (we compared all yearly dis-
tributions one with another; colony BS, years 2004–2008;
colony GB2, years 2004–2010; two-sample Kolmogorov–
Smirnov test with Šidák correction for multiple sampling,
n = 10 for BS and n = 21 for GB2, p > 0.05).

Finally, the aggregated distributions of roosting duration
periods for each colony did not differ significantly from one
another, neither in their exponential fit (figure 1) nor in
their observed distribution (colony BS, years 2004–2008: n =
3633 roosting periods in total; colony GB2, years 2004–2010:
n = 10 385; two-sample Kolmogorov–Smirnov test, p = 0.63).

Based on these observations, we concluded that the dur-
ations of stay in a given roost varied neither within the
colonies, with different years of observation (hence, different
colony sizes), nor between the two observed colonies (despite
them having distinct roosting areas; see for example [55]).
A.2. Testing for the influence of distances
For each bat in each year, we randomized the sequence of vis-
ited roosts and compared the distribution of flying distances
aggregated over a large number of randomizations with the
observed distribution (a Monte Carlo simulation of the
roosting sequence).

We found that, for 91% of the time, the sequence of dis-
tances between consecutively occupied roosts for a bat was
not significantly different from what it would be if the bat
had visited the same roosts in a random order (colony GB2,
years 2005–2010; average number of roosts successively occu-
pied per individual and per year, n= 38.8 ± 12.3; non-
parametric two-sample Kolmogorov–Smirnov test with Šidák
correction for multiple sampling within years, n= 231 individ-
uals over all 5 years, p> 0.05 for 211 out of 231 series of
observations).

Moreover, we identified no effect of the previously occu-
pied roost on the next occupied roost in terms of flying
distance between roosting sites. In light of these observations,
and in order to adopt a parsimonious approach, we modelled
in a first step the roosting behaviour of an individual bat by a
zero-order Markov process (or random walk).
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