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Abstract

Background: Targeted therapies specifically act by blocking the activity of proteins that are encoded by genes
critical for tumorigenesis. However, most cancers acquire resistance and long-term disease remission is rarely observed.
Understanding the time course of molecular changes responsible for the development of acquired resistance could
enable optimization of patients’ treatment options. Clinically, acquired therapeutic resistance can only be studied at a
single time point in resistant tumors.

Methods: To determine the dynamics of these molecular changes, we obtained high throughput omics data
(RNA-sequencing and DNA methylation) weekly during the development of cetuximab resistance in a head and neck
cancer in vitro model. The CoGAPS unsupervised algorithm was used to determine the dynamics of the molecular
changes associated with resistance during the time course of resistance development.

Results: CoGAPS was used to quantify the evolving transcriptional and epigenetic changes. Applying a PatternMarker
statistic to the results from CoGAPS enabled novel heatmap-based visualization of the dynamics in these time course
omics data. We demonstrate that transcriptional changes result from immediate therapeutic response or resistance,
whereas epigenetic alterations only occur with resistance. Integrated analysis demonstrates delayed onset of changes
in DNA methylation relative to transcription, suggesting that resistance is stabilized epigenetically.

Conclusions: Genes with epigenetic alterations associated with resistance that have concordant expression changes
are hypothesized to stabilize the resistant phenotype. These genes include FGFR1, which was associated with EGFR
inhibitors resistance previously. Thus, integrated omics analysis distinguishes the timing of molecular drivers of resistance.
This understanding of the time course progression of molecular changes in acquired resistance is important for
the development of alternative treatment strategies that would introduce appropriate selection of new drugs to
treat cancer before the resistant phenotype develops.
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Background
Recent advances to identification of gene regulation in
cancer have enabled the selection of targeted therapies
to inhibit specific regulators of oncogenic signaling path-
ways essential for tumor development and maintenance
[1]. These therapies prolong survival but are not cura-
tive, since most patients develop acquired resistance
within the first few years of treatment [2]. Although a
wide variety of molecular alterations that confer resist-
ance to the treatment have been described, the mecha-
nisms and timing of their evolution are still poorly
characterized [3, 4]. As serial biopsies along the treat-
ment period are impractical due to the invasiveness and
high costs of the procedure, the molecular alterations as-
sociated with acquired resistance are only known when
resistance has already developed and little is known
about what changes occur at earlier or later time points
during the targeted therapy. The lack of adequate in
vitro and in vivo time course datasets makes it challen-
ging to delineate the two predominant hypotheses for
how therapeutic resistance develops: (1) the presence of
small populations of resistant cells that will survive the
treatment and repopulate the tumor; or (2) the develop-
ment of de novo resistance mechanisms by the tumor
cells [4, 5]. Characterization of the dynamics of genomic
alterations induced during acquired resistance can iden-
tify targetable oncogenic drivers and determine the best
time point to introduce alternative therapeutic strategies
to avoid resistance establishment [6].
Epidermal growth factor receptor (EGFR) inhibitors

represent a common class of targeted therapeutics.
Cetuximab, a monoclonal antibody against EGFR, is
FDA approved for the treatment of metastatic colorectal
cancer and head and neck squamous cell carcinoma
(HNSCC) [7]. As with other targeted therapies, stable
response is not observed for a long period and virtually
all patients invariably develop acquired resistance [8].
Recent advances in the establishment of in vitro models
of acquired cetuximab resistance [9] provide a unique
opportunity to study the time course of genetic events
resulting in acquired resistance. Cell lines chronically ex-
posed to the targeted agent develop resistance and can
be sequentially collected during the course of treatment
to evaluate the progressive molecular changes. Previous
studies to assess the mechanisms of acquired cetuximab
resistance have been limited to comparing the genomic
profile of the parental intrinsic sensitive cell line to
stable clones with acquired resistance [9–11]. Therefore,
these studies fail to capture the dynamics of acquired mo-
lecular alterations during the evolution of therapeutic re-
sistance. The development of in vitro time course data to
determine the molecular drivers of therapeutic resistance
is crucial. These experimental systems have the further ad-
vantage that time course data can also be generated for

untreated controls, enabling the distinction of the molecu-
lar mechanisms associated with acquired resistance from
those that would occur due to the long-term culturing
over the time period that resistance develops.
Along with novel time course datasets, inferring the

specific and targetable signaling changes that drive
therapeutic resistance also requires new bioinformatics
pipelines to analyze and visualize these data. The bio-
informatics pipelines must integrate genetic, epigenetic,
and transcriptional changes from multiple-high through-
put platforms to infer the complex gene regulatory
mechanisms that are responsible for acquired resistance.
Current supervised bioinformatics algorithms that find
time course patterns in genomic data adjust linear
models to correlate molecular profiles with known tem-
poral patterns [12–15]. Many unknown variables such as
culture conditions, immediate response to cetuximab,
and adaptive changes may have confounding effects on
known covariates of therapeutic response such as growth
rates, colony size, or apoptosis rates. Unsupervised bio-
informatics algorithms learn the dynamics directly from
the high-throughput data, and therefore do not require a
priori knowledge of the complex dynamics associated
with therapeutic response. Some unsupervised algo-
rithms [16–21] seek breaking points of coherent, regula-
tory relationships to infer the dynamics along pathways.
Many of these algorithms trace individual phenotypes or
individual genomics platforms. Their ability to determine
drivers of gene expression associated with acquired re-
sistance from time course data in multiple experimental
conditions and multiple genomics data modalities is
emerging [22]. Further extensions are needed to contrast
the dynamics of signaling response to therapy to the dy-
namics of control conditions to distinguish the specific
molecular processes that are unique to resistance.
Matrix factorization algorithms are unsupervised and
can distinguish the relative molecular changes in each
experimental condition over time without requiring
prior knowledge of gene regulation. We have found that
Bayesian, non-negative matrix factorization algorithms
such as Coordinate Gene Activity in Pattern Sets
(CoGAPS) [23] can extend beyond clustering to robustly
quantify the dynamics and infer the gene regulatory net-
works directly from the input time course data [24]. The
CoGAPS error model can also be modified to enable data-
driven inference in distinct molecular platforms for infer-
ence of epigenetic regulation of gene expression [25].
In this study, we developed a new bioinformatics ana-

lysis pipeline for integrated analysis of gene expression
and DNA methylation changes that occur during the
time course progression of resistance to targeted therap-
ies using CoGAPS. Genes uniquely associated with these
changes were selected using a PatternMarker statistic
[26] to enable novel visualization of molecular
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alterations dynamics inferred with CoGAPS. In order to
benchmark our new bioinformatics pipeline, we used an
in vitro HNSCC cell line model to induce resistance and
measure the molecular changes using high-throughput
assays while the resistant phenotype developed. Gene ex-
pression and DNA methylation changes were screened
weekly while acquired cetuximab resistance was induced
in SCC25 cell line (intrinsic sensitive to cetuximab) and
compared to the status of the untreated controls at the
same culturing time point. CoGAPS [26] inferred spe-
cific patterns of expression and DNA methylation that
are associated with the gradual establishment of ac-
quired cetuximab resistance. The onset of methylation
changes associated with resistance is temporally delayed
relative to expression changes suggesting that epigenetic
alterations stabilize the transcriptional changes relevant
to the resistant phenotype. This analysis found anti-
correlated changes between DNA methylation and gene
expression in FGFR1 during acquired therapeutic resist-
ance. Upregulation of FGFR1 has previously been associ-
ated as a mechanism of acquired cetuximab resistance in
HNSCC [27–29]. The identification of a canonical marker
of resistance to EGFR inhibitors in this present study cor-
roborates the efficacy of our experimental model and
analytical algorithm to identify mechanisms of resistance.
To our knowledge, this is the first demonstration of the
anti-correlation between FGFR1 methylation and expres-
sion suggestive of its epigenetic regulation in acquired re-
sistance to cetuximab. Thus, this pipeline can identify
mechanisms of gene regulation in acquired resistance
from high-throughput, multi-platform time course data.
The resulting bioinformatics pipeline is poised to infer the
dynamics of acquired resistance from emerging time
course data with other cancer types and therapeutics.

Methods
Cell lines and materials
SCC25 cells were purchased from American Type
Culture Collection (ATCC). Cells were cultured in
Dulbecco’s Modified Eagle’s medium and Ham’s F12
medium supplemented with 400 ng/mL hydrocortisone
and 10% fetal bovine serum and incubated at 37 °C and
5% carbon dioxide. The parental cell line SCC25 and the
late cetuximab and PBS generation 10 were authenti-
cated using short tandem repeat (STR) analysis kit
PowerPlex16HS (Promega, Madison, WI, USA) through
the Johns Hopkins University Genetic Resources Core
Facility. Cetuximab (Lilly, Indianapolis, IN, USA) was
purchased from the Johns Hopkins Pharmacy.

Induction of cetuximab resistance and time course sample
collection
The HNSCC cell line SCC25 (intrinsically sensitive to
cetuximab) was treated with 100 nM cetuximab every

three days for 11 weeks (generations G1 to G11). On the
eighth day, cells were harvested. Sixty thousand cells
were replated for another week of treatment with cetuxi-
mab and the remaining cells were separately collected
for: (1) RNA isolation (gene expression analysis); (2)
DNA isolation (DNA methylation analysis); (3) prolifera-
tion assay; and (4) storage for future use. All steps were
repeated for a total of 11 weeks. In parallel with the
cetuximab treated cells, we generated controls that re-
ceived the same correspondent volume of phosphate
buffered saline (PBS). Cells were plated in several repli-
cates each time at the same initial density. The replicates
were then harvested and pooled to provide enough cells
for genetic, epigenetic, and proliferation assays. To
achieve adequate final cell confluence and number of
cells for the experimental analysis of each generation,
cetuximab- and PBS-treated cells were plated in differ-
ent flask sizes. Cells treated with cetuximab were plated
in multiple T75 (75cm2) flasks (60,000 cells/flask) that
were combined on the eighth day. PBS-treated cells were
plated in a single T175 (175cm2) flask (60,000 cells).
This design was selected considering the growth
inhibition of the earliest cetuximab generations and to
control confluence of the PBS controls at the collection
time (Additional file 1: Figure S1).

Cell proliferation and colony formation assays
Cell proliferation events were measured using the Click-iT
Plus EdU Flow Cytometry Assay Kit Alexa Fluor 488 Pico-
lyl Azide (Life Technologies, Carlsbad, CA, USA) accord-
ing to manufacturer’s instructions. The cetuximab
generations were considered resistant when the frequency
of proliferating cells was higher than in the PBS control
generations. Proliferation curves were generated using lo-
cally weighted polynomial regression (lowess) in R.
Anchorage-independent growth assay was used to fur-

ther confirm the development of resistance. The parental
SCC25 and the late G10 resistant cells were treated with
different concentrations of cetuximab 10 nM, 100 nM,
and 1000 nM. Number of colonies was compared to the
same cells treated with PBS. Colony formation assay in
Matrigel (BD Biosciences, Franklin Lakes, NJ, USA) was
performed as described previously [30].

Stable SCC25 cetuximab resistant single clones (CTXR clones)
Resistance to cetuximab was induced in an independent
passage of SCC25 cells. After resistance was confirmed,
single cells were isolated and grown separately to generate
the isogenic resistant single cell clones (CTXR). In total,
11 CTXR clones were maintained in culture without
addition of cetuximab. With the exception of one clone
(CTXR6), all CTXR clones presented substantial survival
advantage compared to the parental SCC25, as reported
by Cheng et al. [31]. Each of these clones was
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authenticated using STR analysis kit GenePrint 10
(Promega) through the JHU-GRCF, as previously
published [31].
Proliferation assay was performed to confirm cetuximab

resistance in the CTXR clones compared to the parental
SCC25. A total of 1000 cells were seeded in 96-well plates
in quadruplicate for each condition. PBS or cetuximab
(10 nM, 100 nM or 1000 nM) was added after 24 and
72 h and cells were maintained in culture for seven days.
AlamarBlue reagent (Invitrogen, Carlsbad, CA, USA) at a
10% final concentration was incubated for 2 h and fluores-
cence was measured according to the manufacturer’s rec-
ommendations (545 nm excitation, 590 nm emission).
Resistance in the CTXR clones was confirmed when the
proliferation rates were higher than in the PBS-treated
SCC25 cells.

RNA-sequencing (RNA-seq) and data normalization
RNA isolation and sequencing were performed for the
parental SCC25 cells (G0) and each of the cetuximab
and PBS generations (G1 to G11) and the CTXR clones
at the Johns Hopkins Medical Institutions (JHMI) Deep
Sequencing & Microarray Core Facility. RNA-seq was
also performed for two additional technical replicates of
parental SCC25 cell line to distinguish technical variabil-
ity in the cell line from acquired resistance mechanisms.
Total RNA was isolated from 1 × 106 cells using the
AllPrep DNA/RNA Mini Kit (Qiagen, Hilden, Germany)
following manufacturer’s instructions. The RNA
concentration was determined by the spectrophotometer
Nanodrop (Thermo Fisher Scientific, Waltham, MA,
USA) and quality was assessed using the 2100
Bioanalyzer (Agilent, Santa Clara, CA, USA) system. An
RNA Integrity Number (RIN) of 7.0 was considered as
the minimum to be used in the subsequent steps for
RNA-seq. Library preparation was performed using the
TrueSeq Stranded Total RNAseq Poly A1 Gold Kit (Illu-
mina, San Diego, CA, USA), according to manufacturer’s
recommendations, followed by messenger RNA (mRNA)
enrichment using poly(A) enrichment for ribosomal
RNA (rRNA) removal. Sequencing was performed using
the HiSeq platform (Illumina) for 2 × 100 bp sequen-
cing. Reads were aligned to hg19 with MapSplice [32]
and gene expression counts were quantified with RSEM
[33]. Gene counts were upper-quartile normalized and
log transformed for analysis following the RSEM v2
pipeline used to normalize TCGA RNA-seq data [34].
All RNA-seq data for the cell line mode in this study are
available from GEO (GSE98812) as part of SuperSeries
GSE98815.

DNA methylation hybridization array and normalization
Genome-wide DNA methylation analysis was performed
on the same samples as RNA-seq using the Infinium

HumanMethylation450 BeadChip platform (Illumina) at
the JHMI Sidney Kimmel Cancer Center Microarray
Core Facility. Briefly, DNA quality was assessed using
the PicoGreen DNA Kit (Life Technologies) and 400 ng
of genomic DNA was bisulfite converted using the EZ
DNA Methylation Kit (Zymo Research, Irvine, CA,
USA) following manufacturer’s recommendations. A
total volume of 4 μL of bisulfite-converted DNA was
denatured, neutralized, amplified, and fragmented ac-
cording to the manufacturer’s instructions. Finally, 12 μL
of each sample were hybridized to the array chip
followed by primer-extension and staining steps. Chips
were image-processed in the Illumina iScan system. Data
from the resulting iDat files were normalized with fun-
norm implemented in the R/Bioconductor package minfi
(version 1.16.1) [35]. Methylation status of each CpG site
was computed from the signal intensity in the methyl-
ated probe (M) and unmethylated probe (U) as a β value
as follows:

β ¼ M
M þ U

:

Annotations of the 450K probes to the human genome
(hg19) were obtained from the R/Bioconductor package
FDb.InfiniumMethylation.hg19 (version 2.2.0). Probes on
sex chromosomes or annotated to single nucleotide
polymorphisms were filtered from analysis. The CpG is-
land probe located closest to the transcription start site
was selected for each gene. Genes with CpG island
probes < 200 bp from the transcription start site were
retained to limit analysis to CpG island promoter probes
for each gene. Probes were said to be unmethylated for
β < 0.1 and methylated for β > 0.3 based upon thresholds
defined in TCGA analyses [34]. All DNA methylation
data from this study are available from GEO (GSE98813)
as part of SuperSeries GSE98815.

Hierarchical clustering and CoGAPS analysis
The following filtering criterion for genes from the profil-
ing of the time course data from generations of cetuximab
treated cells was used. Genes from RNA-seq data were se-
lected if they had log fold change > 1 between any two
time points of the same condition and < 2 between the
replicate control samples at time zero (5940 genes). CpG
island promoter probes for each gene were retained if the
gene switched from unmethylated (β < 0.1) to methylated
(β > 0.3) in any two samples of the time course (1087
genes). We used the union of the sets of genes retained
from these filtering criteria on either data platform for
analysis, leaving a total of 6445 genes in RNA-seq and
4703 in DNA methylation.
Hierarchical clustering analysis was performed with

Pearson correlation dissimilarities between genes and
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samples on all retained genes. CoGAPS analysis was per-
formed on both log transformed RNA-seq data and
DNA methylation β values, independently using the R/
Bioconductor package CoGAPS [23] (version 2.9.2).
CoGAPS decomposes a matrix of data D according to

the model

Di; j∼N
Xp

k¼1

Ai;kPk; j;Σi; j

 !
;

where N represents a univariate normal distribution,
matrices A and P are learned from the data for a speci-
fied number of dimensions P, Σi, jis an estimate of the
standard deviation of each row and column of the data
matrix D, and i represents each gene and j each sample.
In this decomposition, each row of the pattern matrix P
quantifies the relative association of each sample with a
continuous vector of relative gene expression changes in
the corresponding column of A. That is each row of P
provides the relative magnitude across samples are called
patterns and quantify the separation of distinct experi-
mental conditions. These relative gene weights in the
columns of A represent the degree to which each gene is
associated with an inferred pattern and are called meta-
pathways. Together, these matrices provide a low-
dimensional representation that reconstructs the signal
of the input genomics data. A single gene may have
non-zero magnitude in several distinct gene sets, repre-
senting the fact that a single gene can have distinct roles
in different biological processes (such as immediate
therapeutic response and acquired resistance). A recently
developed PatternMarker statistic [26] selects the genes
that are unique to each of the inferred patterns and
therefore represent biomarkers unique to the corre-
sponding biological process.
In the CoGAPS analysis of the data in this study, the

standard deviation of the expression data was 10% of the
signal with a minimum of 0.5. The standard deviation of
DNA methylation data under the assumption that β
values follow a beta distribution is

Σβ
i; j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
βi; j 1−βi; j
� �

Mi; j þ Ui; j þ 1
:

vuut

CoGAPS was run for a range of 2–10 dimensions P
for expression and 2–5 for DNA methylation. Robust-
ness analysis with ClutrFree [36] determined that the
optimal number of dimensions P for expression was 5.
DNA methylation was run in four parallel sets using
GWCoGAPS [26]. In DNA methylation, the maximum
number of patterns that modeled resistance mechanisms
over and above technical variation in replicate samples
of SCC25 was three. Gene sets representative of the

meta-pathway were derived for each pattern using the
PatternMarkers statistics [26]. Comparisons between
DNA methylation and gene expression values for
PatternMarkerGenes or from CoGAPS patterns and am-
plitudes were computed with Pearson correlation.

Gene set analysis of cetuximab resistance signatures, the
EGFR network, and pathways
Gene set activity was estimated with the gene set statis-
tic implemented in calcCoGAPSStat of the CoGAPS R/
Bioconductor package [23]. Analyses were performed on
three gene sets: resistance signatures, gene targets of
transcription factors in the EGFR network, and canon-
ical pathways. Resistance signatures were defined based
on previous literature. Specifically, in a previous study,
CoGAPS learned a meta-pathway from gene expression
data corresponding to overexpression of the HRASVal12D

in the HaCaT cell line model. That study associated the
CoGAPS HaCaT-HRAS meta-pathway with gene expres-
sion changes in acquired cetuximab resistance in the
HNSCC cell line UMSCC1 [23]. In the current study, we
applied the PatternMarkers statistic [26] to the previ-
ously published CoGAPS analysis of these data to derive
a gene set from this meta-pathway called HACAT_
HRAS_CETUXIMAB_RESISTANCE or HACAT_RESIS
TANCE. In addition, we searched MSigDB [37] (version
5.2) for all gene sets associated with resistance to EGFR
inhibition. In this search, we found the gene sets COL
DREN_GEFITINIB_RESISTANCE_DN and COLDREN_
GEFITINIB_RESISTANCE_UP representing resistance
to the EGFR inhibitor gefitinib in non-small-cell lung can-
cer (NSCLC) cell lines [38]. Gene sets of transcription fac-
tor targets were obtained from experimentally validated
targets annotated in the TRANSFAC [39] professional
database (version 2014.1). Canonical pathways were ob-
tained from the C2 set of MSigDB [37] (version 6.1).

Sources and analysis of additional in vitro and human
tumor genomics data
Genomics analyses of TCGA were performed on level 3
RNA-seq and DNA methylation data from the 243 HPV-
negative HNSCC samples from the freeze set for publica-
tion [36]. DNA methylation data were analyzed for the
same CpG island promoter probes obtained in the cell line
studies. Pearson correlation coefficients were computed in
R to associate different molecular profiles.
Additional analysis was performed on Affymetrix Hu-

man Genome U133 plus 2.0 GeneChip arrays for the
SCC1/1CC8 isogenic cetuximab sensitive and resistant
cell line pair described previously (GEO GSE21483 [30]).
Additional gene expression data from SCC25 generated
from the same platform in the same lab was also used
for analysis, using fRMA for normalization [40] to con-
trol for batch effects as described previously [41].
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Analysis was also performed on gene expression data
measured with Illumina HumanHT-12 WG-DASL V4.0
R2 expression beadchip arrays on pre-treatment samples
from patients subsequently treated with cetuximab from
Bossi et al. [42], using expression normalization and
progression-free survival groups as described in the
study. Data were obtained from the GEO GSE65021
series matrix file.
DNA samples from eight human tumor surgical speci-

men post cetuximab treatment from the sample cohort
in Schmitz et al. [43] were obtained for methylation pro-
filing. Specifically, for each tumor one FFPE slide was
stained with hematoxylin and eosin and tumor burden
was evaluated. When the tumor content was < 50%, the
adjacent unstained FFPE slides were macrodissected in
order to enrich the tumor burden. A double code was
assigned to each sample by Biorepository. DNA was then
extracted from two unstained slides using the QIAamp
DNA FFPE Tissue kit. Briefly, slides were dipped into a
xylene bath until paraffin was melted. Then slides were
washed with ethanol 100% and tissue was harvested for
extraction with QIAGEN affinity columns. The extracted
DNA was quantified by NanoDrop spectrophotometer.
DNA methylation was measured with the Illumina
MethylationEPIC BeadChip (850K) array. Array data
were normalized with the NOOB method [44] and con-
verted to virtual 450K arrays using the R/Bioconductor
package minifi version 1.22.1 and are available from
GEO SuperSeries (GSE110995). Two samples had DNA
content < 250 ng and clustered separately from the
remaining samples. These samples were filtered as low
quality and excluded from the analysis, leaving six total
tumor samples with DNA methylation data. Probes se-
lected for the in vitro Illumina 450K DNA methylation
data were used for subsequent analyses. Gene expression
data from biopsy samples before cetuximab treatment
and surgical samples after cetuximab treatment were ob-
tained from the previous Schmitz et al. [43] study and
normalized as described previously [41] and available
from GEO SuperSeries (GSE110996).
We performed t-tests and projections in R on the

probe that had the highest standard deviation of expres-
sion values for each gene. CoGAPS signatures were also
projected into these gene expression data using the
methods described in Fertig et al. [23] with the ProjectR
package version 0.99.15 available from Github (https://
github.com/genesofeve/projectR). We also performed t-
tests in R to compare the long- (LPFS) and short-term
progression-free survival (SPFS) groups based on the
values obtained from this projection.
HNSCC samples and patient information collection

were approved by the Independent Ethics Committee
and the Belgian Health Authorities and conducted in ac-
cordance with the Declaration of Helsinki (October

2000). It was prospectively planned to perform transla-
tional research and patients gave their informed consent
for repeated biopsies.

Results
Prolonged exposure to cetuximab induces resistance
Cetuximab resistance was induced by treating the
SCC25 cells for a period of 11 weeks (CTX-G1 to –
G11). SCC25 cells treated with PBS were used as time--
matched controls (PBS-G1 to –G11). Response to cetux-
imab was determined by comparing the proliferation
rates between CTX and PBS generations. Proliferation of
the PBS generations is stable throughout the 11 weeks
(G1 to G11, Fig. 1a). Conversely, proliferation of the
CTX generations progressively increases over each week
(Fig. 1a). Relative to the untreated controls, the growth
of the treated cells is initially (CTX-G1) inhibited until
CTX-G3. Starting at CTX-G4, the absolute proliferation
values are equal at this week, but the fit to the data
across all time points suggests that the cells become re-
sistant to the anti-proliferative effects of cetuximab and
gain stable growth advantages compared to the un-
treated controls (CTX-G8 to –G11).
Comparison of proliferation rates between generations

of CTX-treated cells relative to generations of cells
treated with PBS enabled us to conclude that cell growth
advantages arise from chronic cetuximab treatment and
are associated with resistance rather than prolonged cell
culturing. We mirrored the changes in proliferation rates
with clinical responses seen in HNSCC tumors treated
with cetuximab (Fig. 1b). The lower growth rates in
CTX-G1 to -G3 may be an equivalent to the initial ef-
fects of the clinical treatment when the cancer cells are
sensitive to cetuximab and reduction of the tumor size is
observable. Even with gain in cell proliferation at CTX-
G3 and -G4, our model still corresponds to response to
the treatment since the treated generations are not
growing more than the controls (clinical stable tumor
size). Finally, from CTX-G4 the higher proliferation even
with cetuximab treatment is a representation of acquired
resistance noticeable in the HNSCC patients as tumor
recurrence or increase in tumor size.
Higher proliferation in treated than in untreated cells

starts at CTX-G4 and we established this time point to
call as the moment at which cetuximab resistance is sta-
bly acquired and all subsequent time points continue to
develop acquired stable cetuximab resistance. To con-
firm this hypothesis, we evaluated the ability of the re-
sistant CTX-G10 to anchorage-independent growth.
Even under different concentrations of cetuximab,
CTX-G10 presents enhanced anchorage-independent
growth compared to the parental SCC25 (G0) (two-way
ANOVA with multiple comparisons p value < 0.01 for
each concentration, Additional file 1: Figure S2),
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demonstrating the stabilization of cetuximab resistance
in later generations.

Treatment vs control gene expression changes governs
clustering and immediate therapeutic response is
confounded with changes from acquired resistance
RNA-seq data for the parental SCC25 cell line (G0) and
from each generation of CTX- and PBS-treated cells
were collected to characterize the gene expression
changes occurring as cells acquired cetuximab resist-
ance. Gene expression changes between treated (cetuxi-
mab) and untreated (PBS) cells and over generations of
treated cells are apparent in time-ordered RNA-seq data
(Fig. 2a). Additional clustering analysis of the samples
accounting for the treatment time point (generations/
columns) (Additional file 1: Figure S3) distinguish three
clusters of samples: those with cetuximab sensitivity
(CTX-G1 to CTX-G3); those with early cetuximab re-
sistance (CTX-G4 to CTX-G8); and those with late or
stable cetuximab resistance (CTX-G9 to CTX-G11). The
group of cetuximab sensitive samples corresponds to the
time points at which the CTX generations present lower

proliferation rates than the PBS controls (shown in
Fig. 1a). The two groups of samples resistant to
cetuximab are represented by a progressive increase
in proliferation that is more significant than in the
untreated controls (weeks 4 to 8) and by the stabilization
in the proliferation rates (weeks 9 to 11), but still higher
than in the PBS generations. The expression changes at
the distinct time points during development of acquired
resistance are shared among numerous genes. Although
the clustering was able to separate cetuximab- from
PBS-treated cells, it was not possible to discriminate
the alterations related to an immediate therapeutic re-
sponse (not relevant to the resistant phenotype) from
resistance-specific gene expression changes.
Similar separation of the sensitive and resistant phases

of cetuximab response is observed in clustering analysis
of gene signatures previously described in HNSCC and
NSCLC cell line models resistant to cetuximab or gefi-
tinib (anti-EGFR small molecule), respectively [38, 41]
(Additional file 1: Figure S4). For these genes, changes
during early phases of resistance clusters for CTX-G4 to
CTX-G6 as distinct from later generations CTX-G7 to
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CTX-G11. Nevertheless, these signatures also cluster
samples with gene expression changes at early phases
(CTX-G1 to CTX-G3) as distinct from samples from
PBS-treated generations. However, these analyses were
insufficient to quantify the relative dynamics of genes as-
sociated with immediate response to therapy or subse-
quent acquired resistance.

CoGAPS analysis of gene expression distinguishes patterns
of acquired resistance from immediate therapeutic response
To define gene expression signatures for treatment effect
and cetuximab resistance, we applied the CoGAPS [26]
Bayesian matrix factorization algorithm to the time
course gene expression data. CoGAPS decomposes the
input data into two matrices: a pattern matrix with rela-
tive sample weights along rows and an amplitude matrix
with relative gene weights along columns. Each row of
the pattern matrix quantifies the extent of transcrip-
tional changes within the genes in the corresponding
column of the amplitude matrix and provides a low di-
mensional representation of the biological process in
that data. In this analysis, we identified five CoGAPS
patterns (Expression Patterns [EP]) (Additional file 1:
Figure S5) in the time course gene expression dataset. A

gene can have high amplitude in multiple patterns, mod-
eling multiple regulation of genes but complicating
visualization of the inferred patterns. A recently devel-
oped PatternMarker statistic defines genes that are
uniquely associated with each of these patterns. Limiting
the heatmap to these genes enables visualization of the
dynamics of gene expression changes in our time course
dataset (Additional file 1: Figure S5).
In this heatmap of CoGAPS PatternMarker genes, we

observe that only three patterns (EP1, EP2, and EP3) dis-
tinguish the experimental conditions (cetuximab vs PBS)
(top three patterns on Additional file 1: Figure S5). The
other two patterns, EP4 and EP5, represent changes in
gene expression from the parental cell lines and subse-
quent generations or an expression pattern that is con-
stant and corresponds to signature of highly expressed
genes (lower two patterns on Additional file 1: Figure
S5), respectively. We note that highly expressed genes
associated with EP5 may also have dynamic changes due
to treatment and are filtered in the PatternMarker ana-
lysis of all patterns in Additional file 1: Figure S5. EP4
represents expression changes between treated cells and
the parental cell line, which have a technical effect on
gene expression. Notably, even the exclusion the flat
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pattern for highly expressed genes (EP5) still retains
highly expressed genes in the signature. Retaining the
technical pattern (EP4) in this calculation filters genes
with expression changes from technical artifacts in the
experimental conditions. The resulting set of Pattern-
Marker genes for EP1–EP3 enable visualization of the
expression changes dynamics that are associated with
cetuximab response (Fig. 2b) and allow the definition of
a gene signature associated with that response
(Additional file 2: Table S1).
Similar to the separation seen with clustering

(Additional file 1: Figure S5), the CoGAPS pattern EP1
distinguishes cetuximab from PBS at every generation
(Fig. 2b and c, top). These genes present an immediate
transcriptional upregulation in response to cetuximab
treatment. Gene set analysis to determine the function
of CoGAPS patterns was performed with an enrichment
analysis on all gene weights in the amplitude matrix ob-
tained from the CoGAPS analysis. By performing the
analysis on gene weights and not only the PatternMarker
genes, as shown in Fig. 2b, we account for multiple regu-
lation of genes in pathways. Specifically, we performed
gene set analysis on published resistance signatures [38,
41], transcription factors previously associated with the
EGFR signaling network during cetuximab response in
HNSCC [39, 41], and canonical pathways from MSigDB
[37, 45] (Additional file 1: Figure S6; Additional file 3:
Table S2). Gene set analysis confirms that published re-
sistance signatures [38, 41] are significantly enriched in
EP1 (Additional file 1: Figure S6; one-sided p values of 0.
002 and 0.003 for resistance gene sets COLDREN_GEFI-
TINIB_RESISTANCE_DN and HACAT_HRAS_CETUX
IMAB_RESISTANCE, respectively). However, the tran-
scriptional changes in this pattern are not associated
with acquired resistance to cetuximab and even decrease
modestly as resistance developed. Further, enrichment
by transcription factor AP-2alpha targets (TFAP2A; one-
sided p value of 0.05) confirms previous work indicating
that transcription by AP-2alpha is induced as an early
feedback response to EGFR inhibition [39]. There are 84
significant canonical pathways from MSigDB, including
notably pathways associated with the immune system,
extracellular matrix, ERBB4 signaling, and VEGF signal-
ing (Additional file 3: Table S2). Based upon these
findings, we concluded that EP1 is associated with im-
mediate response to cetuximab although it includes
genes that are also associated with cetuximab resistance
in previous studies.
The second CoGAPS expression pattern (EP2) quanti-

fies divergence of the cetuximab treated cells from
controls at generation CTX-G4 (Fig. 2b and c, middle)
which is the time point that cetuximab treated cells
present significant and stable growth advantage over
PBS controls (Fig. 1a). Therefore, EP2 contains gene

expression signatures associated consistently with the
development of cetuximab resistance. Gene set statistics
of transcription factor targets of EGFR on CoGAPS gene
weights are significantly downregulated in this acquired
resistance pattern (Additional file 1: Figure S6). One strik-
ing exception is c-Myc, which trends with acquired resist-
ance (p value of 0.06), consistent with the role of this
transcription factor in cellular growth. Resistance signa-
ture COLDREN_GEFITINIB_RESISTANCE_DN is sig-
nificantly downregulated in EP2 (p value of 0.04). There
are 32 statistically significant canonical pathways associ-
ated with this pattern, including notably telomerase, PI3K,
and cell cycle pathways (Additional file 3: Table S2).
The third CoGAPS expression pattern (EP3) repre-

sents a gradual repression of gene expression with
cetuximab treatment (Fig. 2b and c, bottom). This
expression pattern trends to significant enrichment in the
COLDREN_GEFITINIB_RESISTANCE_DN resistance
signature (Additional file 1: Figure S6, one-sided p value 0.
12) and downregulated in the HACAT_HRAS_CETUXI-
MAB_RESISTANCE resistance signature (Additional file 1:
Figure S6, one-sided p value 0.09). This confirms that EP3
is associated with repression of gene expression during ac-
quired cetuximab resistance. There are also 29 statistically
significant canonical pathways associated with this pat-
tern, including cell lineage, metabolic, WNT, and GSK3
pathways (Additional file 3: Table S2).

Changes in DNA methylation inferred with CoGAPS are
associated with resistance to cetuximab, but not the
immediate response to treatment observed in gene
expression
To determine the timing of the methylation changes as-
sociated with acquired resistance, we also measured
DNA methylation in each cetuximab generation of
SCC25 cells and PBS controls (Fig. 3a). Application of
the CoGAPS matrix factorization algorithm with the
PatternMarker statistics to the methylation data reveals
a total of three methylation patterns (MP) (Fig. 3bc;
Additional file 2: Table S1): gradual increase of DNA
methylation in controls (MP1, Fig. 3b middle); rapid
demethylation in CTX generations starting at CTX-G4
(MP2, Fig. 3b bottom); and rapid increase in DNA
methylation in CTX generations starting at CTX-G4
(MP3, Fig. 3b top). In contrast to the gene expression
data, there is no immediate shift in DNA methylation
resulting from cetuximab treatment. Gene set analysis
was performed on canonical pathways from MSigDB
(Additional file 4: Table S3) and found 26 statistically
significant pathways for MP1, 29 for MP2, and 27 for
MP3. In contrast to gene expression, the majority of ca-
nonical pathways is shared by the three methylation
patterns and include notably the cytokine (PID-IL8-
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CXCR2 and IL8-CXCR1 pathways) and FGFR
(Reactome Signaling by FGFR3 mutants) signaling
pathways.
Comparing the CoGAPS patterns from gene expression

and DNA methylation reveals strong anti-correlation be-
tween gene expression and DNA methylation in resistant
patterns (Additional file 1: Figure S7A). We observed that
the gene expression changes associated with acquired re-
sistance occur gradually and are evident in early genera-
tions (Fig. 2c). The DNA methylation is consistent in
cetuximab treatment and control PBS in DNA methyla-
tion patterns MP2 and MP3 during early generations; fol-
lowing which, there is a rapid accumulation in DNA
methylation changes starting after generations CTX-G4
and CTX-G5 in both MP2 and MP3 (Fig. 3c), concurrent
with the onset of the observed growth advantage over the
PBS control (Fig. 1a).
While the patterns themselves are anti-correlated, the

gene weights that define meta-pathways and are inferred
in the amplitude matrix corresponding to each pattern
with CoGAPS are not (Additional file 1: Figure S7B).
We also observed little overlap between the PatternMar-
ker genes from methylation patterns and gene expres-
sion. Changes in DNA methylation are delayed relative
to those of gene expression in acquired cetuximab resist-
ance as can be noted in Fig. 4, where direct comparison

of the expression and methylation patterns previously
shown (Figs. 2c and 3c, respectively) enable visualization
of the time point when changes between cetuximab and
PBS generations are significant in each pattern. These
dynamics explain the discrepancy between the genes as-
sociated with each pattern and suggest that DNA methy-
lation stabilizes the gene expression signatures crucial to
the maintenance of acquired cetuximab resistance.

Gene expression and methylation profile of SCC25
single-cell clones with acquired cetuximab resistance
demonstrates cell heterogeneity
The little overlap between the gene expression and DNA
methylation PatternMarker genes and non-specific DNA
methylation pathways may arise due to the development
of different resistant sub-clones with specific gene signa-
tures of acquired resistance in bulk data. In order to
address this issue and to delineate whether our pre-
sumptive drivers resulted from clonal expansion of re-
sistant cells or from the development of new epigenetic
alterations to drive resistance, we measured DNA
methylation and gene expression on a panel of 11 iso-
genic stable cetuximab-resistant clones (CTXR1 to
CTXR11) derived from SCC25 cells in a previous study
[31]. Despite being derived from the parental SCC25
cells after chronic exposure to cetuximab, the CTXR
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clones and the time course generations display wide-
spread differences. We plot both expression and methy-
lation profiles (Additional file 1: Figure S8 and Figure
S9, respectively) among the DNA methylation Pattern-
Marker genes that are anti-correlated with expression
and cellular morphology (Additional file 1: Figure S10)
for these clones. Significantly greater heterogeneity is
observed among the CTXR clones in all these genomic
and morphological data. Figure 5 demonstrates that
higher heterogeneity among single cell clones is also ob-
served in the epigenetically regulated PatternMarker
genes from the CoGAPS analysis. These results suggest
that different mechanisms of resistance may arise in the
same HNSCC cell line as a result of intra-heterogeneity,
resulting in the detection of a wide range of expression
signatures with higher or lower correlation with the
methylation profile depending on the size of each spe-
cific cell population.

FGFR1 overexpression and demethylation are associated
with acquired cetuximab resistance in the time course
and in stable cetuximab-resistant clones
To ascertain potential drivers of the stable cetuximab-
resistant phenotype induced by DNA methylation, we
defined genes that are PatternMarkers [26] of the DNA
methylation patterns associated with stable acquired
cetuximab resistance (MP2 and MP3). We then applied
correlation analysis to determine genes that were epi-
genetically regulated. Specifically, we performed correlation

analysis between DNA methylation and gene expression for
each of the DNA methylation PatternMarker genes (Fig. 5).
This analysis identified FGFR1 as one of the genes
with significant anti-correlation between expression
and methylation, suggesting potential epigenetic regu-
lation during cetuximab resistance acquisition. This
finding is consistent with previous studies that associ-
ate differential expression of FGFR1 with resistance to
EGFR inhibitors, including cetuximab, in HNSCC and
other tumor types in vitro and in vivo [27, 46–48].
However, none of these studies demonstrate an asso-
ciation between FGFR1 upregulation and demethyla-
tion. Given the tight temporal regulation of the DNA
methylation PatternMarkers with anti-correlated expres-
sion and the previous work on FGFR1, we hypothesize
that this set of genes represents epigenetic drivers of
acquired resistance.
We hypothesize that epigenetically regulated genes

shared along the time course patterns and resistant
single-cell clones might implicate common mechanisms
acquired during evolution of the stable resistance pheno-
type. To test this assumption, we also performed correl-
ation analysis for each of the epigenetically regulated
genes in our resistant set (Fig. 5) in the resistant single
cell clones and parental cell lines. Nine of the epigeneti-
cally regulated PatternMarker genes also have significantly
anti-correlated gene expression and DNA methylation in
the stable cetuximab-resistant clones. Of these, only
FGFR1 is demethylated and re-expressed in a CTXR

Fig. 4 DNA methylation and expression CoGAPS patterns demonstrate delayed onset of epigenetic changes in acquired resistance. CoGAPS
patterns for gene expression (top) and DNA methylation (bottom) of patterns associated with acquired cetuximab resistance in SCC25 cetuximab
generations (red) relative to PBS generations (black). Vertical dashed line represents time at which patterns for SCC25 generation separated from
pattern for PBS generations. The timing of methylation changes distinguishing cetuximab-resistant generations was delayed in DNA methylation
relative to that of gene expression
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clone relative to the parental SCC25 cell line (Fig. 6a,
remaining eight genes in Additional file 1: Figure S11).
In this analysis, overexpression and de-methylation of
FGFR1 expression occurs in only one of the resistant
clones (CTXR10). QRT-PCR of FGFR1 gene expression
in CTXR10 relative to the parental cell line demon-
strated a > 30-fold change (Fig. 6b). Furthermore, in the
resistant cell clone, increased levels of FGFR1 were as-
sociated with increased levels of phospho-FGFR1 and
decrease in EGFR and phospho-EGFR as assessed by
Western blot (Fig. 6c). This clone is one of the fastest
growing under cetuximab treatment (Additional file 1:
Figure S12). This observation suggests that the bulk
data from the time course captured clonal outgrowth of
a cetuximab-resistant clone with similar molecular fea-
tures (FGFR1 demethylation) to CTXR10 and that
clonal outgrowth is the dominant mechanism of resist-
ance in our model.

Observed FGFR1 dynamics in vitro recapitulates relationships
from in vivo tumor genomics and acquired cetuximab
resistance
In order to confirm that the mechanisms we found with
our in vitro approach are present in HNSCC samples

pre and post cetuximab treatment, we further investigate
the pattern of expression and methylation of FGFR1 and
EGFR in publicly available datasets. Using gene expres-
sion and DNA methylation data from The Cancer
Genome Atlas (TCGA) for 243 HPV-negative HNSCC
pre-treatment samples [36], we verified that the upregu-
lation of EGFR and FGFR1 is not concomitant (Pearson
correlation coefficient = − 0.06, p value = 0.33, Fig. 7a).
Additionally, the negative correlation of FGFR1 gene
expression and DNA methylation status is statistically
significant (Pearson correlation r of − 0.32, p value
< 0.0001, Fig. 7b), suggesting that FGFR1 transcription is
associated with demethylation in some HPV-negative
HNSCC tumors. Since there is no treatment information
available for the TCGA dataset, we could not make as-
sumptions related to cetuximab resistance and whether
FGFR1 methylation is a consequence of the treatment. To
assess this question, we collected new DNA methylation
data for six HNSCC tumors after cetuximab treatment
from a cohort of HNSCC tumor samples described previ-
ously [43]. All six samples have low DNA methylation
values for FGFR1 (β-values in the range of 0.04–0.08, with
a mean of 0.05), suggesting that the gene is unmethylated
in these samples. While there was insufficient DNA to
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quantify DNA methylation before treatment in these pa-
tients, FGFR1 gene expression increases after treatment in
four of the six tumor samples (Additional file 1: Figure
S13). While this cohort is small, these data and TCGA
suggest that FGFR1 methylation is potentially associated
with its re-expression in HNSCC tumor samples in re-
sponse to cetuximab treatment.
To determine whether FGFR1 is associated with cetux-

imab response, we used gene expression data from
HNSCC patients before cetuximab treatment available
from Bossi et al. [42]. After follow-up, the patients were
separated in SPFS (median three months survival) or
LPFS (median 19 months survival) according to time of
recurrence or metastasis development. Using this data-
set, we confirmed that EGFR expression in SPFS is
significantly lower than in the LPSF group (Fig. 7c) (log
fold change − 1.0, t-test p value 0.0003). These data
suggest that EGFR overexpression is associated with bet-
ter response to cetuximab, consistent with the mechan-
ism of action of the therapeutic. The opposite was
observed for FGFR1, with overexpression in SPFS vs
LPSF (Fig. 7d, log fold change 0.9, t-test p value 0.003).
However, the Bossi et al. study [42] lacks DNA methyla-
tion data to assess whether FGFR1 was epigenetically reg-
ulated in these samples. Most patients with SPFS in this
dataset also had intrinsic resistance to cetuximab, instead
of acquired resistance studied in our in vitro model.

Nonetheless, these findings suggest that similar molecular
mechanisms may contribute to both mechanisms (intrin-
sic and acquired) of cetuximab resistance in HNSCC.

CoGAPS signatures of resistance and therapeutic response
replicate in an independent in vitro system and
significantly stratified patient samples with long-
vs short-progression-free survival
To further illustrate that the results are reflective of
HNSCC in a general fashion, we evaluated the behavior
of the two additional cell lines and human tumors in the
CoGAPS signatures using gene expression data available
from previously published studies. The HNSCC cell lines
SCC1 and 1CC8 were chosen as the cetuximab-resistant
1CC8 was generated from the cetuximab sensitive SCC1
in a similar protocol used to establish the single cell
clones [30]. Data from SCC25 were also included as a
reference. It is important to note that the treatment time
for the SCC1 and 1CC8 pair is on the order of hours vs
weeks, as used to generate the time course data. By pro-
jecting these data into the CoGAPS signatures, the rela-
tionship between the sensitive SCC1 and resistant 1CC8
recapitulates the relationship between PBS and CTX
time course generations, respectively, in treatment
driven signatures (Fig. 8a, b, e, f ). Conversely, CoGAPS
signatures related to culture specific conditions failed to
produce meaningful differences between the lines (Fig.

F
G

F
R

1 
ex

pr
es

si
on

(lo
g2

 R
S

E
M

)

FGFR1 DNA methylation (beta cg20148210)

0.1 0.2 0.3 0.4

7

9

11

CTXR1

CTXR2
CTXR3

CTXR4

CTXR5
CTXR7

CTXR8
CTXR9

CTXR10

CTXR11
CTXR12

SCC25

FGFR1 gene expression vs DNA methylation in resistant clonesa

SCC25 CTXR10 

pFGFR
(Tyr653/654) 

FGFR1 

pEGFR
(Tyr1068) 

EGFR 

GAPDH 0

10

20

30

40

R
el

at
iv

e 
ex

pr
es

si
on

  (
C

t)

SCC25 CTXR10

FGFR1 gene expressionb Protein expressionc

Fig. 6 Overexpression and de-methylation of FGFR1 in acquired cetuximab resistance is confirmed in stable SCC25-resistant clones. a Expression
of FGFR1 relative to DNA methylation in stable cetuximab-resistant clones. b QRT-PCR of FGFR1 gene expression in CTXR10 relative to the parental
cell line (> 30-fold change). c Western blot comparing FGFR1, phospho-FGFR1, EGFR, and phospho-EGFR in CTXR10 relative to the parental SCC25
cell line. In the resistant cell clone, increased levels of FGFR1 were associated with increased levels of phospho-FGFR1 and decrease in EGFR
and phospho-EGFR

Stein-O’Brien et al. Genome Medicine  (2018) 10:37 Page 13 of 22



8c, d). Projections of the expression patterns from
CoGAPS into the cell line gene expression data were
also anti-correlated with projections of the methylation
signatures in these same data. Gene expression data
from HNSCC tumors from patients before their treat-
ment with cetuximab described in Bossi et al. [42] were
also analyzed. Projection into both the CoGAPS signa-
tures of resistance and therapeutic response significantly
stratified LPFS vs SPFS (p value = 5.2 × 10−5 and 3.1 ×
10−3, respectively, (Fig. 8g, h). Conversely, projection in
to the CoGAPS signature associated with culturing was
not significant (p value = 0.50, Fig. 8i).

Discussion
Analysis of course omics data enables separation of
immediate treatment response and technical artifacts
from molecular mechanisms of acquired therapeutic
resistance
Although numerous short time course genomics studies
of therapeutic response have been performed [49–51],
this is the first time that genetic and epigenetic changes

were measured for a prolonged exposure (11 weeks) to a
targeted therapeutic agent. Using our novel robust time
course integrated analysis approach, we characterized
the molecular alterations during the development of ac-
quired cetuximab resistance using a HNSCC in vitro
model. Cell proliferation, gene expression, and DNA
methylation high-throughput analysis were performed
weekly in equivalent cultures (cetuximab and PBS con-
trol generations) as resistance developed. Over the
course of 11 weeks, it was possible to compare treated
(CTX) and untreated (PBS) cells grown under the same
conditions. Applying robust bioinformatics algorithms,
we discriminated changes associated with acquired re-
sistance from those related to adaptive response to the
cell culturing process and treatment. The SCC25 cell
line model was chosen since this is one of the only two
HNSCC cell lines previously used to generate isogenic
cetuximab-resistant cell lines [10]. However, this is the
first study to our knowledge to enable characterization
of the transcriptional and epigenetic dynamics at the
early phases of therapeutic resistance. These phases
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cannot be measured in patients due to the complexity of
early detection of resistance and obtaining repeated bi-
opsy samples.

Unsupervised time course analysis with CoGAPS quantifies,
visualizes, and enables functional analysis of the dynamics
of acquired therapeutic resistance across omics data
modalities
Determining the dynamics of the molecular alterations
responsible for resistance requires integrated, time
course bioinformatics analysis to quantify these alter-
ations. Based upon previous performance of Bayesian,
non-negative matrix factorization algorithms in inferring
dynamic regulatory networks for targeted therapeutics
[49, 50], we selected CoGAPS [23] for analysis of gene
expression data from our time course experiment.
CoGAPS have already proven highly effective in relating
gene expression changes to patterns related to EGFR in-
hibition [41], perturbation of nodes in the EGFR net-
work [39], and time course dynamics of targeted
therapeutics. In this dataset, CoGAPS analysis of gene
expression data from cetuximab-resistant clones distin-
guished the patterns for immediate gene expression
changes and patterns for long-term changes associated
with acquired resistance. Gene expression signatures for
resistance to EGFR inhibitors in two additional cell lines
(one HNSCC and one NSCLC) from previous studies
[38, 41] were significantly enriched in both types of
CoGAPS patterns. Since these previous resistance signa-
tures were learned from case-control studies without
multiple time point measurements, we concluded that
our time course data are instrumental in discriminating
the signatures of immediate therapeutic response from
signatures of acquired resistance.
In spite of the complexities of the data integration, the

weight of each sample in patterns inferred by CoGAPS
reflects the dynamics of the process in each data modal-
ity. These patterns are learned completely unsupervised
from the data and do not require any gene selection or
comparison between time points relative to any refer-
ence control. The CoGAPS analysis of the time course
data demonstrates that applying matrix factorization al-
gorithms for genomics can reconstruct signals associated
with phenotypes from time course, omics data. The
genes associated with CoGAPS patterns had weights that
were non-zero in multiple patterns. The PatternMarker
statistic [26] enable further selection of the genes that
are uniquely associated with each pattern. Creating a
heatmap of the genomics profiles for these genes en-
abled novel, heatmap-based visualization of the temporal
dynamics in the omics data. CoGAPS analysis of gene
expression data contains a flat pattern (EP5), which in-
cludes all highly expressed genes. These genes may also
change in association with the experimental conditions,

albeit to a lesser degree than lowly expressed genes. Be-
cause the PatternMarker statistics includes genes that
are uniquely associated with each inferred biological
process, these highly expressed genes would be filtered
from associations with the dynamic conditions. To in-
clude these genes in the signatures defined in this study,
EP5 was filtered from the calculation of the PatternMar-
ker statistic. Such filtering process is not required for
heatmap-based visualization and filtering of flat patterns
is recommend when defining gene signatures containing
sets of genes that are most strongly associated with dy-
namic changes. Patterns that reflect technical artifacts in
the data, such as EP4, should be retained in the Pattern-
Marker analysis to limit the signatures associated with
inferred processes to retain only biologically relevant
genes. We note that these PatternMarker statistic are
similar to the D-scores proposed in Zhu et al. [52] and
that application of this statistic may require similar fil-
tering to retain highly expressed genes. In the case of
DNA methylation, these PatternMarker genes also in-
clude genes representing driver alterations in resistance.
The DNA methylation data did not require filtering
when applying the PatternMarker statistic since no flat
pattern was detected. However, transcriptional regula-
tion by epigenetic alterations or in pathways involves
simultaneous co-regulation of multiple genes. This co-
regulation is reflected in the reuse of genes in CoGAPS
gene weights associated with each pattern. Therefore, es-
timates of pathway dynamics from transcriptional data
require accounting for all genes with gene set enrich-
ment statistics instead of the PatternMarker statistic.
Thus, we hypothesize that the PatternMarker statistic is
robust for visualization and biomarker identification. On
the other hand, gene set enrichment of the CoGAPS
gene weights corresponding to each pattern and stored
in the amplitude matrix are essential for characterization
of functional alterations in pathways.

Integrated genomics analysis of time course data
demonstrates that DNA methylation changes follow
transcriptional changes, leading to the model where
methylation stabilizes the resistance phenotype
Collecting treated and untreated cells to obtain paired
measurements of methylation and gene expression en-
abled us to evaluate whether changes in DNA methyla-
tion impact gene expression. Including a PBS control at
every time point also enabled the discrimination of the
changes that result from an adaptive response to therapy
from changes that result from maintaining cells in cul-
ture. CoGAPS analysis of DNA methylation data denotes
only changes associated with acquired resistance, in con-
trast to the immediate expression changes observed with
cetuximab treatment. Thus, while therapeutic response
can drive massive changes in gene expression, only the
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subset of expression changes associated with the devel-
opment of resistance have corresponding epigenetic sig-
natures, suggesting that the methylation landscape is
important for the development of acquired resistance.
The CoGAPS patterns in gene expression that are asso-
ciated with acquired cetuximab resistance gradually
change over the time course (EP1 and EP2). On the
other hand, the CoGAPS patterns for DNA methylation
changes have a sharp transition at the generation at
which resistance is acquired (CTX-G4). These patterns
(MP2 and MP3) reflect a delayed but more rapid change
in DNA methylation. The time delays between alter-
ations in DNA methylation and gene expression pose a
further computational challenge for integrated, time
course genomics analyses. The vast majority of inte-
grated analysis algorithms assume one-to-one mapping
of genes in different data platforms or seek common pat-
terns or latent variables across them [53]. Such ap-
proaches would fail to capture the early changes from
cetuximab treatment that impact only gene expression;
time delays between DNA methylation and gene expres-
sion patterns and different gene usage in each pattern. It
is essential to develop new integrated algorithms to sim-
ultaneously distinguish both patterns that are shared
across data types and that are unique to each platform.
For time course data analysis, these algorithms must also
model regulatory relationships that may give rise to tim-
ing delays, such as epigenetic silencing of gene expres-
sion. However, as we observed with the unanticipated
changes in DNA methylation following and not preced-
ing gene expression, they must also consider delays
resulting from larger phenotypic changes such as the
stability of the therapeutic resistant phenotype.
The relative timing of change in DNA methylation and

gene expression is consistent with previous observations
that gene expression changes precede DNA methylation al-
terations in genes critical for cancer progression. P16INK4A

and GSTP1 are tumor suppressor genes for which
transcription silencing was found to occur prior to DNA
hypermethylation and chromatin changes. The temporal
delay observed between expression and methylation
patterns in our time course provides transcriptome-wide
evidence of this phenomenon. Specifically, that epigenetic
changes are necessary to stabilize gene expression aberrant
profile and will be followed by modification into a silenced
methylation state, resulting in tumor progression [54, 55].
Our integrated RNA-seq and DNA methylation analysis
corroborates the fact that gene expression changes occur
earlier to epigenetic alterations and suggests that DNA
methylation is essential to maintain the changes in gene ex-
pression in this acquired cetuximab resistance model.
Additional time course data tracing other in vitro and in
vivo models of HNSCC are essential to generalize the rela-
tive timing of molecular changes, and thus mechanisms of

gene regulation, associated with acquired therapeutic resist-
ance. Future investigation into the chromatin remodeling
mechanisms will also test whether chromatin alterations
follow the changes in expression and occur in combination
with altered methylation patterns to drive epigenetic regula-
tion of resistance.

Time course data are essential to distinguish clonal
outgrowth from transcriptional rewiring that give rise to
stable acquired resistance to therapy
Besides the immediate changes in gene expression
followed by the gradual methylation switch, it is also in-
teresting to note these effects in the proliferation rates
during the 11 weeks of treatment. Initially, the prolifera-
tion of the population of cetuximab-sensitive cells is
slower when compared to the untreated controls, reflect-
ing therapy effectiveness. Early and progressively, the
cells develop molecular changes to overcome the EGFR
blockade. However, this process starts in just a small
number of clones and the increase in proliferation is still
not enough to surpass the growth rate of the untreated
cells. As soon as the population of resistant cells is larger
than the number of sensitive cells, the proliferation rate
is now higher than in the untreated controls. At some
point, we observe the stabilization of the proliferation
rates in the cetuximab-treated cells, probably due to the
fact the culture is now dominated by the population of
resistant clones. Although stable, the proliferation rate
of these resistant clones is significantly higher than that
of the untreated cells. This increased proliferation rate is
consistent with the rapid increase in tumor volume ob-
served clinically once patients develop resistance to ther-
apy. Tracing the increase in the population of resistant
cells and their proliferation rates in vivo requires novel
techniques to biopsy or image tumors at intermediate
time points of treatment.
In a recent study, gene expression changes were asso-

ciated with a transient resistant phenotype present in
melanoma cell lines before vemurafenib administration
[56]. Once the melanoma cells were exposed to the drug,
additional changes in gene expression are detected and
are later accompanied by changes in chromatin structure
[56]. These findings, together with our time course ob-
servations, suggest that in the heterogeneous tumor en-
vironment the existence of some cells expressing specific
marker genes can trigger cellular reprogramming as
soon as the targeted therapy is initiated. Upon drug ad-
ministration, the number of genes with aberrant expres-
sion increases and is followed by other epigenetic and
genetic changes that will shift the transient resistant
state into a stable phenotype. This finding on acquired
resistance development could dramatically change the
course of treatment with targeted therapeutic agents.
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The precise characterization of resistant gene signatures
and their timing are crucial to determine the correct
point during the patients’ clinical evolution to introduce
alternative therapeutic strategies. This way, secondary
interventions would start before the stable resistant
phenotype is spread among the tumor cells resulting in
prolonged disease control and substantial increase in
overall survival.

DNA methylation changes in FGFR1 are associated with
changes in FGFR signaling
Among the genes we identified with the canonical rela-
tionship between expression and methylation, FGFR1
present with increased gene expression accompanied by
loss of CpG methylation. FGFR1 is a receptor tyrosine
kinase that regulates downstream pathways, such as
PI3K/AKT, and RAS/MAPK, which are also regulated
by EGFR [57]. Its overexpression has been previously
associated with resistance to EGFR inhibitors in other
cancer types including HNSCC [27–29]. To our know-
ledge this is the first study showing that epigenetic al-
terations are associated with changes in FGFR1
expression in HNSCC during the development acquired
cetuximab resistance. FGFR1 upregulation combined
with promoter hypomethylation was previously de-
scribed in rhabdomyosarcomas [58]. Other studies de-
scribed that FGFR1 increased levels is a common
feature in different tumor types, such as glioblastoma
[59] and cancers of the breast [60], lung [61], prostate
[62], bladder [63], ovarian [64], colorectal [27], and
HNSCC [29, 65, 66]. FGFR1 is involved in resistance
mechanisms against EGFR inhibitors [27, 46–48], such
as cetuximab and gefitinib. Together, the TCGA and
Bossi et al. dataset analyses corroborate our findings
that FGFR1 gene expression is regulated by epigenetic
changes in HNSCC. Altogether, the epigenetic alter-
ation of FGFR1 represents a candidate biomarker of re-
sistance to cetuximab and further studies are critical to
identify combination therapies for HNSCC patients that
develop acquired cetuximab resistance.
The increased levels of FGFRs and FGFs are believed

to play a role in an autocrine mechanism in HNSCC
and NSCLC cell lines with intrinsic resistance to the
EGFR inhibitor, gefitinib. Using publicly available gene
expression microarray datasets, Marshall et al. [47] and
Marek et al. [46] verified concomitant increased levels
of FGFRs and their specific FGFs ligands. Particularly,
FGFR1 and FGF2 upregulation was observed in the
same resistant cell lines and hypothesized to be the
mechanism behind resistance. This was corroborated
by functional experiments showing that cells treated
with pan-FGFR inhibitor were less prone to anchorage-
independent growth. Also, FGF2 silencing or FGFR1

inhibition resulted in phospho-ERK decreased expres-
sion that was restored when FGF2 was added to the
culture, suggesting that an autocrine FGF-FGFR path-
way is one of the mechanisms of resistance to gefitinib.
However, the cell lines evaluated in both studies were
intrinsically resistant to gefitinib. In our model, we in-
duced resistance to cetuximab and observed FGFR1
gain of expression and significant anti-correlation with
the DNA methylation. We additionally evaluated the
expression of other FGFRs and FGFs that were identi-
fied by the PatternMarker statistic. Although it is not
found as a PatternMarker in our analysis pipeline,
FGF2 is upregulated in the cetuximab generations when
compared to the PBS generations as observed with
FGFR1 (Additional file 1: Figure S14). Thus, our data
corroborates and extends this previous evidence from
intrinsically resistant lines that one of the mechanisms
driving resistance to EGFR inhibition is the FGF-FGFR
autocrine pathway. This observation adds another evi-
dence that the computational approach used in this
study is robust once it is capable of identifying mecha-
nisms previously described in other models resistant to
EGFR blockade.
Our previously developed bioinformatics algorithms

for the identification of gene expression and epigenetic
patterns progression over time proved to be consistent,
since they also detected canonical changes found to be
driving this mechanism among innumerous new poten-
tial candidates for acquired resistance. The integrated
computational analysis was possible due to an experi-
mental approach developed to account for molecular
changes due to adaptive responses to the culturing sys-
tem and the immediate addition of cetuximab. Here, we
present a novel integrated analysis protocol to evaluate
molecular changes measured by different high through-
put techniques over a prolonged time of treatment with
an FDA-approved targeted therapeutic agent. The lack
of in vivo experimentation to validate our findings was
compensated by the analysis of two public datasets of
HNSCC, showing that our in vitro findings were also
present in patients’ samples. Our findings, together with
Marshall et al. [47] and Marek et al. [46], are a strong
evidence that FGFR1 plays a crucial role in a significant
proportion of cases that are resistant to cetuximab or
gefitinib. The translational implications are notable
since FGFR1 inhibition can be used in combination
with EGFR blockade to retard acquired resistance or
overcome intrinsic resistance. It is important to men-
tion that FGFR inhibitors are being currently evaluated
by clinical trials and could soon become a potential
new therapeutic option for many cancer patients [57].
Future work evaluating how these combinations impact
the timing of acquired resistance are essential to
determine the molecular mechanisms that shift
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dominant signaling pathways in cancer and thereby
drive resistance.

CoGAPS gene signatures from the SCC25 time course
model are associated with molecular changes in
additional in vitro models and human tumor data
The main limitation of the current study was the use of
a single cell line model. SCC25 is intrinsically sensitive
to cetuximab and from this single cell line model, we
generated two groups of samples (CTX and PBS genera-
tions) over the course of 11 weeks. High-throughput
measurements and analysis were performed for a total of
22 samples. The collection of multiple data points in the
analysis had to be accounted for when determining the
number of cell lines to be included in the study. We
nonetheless compared our data to gene signatures from
the other isogenic HNSCC resistant model 1CC8 [10],
an independent resistant model to an EGFR inhibitor in
NSCLC [38], and human tumor data from HNSCC pa-
tients before cetuximab treatment [42]. Besides the
number of samples, we also had to take into consider-
ation the potential batch and technical effects of broad
cross-platform profiling. Nevertheless, the analysis of
pretreatment HNSCC patient samples from TCGA [36]
and another study [42] confirmed that our finding that
FGFR1 is upregulated and demethylated in HNSCC and
associated with acquired resistance to cetuximab is also
a mechanism involved in intrinsic resistance to the tar-
geted therapy.

Transcriptional heterogeneity is critical in acquired
therapeutic resistance, and future time course single cell
data will pinpoint precise molecular predictors of
therapeutic resistance
The in vitro protocol for time course sampling developed
in this study has the additional advantage of aggregating
potentially heterogeneous mechanisms of resistance in-
creasing the signal of changes in any cetuximab-resistant
sub-clone. For example, we observed demethylation and
overexpression of FGFR1 in the pooled cells, but only a
single stable clone generated from the same SCC25 cell
line in a previous study (CTXR10) had upregulation of
FGFR1 [31]. This finding suggests that tumor heterogen-
eity also plays a role in acquired resistance to targeted
therapies and enables different pathways to be used to
bypass the silenced target within the same tumor.
Heterogeneity of SCC25 cetuximab-resistant clones has
been observed previously [31]. Recent single cell RNA-seq
data of SCC25 has shown that there is considerable tran-
scriptional heterogeneity in this cell line before treatment
[67]. Other cancer therapies are influenced by heterogen-
eity and outgrowth of resistant clones, as was observed in
single cell clones isolated from the HNSCC cell line FaDu

when treated with cisplatin [68]. These data and the in-
trinsic sensitivity of SCC25 to EGFR inhibition suggests
that therapeutic resistance results from random selection
of a pre-existing resistant clone. The heterogeneity in
methylation profiles reflected the complexity of the resist-
ance mechanisms that can arise from combination therap-
ies in heterogeneous tumors. Future work extending these
protocols to in vivo models is essential to determine the
role of the microenvironment in inducing therapeutic
resistance. Developing in vivo models with acquired thera-
peutic resistance presents numerous technical challenges
that must first be addressed before such time course
sampling is possible [9]. Pinpointing precise molecular
predictors of therapeutic resistance will facilitate the
identification of unprecedented biomarkers and reveal the
mechanisms by which to overcome acquired therapeutic
resistance to most therapies used to treat cancer.

Conclusions
By developing a novel bioinformatics pipeline for inte-
grated time course analysis, we measured the changes
in gene expression and DNA methylation during the
progression from an intrinsic cetuximab responsive
state to the acquired resistant phenotype using an in
vitro HNSCC cell line model. Specifically, this pipeline
includes: (1) CoGAPS analysis of each platform inde-
pendently; (2) gene selection with the PatternMarker
statistic for visualization and CoGAPS gene set analysis
of the CoGAPS gene profiles for pathway analysis; (3)
comparisons of patterns to known phenotypes infer
their relative timing; (4) anti-correlation between DNA
methylation patterns and gene expression to infer epi-
genetically regulated genes; and (5) evaluation of Pat-
ternMarker genes and projection of the CoGAPS gene
profiles to learn relevance of inferred gene signatures in
new datasets. This pipeline revealed massive changes in
gene expression and identified and discriminated the
different patterns associated with resistance or cell cul-
turing conditions. This analysis demonstrates that com-
pressed sensing matrix factorization algorithms can
identify gene signatures associated with the dynamics
of phenotypic changes from genomics data collected
over the time course. In this case, the gene expression
patterns relevant to resistance were later followed by
epigenetic alterations. Our main conclusion is that
using our bioinformatics approach we are able to deter-
mine that the resistant phenotype is driven by gene ex-
pression changes that would confer the cancer cells
adaptive advantages to the treatment with cetuximab.
Finally, the integrated analysis show that the stability of
the resistant state is dependent on epigenetic changes
that will make these new gene signatures heritable to
expand the phenotype to the daughter cells. The
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bioinformatics pipeline we developed is also significant
to clinical practice, since it pointed the time course of
molecular changes associated with acquired cetuximab
resistance and suggests that the resistant phenotype
can be reversed if alternative interventions are intro-
duced before epigenetic alterations to the genes driving
acquired resistance. Moreover, the computational
approach we describe here can be applied to time
course studies using other tumor type models and
targeted therapies.
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