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A deep learning system for detecting diabetic
retinopathy across the disease spectrum
Ling Dai1,2,3,9, Liang Wu 2,9, Huating Li 2,9, Chun Cai 2,9, Qiang Wu4,9, Hongyu Kong 4, Ruhan Liu 1,3,

Xiangning Wang4, Xuhong Hou2, Yuexing Liu2, Xiaoxue Long 2, Yang Wen 1,3, Lina Lu5, Yaxin Shen 1,3,

Yan Chen4, Dinggang Shen 6,7, Xiaokang Yang8, Haidong Zou 5✉, Bin Sheng 1,3✉ & Weiping Jia 2✉

Retinal screening contributes to early detection of diabetic retinopathy and timely treatment.

To facilitate the screening process, we develop a deep learning system, named DeepDR, that

can detect early-to-late stages of diabetic retinopathy. DeepDR is trained for real-time image

quality assessment, lesion detection and grading using 466,247 fundus images from 121,342

patients with diabetes. Evaluation is performed on a local dataset with 200,136 fundus

images from 52,004 patients and three external datasets with a total of 209,322 images. The

area under the receiver operating characteristic curves for detecting microaneurysms, cotton-

wool spots, hard exudates and hemorrhages are 0.901, 0.941, 0.954 and 0.967, respectively.

The grading of diabetic retinopathy as mild, moderate, severe and proliferative achieves area

under the curves of 0.943, 0.955, 0.960 and 0.972, respectively. In external validations, the

area under the curves for grading range from 0.916 to 0.970, which further supports the

system is efficient for diabetic retinopathy grading.
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It is estimated that approximately 600 million people will have
diabetes by 2040, with one-third expected to have diabetic
retinopathy (DR)—the leading cause of vision loss in working-

age adults worldwide1. Mild non-proliferative DR (NPDR) is the
early stage of DR, which is characterized by the presence of
microaneurysms. Proliferative DR (PDR) is the more advanced
stage of DR and can result in severe vision loss. Regular DR
screening is important so that timely treatment can be imple-
mented to prevent vision loss2. Early-stage intervention via gly-
cemia and blood pressure control can slow down the progression
of DR and late-stage interventions through photocoagulation or
intravitreal injection can reduce vision loss3. In the United
Kingdom and Iceland, where systematic national DR screening
has been carried out, DR is no longer the leading cause of
blindness among working-age adults4,5. Although routine DR
screening is recommended by all professional societies, compre-
hensive DR screening is not widely performed6–10, facing the
challenges related to the availability of human assessors3,11.

China currently has the largest number of patients with dia-
betes worldwide12. In 2016, the State Council issued the “Healthy
China 2030” planning outline, which provided further guidance
on the future direction of Chinese health reform13. The “Healthy
China 2030” outlined the goal that all patients with diabetes will
receive disease management and intervention by 2030. In China,
there are about 40,000 ophthalmologists, with a 1:3000 ratio to
patients with diabetes. As a cost-effective preventive measure,
regular retinal screening is encouraged at the community level.
Task shifting is one way the public health community can address
this issue head-on so that ophthalmologists can do the treatment
but not the screening. Task shifting is the name given by WHO to
a process of delegation whereby tasks are moved, where appro-
priate, to less specialized health workers14. Recent evidence has
established a role for screening by healthcare workers, given prior
training in grading DR3. However, we still face the issues of
insufficiency of their training and where they are placed in the
system. Thus, diagnostic system using deep learning algorithms is
required to help DR screening.

Recently, deep learning algorithms have enabled computers to
learn from large datasets in a way that exceeds human capabilities
in many areas15–18. Several deep learning algorithms with high
specificity and sensitivity have been developed for the classifica-
tion or detection of certain disease conditions based on medical
images, including retinal images19–23. Current deep learning
systems for DR screening have been predominantly focused on
the identification of patients with referable DR (moderate NPDR
or worse) or vision-threatening DR, which means the patients
should be referred to ophthalmologists for treatment or closer
follow-up21,22,24. However, the importance of identifying early-
stage DR should not be neglected. Evidence suggests that proper
intervention at an early stage to achieve optimal control of glu-
cose, blood pressure, and lipid profiles could significantly delay
the progression of DR and even reverse mild NPDR to DR-free
stage25.

In addition, the integration of these deep learning advances
into DR screening is not straightforward because of some chal-
lenges. First, there are a few end-to-end and multi-task learning
methods that can share the multi-scale features extracted from
convolutional layers for correlated tasks, and further improve the
performance of DR grading based on the lesion detection and
segmentation, due to the fact that DR grading inherently relies on
the global presence and distribution of the DR lesions21,22,26–28.
Second, despite being helpful in DR screening, there are a few
deep learning methods providing on-site image quality assess-
ment with latency compatible with real-time use, which is one of
the most needed additions at primary DR screening level and will
have the impact on screening delivery at the community level.

Here we describe the development and validation of a deep
learning-based DR screening system called DeepDR (Deep-
learning Diabetic Retinopathy), which was a transfer learning
assisted multi-task network to evaluate retinal image quality,
retinal lesions, and DR grades. The system was developed using a
real-world DR screening dataset consisting of 666,383 fundus
images from 173,346 patients. In addition, we annotated retinal
lesions, including microaneurysms, cotton-wool spots (CWS),
hard exudates, and hemorrhages on 14,901 images, and used
transfer learning29 to enhance the lesion-aware DR grading per-
formance. The system achieved high sensitivity and accuracy in
the whole-process detection of DR from early to late stages.

Results
Data sources and network design. DeepDR was developed using
the fundus images of patients with diabetes who participated in
the Shanghai Integrated Diabetes Prevention and Care System
(Shanghai Integration Model, SIM) between 2014 and 2017
(Supplementary Table 1). A total of 666,383 fundus images from
173,346 patients with diabetes with integrity fundus examination
records were enrolled in this study. Two retinal photographs
(macular and optic disc centered)30 were taken for each eye
according to the DR screening guidelines of the World Health
Organization31. Image quality (overall gradability, artifacts,
clarity, and field), DR grades (non-DR, mild NPDR, moderate
NPDR, severe NPDR, or PDR), and diabetic macular edema
(DME) were labeled for each image. In addition, 14,901 images
were labeled with retinal lesions, including microaneurysms,
CWS, hard exudates, and hemorrhages.

Among the 173,346 subjects in the SIM cohort (referred as the
local dataset in this study), 121,342 subjects (70%) were randomly
selected as the training set, and the remaining 52,004 subjects
(30%) served as the local validation set (Fig. 1). In the SIM cohort,
each subject was enrolled only once and was recorded with the
unique resident ID. So, the data separation was guaranteed
between the training and local validation datasets. The prevalence
of DR in the study cohorts is shown in Table 1. In the training
dataset, 12.85% of images had DR, among which 27.94% were
mild NPDR. In the local validation dataset of 200,136 images,
12.99% of images had DR, among which 27.30% were mild
NPDR.

The DeepDR system consisted of three deep-learning sub-
networks: image quality assessment sub-network, lesion-aware
sub-network, and DR grading sub-network (Fig. 2). All the
466,247 images in the training dataset were used to train the
image quality assessment sub-network to make binary classifica-
tion of whether the image was gradable and recognize certain
quality issues in terms of artifacts, clarity, and field problems of
the retinal images; 415,139 images without quality issues were
used to train the DR grading sub-network to classify the images
into non-DR, mild NPDR, moderate NPDR, severe NPDR, or
PDR, and binary classification of whether there was DME. The
lesion-aware sub-network was trained using 10,280 images
labeled with retinal lesions to achieve detection and segmentation
of microaneurysms, CWS, hard exudates, and hemorrhages.

As shown in Fig. 2, our DeepDR system was designed as the
transfer learning assisted multi-task network. Specifically, a DR
base network was first pre-trained on ImageNet classification
and then fine-tuned on our DR grading task using 415,139
retinal images. Next, we utilized transfer learning32 to transfer
the DR base network to the three sub-networks of the DeepDR
system, rather than directly training randomly initialized sub-
networks. During the process of transfer learning, we fixed the
pre-trained weights in the lower layers of the DR base network
and retrained the weights of its upper layers using

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23458-5

2 NATURE COMMUNICATIONS |         (2021) 12:3242 | https://doi.org/10.1038/s41467-021-23458-5 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


backpropagation. This process worked well since the features
were suitable to all the DR-related learning tasks (evaluating
image quality, lesion analysis, and DR grading). Furthermore,
we concatenated the lesion features extracted by the segmenta-
tion module of the lesion-aware sub-network with the features
extracted by the DR grading sub-network to enhance grading
performance. To prevent the network from overfitting, an early
stopping criterion33 was used to determine the optimized
number of iterations. For every task, we randomly split the
training dataset into two parts, 80% of the data were used to
train the network and the rest were used for early stopping. The
network was tested on early stopping dataset every epoch
during training and the performance of the network was
recorded. If the area under the receiver operating characteristic
curve (AUC) or intersect over union (IoU) increment was less
than 0.001 for 5 epochs continuously, we stopped training and
selected the best model as the final model.

Performance of the DeepDR system. The image quality assess-
ment sub-network for assessing overall image quality and iden-
tifying artifacts, clarity, and field definition problems was tested
using 200,136 images in the local validation dataset. DeepDR
achieved an AUC of 0.934 (0.929–0.938) for overall image quality.
For the identification of artifacts, clarity, and field definition
issues, the system achieved AUCs of 0.938 (0.932–0.943), 0.920
(0.914–0.926), and 0.968 (0.962–0.973), respectively.

The lesion-aware sub-network was evaluated using 4621
gradable images with retinal lesion annotations from the local
validation dataset. The results are shown in Fig. 3 and
Supplementary Table 2. For microaneurysm, the AUC, sensitivity,
specificity, and F-score were 0.901 (0.894–0.906), 88.0%
(87.2–88.9%), 73.3% (72.0–74.3%), and 0.815, respectively. For
CWS, the AUC, sensitivity, specificity, and IoU were 0.941 (0.935-
0.946), 90.0% (87.9-91.9%), 83.1% (82.2–83.9%), and 0.711,
respectively. For hard exudate, the AUC, sensitivity, specificity,

and IoU were 0.954 (0.949–0.957), 90.5% (88.9–91.5%), 85.8%
(85.2–86.6%), and 0.971, respectively. For hemorrhage, the AUC,
sensitivity, specificity, and IoU were 0.967 (0.965–0.969), 93.2%
(92.6–94.1%), 88.0% (87.6–88.7%), and 0.738, respectively. The
lesion-aware sub-network highlighted the lesion areas by masking
the fundus images (Fig. 3B). To facilitate usability in clinical
settings, a clinical report could be automatically generated for each
patient (example report shown in Supplementary Fig. 1). This
report showed the original fundus images with highlighted lesions,
described the type and location of the retinal lesions along with
DR gradings. In addition, we conducted an experiment to evaluate
the utility of lesion-aware sub-network by measuring its effect on
the grading accuracy of trained primary healthcare workers from
community health service centers. Detailed study design is
described in the Supplementary Information (Section “Supple-
mentary Methods”). The results were tested using one-sided, two-
sample Wilcoxon signed rank test and are shown in Table 2. The
sensitivities of all DR grades and the specificity of severe DR were
significantly improved with the aid of the DeepDR system. This
suggested that visual hints of retinal lesions significantly improved
the diagnostic accuracy of the primary healthcare workers, which
can facilitate the task shifting of DR screening.

The DeepDR system achieved the whole-process diagnosis of DR
from early to late stages based on the accurate detection of retinal
lesions that was especially accurate for microaneurysms. In the local
validation dataset, 178,907 gradable images were used to test the DR
grading sub-network and the results are shown in Table 3. For the
two images per eye, our DR grading sub-network made separate
prediction per image, and then we accepted the more severe DR
grade obtained from those images as the grading result for that eye,
which was used to calculate the AUC of DR grades. The average
AUC was 0.955 for DR grading. In particular, for mild NPDR, the
AUC, sensitivity, and specificity were 0.943 (0.940–0.946), 88.8%
(87.7–89.7%), and 83.9% (83.7–84.1%), respectively. For DME, the
AUC was 0.946 (0.945–0.947), sensitivity was 92.8% (92.4–93.1%),
and specificity was 81.3% (81.0–81.6%).

Local fundus images
N=666,383

Gradable images
N= 415,139

Low quality images
N=51,108

Gradable images
N=178,907

Low quality images
N=21,229

Training dataset
N=466,247

Valida�on dataset
N=200,136

Model for image 
quality assessment

Re�nal lesion
annota�ons

N=10,280

Model for 
lesion-aware

Re�nal lesion
annota�ons

N=4,621

Model for
DR grading

Tes�ng set for image 
quality assessment

Tes�ng set for
lesion-aware

Tes�ng set for 
DR grading

70% 30%

Fig. 1 Data split in the local dataset (SIM cohort) for the training and local validation of the three sub-networks of the DeepDR system. The local
dataset was randomly divided into training or validation datasets. All 466,247 images in the training dataset were used for training the image quality
assessment sub-network. The lesion detection sub-network was trained using 10,280 gradable images with retinal lesion annotations. Then, 415,139
gradable images in the training set were used for the training of the DR grading sub-network. All 200,136 images in the local validation dataset were used
to test the image quality sub-network, and 178,907 gradable images were used to test the DR grading sub-network. Finally, 4621 gradable images labeled
with retinal lesions were used to test the lesion detection sub-network. DR, diabetic retinopathy.
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External validation. To test the generalization of the system, we
further evaluated the performance of DeepDR using two inde-
pendent real-world cohorts and the publicly accessible dataset
EyePACS for external validation. The first cohort was the China
National Diabetic Complications Study (CNDCS) cohort, com-
prising 92,672 fundus images from 23,186 patients with diabetes
and was acquired in 2018. The second cohort was the Nicheng
Diabetes Screening Project (NDSP) cohort, comprising 27,948
fundus images from 6987 elderly subjects over 65 years of age and
was acquired in 2018. The prevalence of diabetes was 31.7% in the
NDSP cohort. The EyePACS dataset is a publicly available dataset
from the United States, and consists of 88,702 fundus images.

The results for DR grading are shown in Table 3. In the
CNDCS, the DeepDR system achieved AUCs of 0.916
(0.912–0.920) for mild NPDR, 0.927 (0.925–0.929) for moderate
NPDR, 0.962 (0.959–0.965) for severe NPDR, and 0.955
(0.949–0.961) for PDR. In the NDSP and EyePACS dataset, the
average AUCs for DR grading were 0.944 and 0.943, respectively.
The system had high AUCs for mild NPDR, achieving 0.929
(0.916–0.942) and 0.937 (0.935–0.939) for the NDSP and
EyePACS datasets, respectively.

Real-time image quality feedback. We employed DeepDR to
provide real-time image quality feedback during the non-
mydriatic retinal photography of 1294 elderly subjects from the
NDSP cohorts (age over 65 years). Two retinal photographs
(macular and optic disc centered) were taken of each eye. If
DeepDR determined the quality of the first image of a field to be
ungradable, a second image of the same field was recaptured.
Only one more photograph was taken of each field to avoid
contracted pupils due to the camera flash.

The results are shown in Table 4. During this process, 5176
retinal images were initially taken from 1294 patients. Of these,
1487 images (28.7%) were recognized as low-quality with
artifacts, clarity, and/or field definition issues. Based on the
feedback information, a second photograph was taken of these
patients. For the 1487 initial low-quality images, 1065 (71.6%)
recaptured images were of adequate quality. After replacing the
low-quality images with recaptured images, the diagnostic
accuracy of each grade of DR was improved. Especially for mild
NPDR, the AUC increased from 0.880 (0.859–0.895) to 0.933
(0.918–0.950) (P < 0.001) and sensitivity increased from 78.5%
(72.7–83.4%) to 87.6% (83.2–92.3%).

Discussion
The DeepDR system achieved high sensitivity and specificity in
DR grading. Rather than just generating a DR grading, it offers
visual hints that help users to identify the presence and location
of different lesion types. Introducing the image quality sub-
network and lesion-aware sub-network into DeepDR improved
the diagnostic performance and more closely followed the
thought process of ophthalmologists. DeepDR can run on a
standard personal computer with average-performance pro-
cessors. Thus, it has great potential to improve the accessibility
and efficiency of DR screening.
Several previous studies using deep learning approaches have

been conducted on the detection of referable or vision-
threatening DR detection. Gulshan et al. tested their deep
learning system using 9963 fundus images and achieved a high
level of performance for referable DR (AUC= 0.99)21. Ting et al.
evaluated their deep learning system using 71,896 images and
reported excellent results for referable and vision-threatening DR
(AUCs of 0.936 and 0.958, respectively)22. Li et al. validated their
deep learning system in a real-world multiethnic dataset of 35,201
images and achieved an AUC of 0.955 for vision-threateningT
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Fig. 2 Visual diagram of the DeepDR system. DeepDR system consisted of three sub-networks: image quality assessment sub-network, lesion-aware sub-
network, and DR grading sub-network. We first pre-trained the ResNet to form the DR base network (top row). The trained weights of the pre-trained DR
base network were then shared in the three different sub-networks of the system, indicated by the red arrow. These three sub-networks took retinal images
as input and performed different tasks one-by-one. Furthermore, the lesion features extracted by the segmentation module of the lesion-aware sub-
network (indicated by the green arrow) were concatenated with the features extracted by the DR grading sub-network (indicated by the blue arrow). DR,
diabetic retinopathy; NPDR, non-proliferative diabetic retinopathy; PDR, proliferative diabetic retinopathy.
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DR24. Although these studies achieved excellent accuracy, they
focused only on patients with referable DR who are then referred
for specialist eye care. However, mild DR was classified into non-
referable DR and was not distinguished from DR-free
subjects21,22,24.

The value of detecting early DR is underestimated, as there is
little evidence that ophthalmic treatments, such as photo-
coagulation or anti-VEGF medications, are indicated at this
stage2. Furthermore, if all the cases of DR are referred to oph-
thalmologists, it would likely overwhelm our medical systems.
However, from the perspective of diabetes management, the
screening for mild DR is of great clinical importance and may
improve patients’ outcomes. First, the identification of patients
with mild DR facilitates health providers, such as family physi-
cians, general practitioners, and endocrinologists, to participate in
the patient education and management of blood glucose, lipid
profiles, blood pressure, and other risk factors2. Secondly, there is
no known cure for advanced DR, and some of the damage caused
by leakage, oxygen deprivation, and blood vessel growth is
permanent34. But there is evidence showing that optimal glycemic
and blood pressure controls are strongly correlated with the

regression from mild DR to DR-free state25, and intensive gly-
cemic and lipid control reduces the rate of progression to vision-
threatening DR35. Thirdly, screening for mild DR provides
valuable information for clinical decision making. Although
intensive glycemic control reduces the rate of photocoagulation, it
increases the risk of severe hypoglycemia and incurs additional
burden by way of polypharmacy, side effects, and cost36. The
optimal glycemic target is controversial. The American College of
Physicians guideline37 set HbA1c levels 7–8% as the optimal
target for most patients with diabetes, while the American Dia-
betes Association guideline38 set the HbA1c target at 6.5–7.0%.
Patients with mild DR could benefit from strict glycemic
control39. Thus, the detection of mild DR can promote perso-
nalized diabetes management.

Accurate detection of microaneurysms is still a problem for
deep learning systems40. In this study, to improve the perfor-
mance of detecting specific retinal lesions and DR grading, we
introduced an efficient retinal lesion-aware sub-network based on
ResNet that avoided the problem of vanishing gradients, which
made it a more sensitive feature extractor for small lesions
compared to other existing network architectures (e.g., VGG and

Microaneurysm Cotton-wool spot Hard exudate Hemorrhage

Left eye

Right eye

Original Microaneurysm Hard exudate Hemorrhage

A

B

Cotton-wool spot

AUC
0.941 (0.935-0.946) 

AUC
0.954 (0.949-0.957) 

AUC
0.901 (0.894-0.906) 

AUC
0.967 (0.965-0.969)

Fig. 3 Performance of the lesion-aware sub-network. A Receiver operating characteristic curve demonstrating the performance of the lesion-aware sub-
network for retinal lesion detection (n= 4621). B Example images of retinal lesion segmentation: microaneurysms, cotton-wool spots, hard exudates, and
hemorrhages are highlighted using green regions.

Table 2 The sensitivity and specificity for DR grading by primary healthcare workers with or without the help of lesion detection
and segmentation.

DR levels Sensitivity Specificity

Unaided Aided P Unaided Aided P

Non-DR 0.586 (0.560–0.612) 0.683 (0.679–0.686) <0.001 0.924 (0.897–0.950) 0.948 (0.937–0.959) 0.504
Mild NPDR 0.589 (0.565–0.613) 0.684 (0.680–0.688) 0.001 0.893 (0.868–0.918) 0.907 (0.896–0.918) 0.362
Moderate NPDR 0.583 (0.554–0.613) 0.680 (0.674–0.687) 0.001 0.914 (0.893–0.936) 0.922 (0.908–0.936) 0.589
Severe NPDR 0.827 (0.822–0.833) 0.843 (0.842–0.844) 0.004 0.873 (0.852–0.894) 0.935 (0.924–0.945) 0.004
PDR 0.827 (0.823–0.831) 0.843 (0.842–0.844) <0.001 0.903 (0.882–0.924) 0.922 (0.908–0.935) 0.191

The sensitivity and specificity were tested using one-sided, two-sample Wilcoxon signed rank test.
DR diabetic retinopathy, NPDR non-proliferative diabetic retinopathy, PDR proliferative diabetic retinopathy.
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Inception)41. The lesion-aware sub-network contained feature
pyramid structure that was designed to capture multi-scale fea-
tures and mine the relationship of lesion types and position42.
Meanwhile, transfer learning was used in our study and the
lesion-aware sub-network contained the repurposed DR base
network layers that were pre-trained by a base DR grading dataset
of 415,139 retinal images. This boosted the performance of
learning lesion detection and segmentation through the transfer
of knowledge from DR grading task that has already been learned.
As a result, the DeepDR system achieved AUCs of 0.901–0.967
for lesion detection, including microaneurysms, CWS, hard
exudates, and hemorrhages. Retinal lesion detection and seg-
mentation is of great clinical impact. Detecting different types of
retinal lesions can provide guidance for clinical decision making.
For example, fenofibrate may benefit patient with hard
excaudate43 and antiplatelet drugs should be used carefully in
patient with retinal bleeding44. More importantly, one of the
major problems in DR screening is detecting change or pro-
gression, as progression of retinal lesions is indicative of devel-
oping sight-threatening DR/DME45–47. Due to the fact that DR
progression could be detected not only between different DR
grades, but even within the same grade, our lesion-aware sub-
network has the potential to capture tiny progression of certain
kind of retinal lesions through follow-up of DR patients. Further
studies are needed to evaluate this application in real-world
clinical settings.

In previous studies, the deep learning systems were usually
trained directly end-to-end from original fundus images to the
labels of DR grades21,22,24, these end-to-end systems might fail to
encode the lesion features due to the black-box nature of deep
learning48. In our study, instead of direct end-to-end training
from fundus images to DR grades, an efficient lesion-aware sub-
network was introduced to increase the ability of capturing lesion
features. Due to the fact that embedding prior knowledge into the
end-to-end machine learning algorithms can regulate machine
learning models and shrink the search space49, and the oph-
thalmologists read fundus images based on the presence of
lesions, our DR grading network can leverage lesion features as
prior knowledge to enhance the performance of DR grading.
Previous studies, such as Michael D. Abràmoff et al.’s work50,
used multiple CNNs to detect hemorrhages, exudates, and other
lesions, and those detected lesion results were used to classify
referable DR by a classic feature fusion model. Differently, our
DeepDR network was trained end-to-end with the features
extracted from both the lesion-aware sub-network and the ori-
ginal image. In this way, our DR grading sub-network can further
exploit the features to minimize the training error, thus
improving grading results. As a result, DeepDR achieved a sen-
sitivity of 88.8% and specificity of 83.9% for mild NPDR detection
on the local validation dataset. Notably, DeepDR achieved the
diagnosis of all stages of DR with sufficient accuracy in real-word
datasets.

Despite the continuous optimization in digital fundus cameras,
aging, experience, lighting, and other non-biological factors
resulting from improper operation still results in high percentage
of low-quality fundus images, and reacquisition is time-
consuming and sometimes impossible51,52. Previous studies on
image quality assessment have focused on post hoc image data
processing21,22. In this study, a real-time image quality feedback
sub-network was implemented to facilitate the DR screening.
Based on the feedback information, the artificial intelligence-
assisted image quality assessment can reduce the proportion of
poor-quality images from 28.7% to 8.2%. Furthermore, with the
improvement of image quality, the diagnostic accuracy was sig-
nificantly improved, especially for mild DR. This real-time image
quality feedback function allows the operators to identify imageT
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quality issue immediately and the patient does not need to be
called back. It is a promising tool to reduce ungradable rate of the
fundus images, thus increasing the efficiency of DR screening.

The limitation of this study is, firstly, the single-ethnic cohort
used to develop the system. However, we used the publicly
available EyePACS dataset from the United States for external
validation and achieved satisfactory sensitivity and specificity.
Secondly, the lesion-aware sub-network was tested only on the
local validation dataset, because of the lack of lesion annotations
in external cohorts. Further external validation in multiethnic and
multicenter cohorts is needed to confirm the robustness of lesion
detection and DR grading of the DeepDR system.

In conclusion, we developed an automated, interpretable, and
validated system that performs real-time image quality feedback,
retinal lesion detection, and early- to late-stage DR grading. With
those functions, DeepDR system is able to improve image col-
lection quality, provide clinical reference, and facilitate DR
screening. Further studies are needed to evaluate deep learning
system in detecting and predicting DR progression.

Methods
Ethical approval. The study was approved by the Ethics Committee of Shanghai
Sixth People’s Hospital and conducted in accordance with the Declaration of
Helsinki. Informed consent was obtained from participants. The study was regis-
tered on the Chinese Clinical Trials Registry (ChiCTR.org.cn) under the identifier
ChiCTR2000031184.

Image acquisition and reading process. In the SIM project, retinal photographs
were captured using desktop retinal cameras from Canon, Topcon, and ZEISS
(Supplementary Table 1). All the fundus cameras were qualified by the organizer to
ensure enough quality for DR grading. The operators of the cameras had all
received standard training and the images were read by a centered reading group
consisting of 133 certified ophthalmologists. The members in the reading group
underwent training by fundus specialists and passed the tests. Original retinal
images were uploaded to the online platform, and the images of each eye were
assigned separately to two authorized ophthalmologists. They labeled the images
using an online reading platform and gave the graded diagnosis of DR (Supple-
mentary Fig. 2). The third ophthalmologist who served as the senior supervisor
confirmed or corrected when the diagnostic results were contradictory. The final
grading result was dependent on the consistency within these three ophthalmol-
ogists. At least 20% of the grading results would be randomly re-read to check the
consistency. The total eligibility rate of spot-check was equal to or greater than
90%. If the reading group encountered difficult cases, they could apply for con-
sultation from superior medical institutions. The overall disagreement rate in the
SIM dataset was 18.9%. The primary cause of the diagnostic divergence was the
decision between mild NPDR and non-DR.

For retinal lesion annotation, each fundus image was annotated by two
ophthalmologists. For each type of lesion, two ophthalmologists generated two
lesion annotations, respectively. We considered the two annotations to be valid if
the IoU between them was greater than 0.85. Otherwise, a senior supervisor would
check the annotations and give feedback to provide guidance. The image would be
re-annotated by the two ophthalmologists until the IoU was larger than 0.85.
Finally, we took the union of valid annotations as final ground truth segmentation
annotation.

Diagnostic criteria. DR severity was graded into five levels (non-DR, mild NPDR,
moderate NPDR, severe NPDR, or PDR, respectively), according to the Interna-
tional Clinical Diabetic Retinopathy Disease Severity Scale (AAO, October 2002)53.
Mild NPDR was defined as the presence of microaneurysms only. Moderate NPDR
was defined as more than just microaneurysms but less than severe NPDR, pre-
senting CWS, hard exudates, and/or retinal hemorrhages. Severe NPDR was
defined as any of the following: more than 20 intraretinal hemorrhages in each of
the 4 quadrants; definite venous beading in 2+ quadrants; prominent intraretinal
microvascular abnormalities (IRMA) in 1+ quadrant, and no signs of PDR. PDR
was defined as one or more of the following: neovascularization, vitreous/preretinal
hemorrhage53. DME was diagnosed if hard exudates were detected within 500 μm
of the macular center according to the standard of the Early Treatment for Diabetic
Retinopathy study54. Referable DR was defined as moderate NPDR or worse, DME,
or both. Based on the guidelines for image acquisition and interpretation of dia-
betic retinopathy screening in China55, the image quality was graded according to
standards defined in terms of three quality factors, artifacts, clarity, and field
definition56, as listed in Table 5. The total score was equal to the score for clarity
plus the score for field definition and minus the score for artifacts. A total score less
than 12 was considered as ungradable.T
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Architecture of the DeepDR system. The DeepDR system had three sub-net-
works: image quality assessment sub-network, lesion-aware sub-network, and DR
grading sub-network. Those sub-networks were developed based on ResNet41 and
Mask-RCNN57. Both ResNet and Mask-RCNN could be divided into two parts: (1)
feature extractor, which took images as input and output features, (2) task-specific
header, which took the features as input and generated task-specific outputs (i.e.,
classification or segmentation). Specifically, we chose to use the Mask-RCNN and
ResNet with the same feature extractor architecture, so the feature extractor of one
sub-network can be easily transferred to another.

The quality assessment sub-network can identify overall quality including
gradability, artifacts, clarity, and field issues for the input images. To train the
image quality assessment sub-network effectively, we initialized a ResNet with
weights pre-trained on ImageNet and pre-trained the ResNet to form the DR base
network. We utilized the weights of the convolution layers in the pre-trained DR
base network to initialize the feature extractor of the image quality assessment sub-
network. We assessed image quality in terms of multiple factors to determine if: (a)
the artifact covered the macular area or the area of artifact was larger than a
quadrant of the retinal image; (b) only Level II or wider vascular arch and obvious
lesions could be identified (Level II vascular arch was defined as the veins deriving
from the first bifurcation); (c) no optic disc or macula was contained in the image;
and (d) the image was not gradable.

The lesion-aware sub-network can generate lesion presence and lesion
segmentation masks of the input images. There were two modules in our lesion-
aware sub-network: one was the lesion detection module and the other was the
lesion segmentation module. The lesion detection module was a binary classifier
that predicted whether any kind of lesions exist in a quadrant of the retinal image,
as shown in Supplementary Fig. 3. The lesion segmentation module generated
mask images to identify different lesions existing in the retinal images, as shown in
Fig. 3B. We used ResNet and Mask-RCNN to form the lesion detection module and
lesion segmentation module, respectively. Then we transferred the pre-trained DR
base network to the lesion detection module by initializing the feature extractor of
lesion detection module using the feature extractor of pre-trained DR base
network, followed by fine-tuning the lesion detection module. Then we initialized
the feature extractor of lesion segmentation module by reusing the feature extractor
of the lesion detection module. The feature extractor layers of the lesion
segmentation module were then fixed, and the rest of the layers of the module were
updated during training. Non-maximum suppression was used in our lesion
segmentation sub-module to select the bounding box with the highest objectiveness
score from multiple predicted bounding boxes. Specifically, we first selected the
bounding box with the highest objectiveness score, and then compared the IoU of
this bounding box with other bounding boxes and removed the bounding boxes
with IoU > 0.5. Finally, we moved to the next box with the highest objectiveness
score and repeated until all boxes were either removed or selected.

The DR grading sub-network can fuse features from lesion-aware network and
generate final DR grading results. To retain as much lesion information from the
original retinal image as possible, we combined the pre-trained DR base network
with the feature extractor of the lesion segmentation module in order to capture
more detailed lesion features for DR grading. Then the weights in the extractors of
DR grading sub-network were fixed, and the classification header of sub-network
was updated during training.

The transfer learning assisted multi-task network was developed in our DeepDR
architecture to improve the performance of DR grading based on lesion detection
and segmentation. Due to the fact that DR grading inherently relies on the global
presences of retinal lesions that contain multi-scale local texture and structures, the
central feature of our multi-task learning method was designed to extract multi-
scale features encoding local textures and structures of retinal lesions, where the
transfer learning was used to improve the performance of DR grading task.
Meanwhile, we used hard-parameter sharing in lesion-aware sub-network, and all
the layers in the feature extractors of ResNet and Mask-RCNN are shared. Using
hard-parameter sharing was important to reduce the risk of overfitting58 due to the
limited number of lesion segmentation labels. Besides, sharing the pre-trained
weights can facilitate the training of both lesion detection task and lesion
segmentation task. Additional experimental results demonstrated that hard-
parameter sharing outperformed soft-parameter sharing for lesion segmentation is
shown in Supplementary Table 3.

Recommended computer configuration. Any desktop or laptop computer with
x86 compatible CPU, 10 GB or more of free disk space, and at least 8 GB main
memory is capable to run the DeepDR system. There is no specialized hardware
requirement, including GPU or any speed up card, to run the software. A powerful
computer with more CPU cores and a GPU will speed up the diagnosis procedure
significantly, while the diagnosis time on a typical laptop (i.e., with Intel I3 pro-
cessor, no GPU, more than 8 GB memory) is also acceptable (less than 20 s per
image).

Statistical analyses. The performances of DeepDR in assessing image quality,
retinal lesion detection, and grading DR were measured by the AUC of the receiver
operating characteristic curve generated by plotting sensitivity (the true-positive
rate) versus 1-specificity (the false-negative rate). The operating thresholds for
sensitivity and specificity were selected using the Youden index. The AUCs were
compared using binormal model methods59, where a two-sided P value of less than
0.05 was considered statistically significant. For lesion detection, AUC was calcu-
lated as a binary classification to determine if a quadrant contained a certain kind
of lesion. The performance of lesion segmentation was measured by IoU and F-
score.

For CWS, hard exudates, and hemorrhages, we used IoU to measure the
performance of segmentation network. The IoU was calculated as:

IoU A;Bð Þ ¼ A \ Bj j
A∪Bj j ð1Þ

where A and B were set of pixels in the retinal images (e.g., A was the segmented
lesion and B was the ground truth).

For microaneurysms, the F-score was used instead of the IoU score, because the
average diameter of microaneurysms in the retinal image was usually less than 30
pixels, minor change in the predicted map would result in a large change in IoU
score. F-score was calculated as:

F ¼ 2� tp
�� ��

2� tp
�� ��þ fp

�� ��þ fnj j ð2Þ

Table 5 Image quality scoring criteria.

Type Image quality specification Score

Artifact No artifacts 0
Artifacts are outside the aortic arch with scope less than 1/4 of the image 1
Artifacts do not affect the macular area with range less than 1/4 4
Artifacts cover more than 1/4 but less than 1/2 of the image 6
Artifacts cover more than 1/2 without fully covering the posterior pole 8
Cover the entire posterior pole 10

Clarity Only Level I vascular arch is visible 1
Level II vascular arch and a small number of lesions are visible 4
Level III vascular arch and some lesions are visible 6
Level III vascular arch and most lesions are visible 8
Level III vascular arch and all lesions are visible 10

Field definition Do not include the optic disc and macula 1
Only contain either optic disc or macula 4
Contain optic disc and macula 6
The optic disc or macula is outside the 1 papillary diameter and within the 2 papillary
diameter range of the center

8

The optic disc and macula are within 1 papillary diameter of the center 10

Level I vascular arch was defined as the first bifurcations of major trunk veins; Level II vascular arch was defined as the veins deriving from the first bifurcation; Level III vascular arch was defined as the
veins deriving from the second bifurcation. The total score was equal to the score for clarity plus the score for field definition and minus the score for artifact. A total score less than 12 was considered as
ungradable.
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P was the set of all predicted microaneurysms produced by the network, G
was the set of all microaneurysms annotated by ophthalmologists. tp ¼
p 2 P; j; 9g 2 G; IoUðp; gÞ≥ 0:5� �

represented the set true-positive predicts of
microaneurysms, fp ¼ p 2 P; j; 8g 2 G; IoUðp; gÞ<0:5� �

represented the set
false-positive predicts of microaneurysms, fn ¼
g 2 G; j;8p 2 P; IoUðp; gÞ<0:5� �

represented the set of false-negative
predictions of microaneurysms. �j j represented the cardinality (size) of a set.

Python version 3.7.1 (Python Software Foundation, Delaware, USA) was used
for all statistical analyses in this study. The following third-party python packages
were used: OpenCV version 2.4.3 (Intel Corporation, California, USA) was used for
image loading and decoding image. Pytorch version 1.0.1 (Facebook,
Massachusetts, USA) was used for convolutional neural network computing. Scikit-
learn version 0.20.0 (David Cournapeau, California, USA) was used for calculating
AUC. Pandas version 0.23.4 (Wes McKinney, Connecticut, USA) was used for
loading ground truth and metadata. NumPy version 1.15.4 (Travis Oliphant, Texas,
USA) was used for calculating IoU and F-score.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The export of human-related data is governed by the Ministry of Science and Technology
of China (MOST) in accordance with the Regulations of the People’s Republic of China
on Administration of Human Genetic Resources (State Council No.717). Request for the
non-profit use of the fundus images and related clinical information in the SIM, NDSP,
and CNDCS cohorts should be sent to corresponding author Weiping Jia. The joint
application of the corresponding author together with the requester for the data sharing
will be generated and submitted to MOST. The data will be provided to the requester
after the approval from MOST. The EyePACS dataset is publicly available at https://
www.kaggle.com/c/diabetic-retinopathy-detection/data. The rest of the data are available
from the corresponding author upon reasonable request.

Code availability
The code being used in this study for developing the algorithm is provided at https://
zenodo.org/badge/latestdoi/334570111.
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