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Regulatory T cells (Tregs) are key mediators of the immune system. MicroRNAs (miRNAs)  
are a family of ~22 nucleotide non-coding RNAs that are processed from longer precur-
sors by the RNases Drosha and Dicer. miRNA regulates protein expression posttran-
scriptionally through mRNA destabilization or translational silencing. A critical role for 
miRNA in Treg function was initially discovered when both Dicer and Drosha knockout 
(KO) mice were found to develop a fatal autoimmune disease phenotypically similar to 
Foxp3 KO mice.
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inTRODUCTiOn

Regulatory T cells (Tregs), CD4+ 25+ Foxp3+ cells, are key mediators of the immune system, which 
function to suppress self-reactive lymphocytes (1) and limit immune responses to chronic pathogens 
and commensal bacteria (2). Treg development and suppressive function are tightly regulated. Genetic 
mutations that prevent Treg lineage specification lead to severe autoimmune diseases, whereas 
expanded Treg numbers lead to global immunosuppression and inhibit the clearance of tumors 
and opportunistic infections (3, 4). Allogeneic hematopoietic stem cell transplantation (HSCT) 
is a curative option for many hematological malignancies. Graft-versus-host disease (GVHD) (5) 
occurs in 40–70% of recipients, with skin, liver, and gut representing major GVHD target organs 
(6). Adoptive Treg transfer is effective at preventing autoimmunity, organ rejection, and GVHD in 
preclinical models (1, 5), and Treg therapy reduces disease in human clinical trials in GVHD and 
stabilized C-peptide levels for >2 years in several individuals with diabetes (7–10).

MicroRNAs (miRNAs) are a family of ~22 nucleotide non-coding RNAs that contain a short 
seed region complementary to mRNAs (typically the 3′ UTR) sequences. miRNA regulates gene 
expression posttranscriptionally through repression of protein production by mRNA destabilization 
or translational silencing. miRNAs are produced as longer primary transcripts (pri-miRNAs) by 
RNA polymerase II or III. pri-miRNAs are processed into mature miRNAs by the RNases Drosha 
and Dicer and are incorporated into the RNA-induced silencing complex. miRNAs instruct the 
differentiation, suppressive function, and stability of thymically derived Treg (tTreg) and Treg 
induced in the periphery (pTreg) or in vitro (iTreg) (11–14). Tregs exhibit a distinct miRNA profile 
compared with conventional T cells (15), and individual miRNA or miRNA clusters contribute to 
Treg biology through distinct mechanisms. The expression of the Treg defining transcription factor 
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TAble 1 | Role of microRNA (miRNA) in regulatory T cell (Treg) induction, Foxp3 
expression, and suppressive function.

miRnA effect on development Mediated by Reference

miRnA involved in tTreg development
miR-155 Increases expression Suppressor of cytokine 

signaling 1 (SOCS1)
(61)

miR-146a Decreased STAT1 (54)
miR-146b Decreases expression TRAF6/NF-κB (65)

miRnA involved in iTreg development
miR-15b/16 Increased Mammalian target of 

rapamycin (mTor)/Rictor
(30)

miR-99a Increased mTor (29, 47)
miR-126 Increased p85β (32)
miR-150 Increased mTor (31)
miR-155 Increased SOCS1 (61)
miR-17 Decreased TGFβRII (40)
miR-100 Decreased SMAD2/3 (31)

miRnA controlling Foxp3 mRnA stability/translation
miR-15a-16 Decrease Direct effect (48)
miR-24 Decrease Direct effect (47)
miR-31 Decrease Direct effect (36)
miR-210 Decrease Direct effect (47)
miR-10a Increase Bcl-6 (38, 45)
miR-95 Increase Unknown (47)

miRnA effects on suppression-related molecules
miR-15a-16 Decreases suppression CTLA-4 (48)
let-7d Increases suppression Exosomes (67, 72)
miR-155 Increases Teff 

susceptibility to Treg
Unknown (73)
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Foxp3 itself shapes the Treg miRNA profile. Moreover, miRNAs 
promote Foxp3 expression during iTreg generation. Finally, 
it is now widely recognized that expression of Foxp3 does not 
endow a terminal state of differentiation, and Tregs have a degree 
of plasticity, and miRNAs are required to integrate the external 
signals that drive this phenomena (16). This review focuses on 
how our knowledge of Treg pathways controlled by miRNA can 
be applied to improve the efficacy of Treg cellular therapy, with 
an emphasis on GVHD.

miRnA effects on Thymic Treg (tTreg) 
Differentiation
In mouse models (17–20), the deletion of miRNAs by lineage-
specific ablation of Dicer or Drosha in T  cells or Treg specifi-
cally reduces the number of tTreg and pTreg precipitating fatal 
multiorgan inflammatory disease. Cell autonomous miRNAs 
are required for tTreg development in the thymus and Foxp3 
induction by TGF-β during iTreg generation (19). These results 
have been confirmed (21) using Tie2Cre- and CD4Cre-mediated 
Dicer deletion mouse models where miRNA depletion in either 
hematopoietic/endothelial cells or thymocytes leads to a twofold 
to threefold decrease in Foxp3+ Treg frequencies.

miR-155, controlled by Dicer, is regulated by Foxp3 that binds 
the host gene bic promoter region (19, 22–24). Murine bic/miR-
155 deficiency resulted in reduced thymic and splenic Treg as a 
consequence of impaired tTreg development but did not alter 
Treg function or in vivo homeostatic proliferation (Table 1) (25). 
However, as discussed below, miR-155 knockout (KO) Tregs have 

inferior Foxp3 expression and stability as well as fitness compared 
with wild type Tregs (24) but without defective in vitro TGF-β-
mediated Foxp3 induction in CD4+ T  cells (25). miR-155 KO 
mice have a reduced proportion and absolute number of Foxp3 
cells, accompanied by diminished STAT5 signaling, downstream 
of the IL-2R complex, and higher suppressor of cytokine signaling 
1 (SOCS1), a negative regulator of STAT5 signaling (24). Indeed, 
miR-155 effects are partially mediated by targeting SOCS1, a 
negative regulator of the IL-2 signaling pathway with a crucial 
role in Treg development (26). In a positive feedback loop, it has 
been suggested that during tTreg differentiation, induction and 
upregulation of Foxp3 expression reciprocally drive high expres-
sion of miRNA-155 (24). Similarly, the C-type lectin receptor, 
CD69, was found to control tTreg development, peripheral Treg 
homeostasis, and iTreg generation via STAT5 signaling effects; 
miR-155 induced CD69 (27). Similarly, in human, miR-155 (and 
miR-124a) was shown to repress the histone deacetylase, sirtuin-1, 
resulting in higher Foxp3 expression and iTreg generation (28). 
Strategies to augment miR-155 and miR-124a or conversely to 
downregulate SOCS1 should increase STAT5 signaling and Treg 
responses to IL-2 (Figure 1A).

miRnAs effect on the Differentiation  
of In Vitro induced Treg (iTreg)
Dicer also regulates iTreg generation and differentiation 
(Figure 1B) (19). In vitro TGF-β induces Foxp3 less efficiently 
in naïve Dicer-deficient CD4+ T-cells compared with wild type 
counterpart with similar results observed in mice harboring 
CD4-restricted Drosha or Dicer deficiencies (17). With Drosha or 
Dicer deficiency, the observed decreased Foxp3 expression after 
TGF-β stimulation could not be overcome by retinoic acid (RA) 
addition. These studies provided a rationale for an extensive miR 
screen, which lead to the identification of positive regulators of 
iTreg generation (29). miR-10b, miR-99a, miR-130a, miR-146b, 
miR-150, and miR-320 were amongst those found to drive Treg 
differentiation. With the multitude of miRNAs revealed by the 
screening, it was proposed that an miRNA network, rather than 
individual miRNAs, controls iTreg differentiation. For example, 
miR-99a cooperates with miR-150 to repress the expression of 
the mammalian target of rapamycin (mTor), a known inhibitor 
of iTreg differentiation (29). miR-150 antagomir exposure led to 
a reduced iTreg differentiation. Whereas miR-99a expression was 
upregulated by RA exposure and repressed mTor by binding to 
the 3′ UTR (29), miR-150 only repressed mTor in the presence of 
miR-99a (29). Similarly, miR-15b-16 (30) and miR-15a-16 func-
tion to reduce mTor signaling. miRNA-dependent mTor pathway 
downregulation supports human iTreg generation (31) as 
evidenced by inhibition of iTreg differentiation in CD4+ T-cells 
overexpressing miR-100. The specific miR-100 editing (C-to-U 
transversion) changes the miR-100 target from mTor to SMAD2, 
augmenting TGF-β signaling and iTreg differentiation. mTor 
and the PI3K–AKT pathways were identified as miR-126 targets 
in both mouse and human Treg (32). miR-126 inhibits PI3K 
p85β, responsible for AKT upregulation, and in so doing, aug-
ments Foxp3 and iTreg differentiation. Conversely, miRNA-126  
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FiGURe 1 | MicroRNA (miRNA) integrates multiple pathways in regulatory T cell (Treg). (A) IL-2 signaling is required for Treg differentiation and is enhanced by 
miRNA-mediated downregulation of the IL-2R signaling inhibitors, suppressor of cytokine signaling 1 (SOCS1) (miR-155) and STAT3 (miR-21); (b) miRNA expression 
controls Treg induction by negatively regulating TCR signal strength via downmodulation of PI3Kβ (miR-126) and mammalian target of rapamycin (mTor)/Rictor 
(miR-99/150, miR-15-16, and Let-7); (C) Foxp3 mRNA stability and translation can also be directly negatively regulated by miRNA via (miR-15-16a, miR-24, and 
miR-210) or positively regulated through indirect mechanisms (miR-10, via Bcl-6); (D) miRNA also controls Treg plasticity by regulating the expression of transcription 
factors required for Foxp3 transcription, including SMADs (miR-100) and EOS (miR-17).
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silencing reduced iTreg generation and Foxp3 expression via 
enhanced p85β, pAKT, and mTOR, consistent with a critical 
effect of PI3K/Akt pathway on Treg Foxp3 expression (33, 34). 
As in tTreg generation, miR-155 facilitates iTreg generation (35) 
by downregulating SOCS1 and hence promoting JAK/STAT 
signaling (26).

Not all miRNAs have a positive effect on iTreg differentiation. 
miR-31 and the miR-17–miR-92 cluster function as negative 
regulators of iTreg differentiation (29). miR-31 represses human 
Treg Foxp3 expression (36) while the miR-17–miR-92 cluster 
represses iTreg formation (37–40). miR-17 directly targets TGF-β 
receptor II and the cAMP-responsive element binding protein 1, 
both implicated in bolstering Treg differentiation. It has been pro-
posed that strong CD28 signals inhibit Foxp3 induction, which 
may be influenced by costimulatory signaling pathways that 
induce miR-17–miR-92 (41). Similarly, miR-23–miR-27–miR-24 
cluster overexpression impairs TGF-β-mediated Treg induction 
(42). Together, these data identify miRNA agonist targets (miR-
99a, miR-150, iR-15b-16, miR-100, miR-126, and miR-155) that 
can be exploited to increase iTreg generation. Moreover, miRNA 
(miR-31, miR-17–miR-92, and miR-23–miR-27–miR-24) 
antagomir treatment of T cells in vitro may be exploited to sup-
port iTreg generation, while in vivo treatment may foster pTreg 
generation.

miRnA effects on Foxp3 expression
miR-10a, which is induced in Treg following RA and TGF-β expo-
sure, is one of few miRNAs exclusively expressed in tTreg (38, 43, 44).  
Although not required for Foxp3 expression, miR-10a contributes 
to Treg stability by targeting the transcriptional repressor Bcl-6 

resulting in high and sustained Foxp3 (Figure 1C) (38, 43, 45).  
In this regard, miR-10a antagomir-treated Tregs exhibit decreased 
Foxp3 protein expression (46). In addition, miR-95 is also highly 
expressed in human Treg and, through an unknown mechanism, 
enhances Foxp3 mRNA and protein expression (47).

By contrast, miRNA can also function as negative regula-
tors of Foxp3 expression (47, 48). Foxp3 is a direct target of 
miR-15a-16, which is expressed at low levels in human Treg 
(40). Forced overexpression of this miRNA in Treg markedly 
reduced Foxp3 and CTLA-4 expression, concordant with 
reduced suppressor function, whereas miR-15a-16 deletion in 
conventional T-cells upregulated Foxp3 and CTLA-4 expres-
sion (40). Similarly, forced expression of either miR-24 or miR-
210 in Treg resulted in a twofold decrease in Foxp3 expression 
demonstrating Foxp3 as a direct target of these miRNAs (47). 
Thus, to increase Foxp3 expression and promote Treg stabil-
ity and suppressor function, approaches can be undertaken 
to increase miR-10a or miR-95 and/or decrease miR-15a-17, 
miR-24, or miR-210.

miRnA Regulation of Treg Stability
As briefly discussed earlier, Tregs exhibit some degree of plas-
ticity, especially with the Th17 subset of CD4+ T  cells whose 
differentiation, like inducible Treg, is driven by TGF-β (49). 
miRNAs also have been shown to be critical in the maintenance 
of Treg stability that is required for the preservation of suppres-
sor function during inflammation that can occur as a result of 
GVHD and autoimmune disease. Thus, the following miRNAs 
present potential new targets for the regulation of Treg stability 
in vivo.
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miR-21, a key regulator of Treg stability (15, 36, 50), is more 
highly expressed in Treg compared with conventional T-cells 
and regulates Foxp3 expression and Treg proliferation (36, 50).  
A significant reduction in miR-21 and Foxp3 mRNA was noted 
in tTreg from rheumatoid arthritis patients compared with 
healthy controls (50) and was accompanied by increased STAT3, 
decreased STAT5 protein expression, and skewing toward 
Th17 cells. These data led to the hypothesis that miR-21 is part 
of a negative feedback loop dysregulated during disease that 
con tributes to Th17 and Treg imbalance in rheumatoid arthritis 
patients (50). Evidence supports that miR-21 regulates Foxp3 
expression and Treg homeostasis by modulating STAT3 and 
STAT5 (36, 50). Peptide nucleic acid (PNA) inhibition was used 
to block miR-21 expression to delineate its effects on human Treg 
functions (15). Although PNA-inhibited Treg failed to proliferate 
under anti-CD3 mAb stimulation conditions (15), suppression 
was unchanged, supporting the contention that miR-21 expres-
sion promotes Treg stability and homeostasis.

Foxp3 regulates gene expression by recruiting corepressors and 
coactivators, and miRNA directly regulates Treg function by con-
trolling the expression of these cofactors. For example, IL-6, which 
is an established mediator of acute GVHD in mice and patients 
(51) and required (with TGF-β) to induce Th17 cells, induces the 
expression of miR-17. miR-17 targets Eos, a transcription factor 
that cooperates with Foxp3 to mediate suppressor gene expression 
(Figure 1D) (52). Decreased Eos expression causes derepression 
of effector cytokine genes and exuberant cytokine responsiveness. 
In line with this, transgenic miR-17 overexpression exacerbates 
pathology in a murine colitis model (52). Conversely, miR-146a 
targets STAT1 expression and minimizes IFNγ/STAT1-mediated 
loss of Treg-suppressive function. This plasticity is mediated by 
T-bet, the Th1-specifying transcription factor, which promotes 
Treg CXCR3 expression leading to their accumulation in type 1 
inflammatory sites (53, 54). Strategically generating Tregs that 
have low miR-17, miR-16a/16, or miR-142-3p or high miR-146a 
or let-7d expression may represent an approach to increase Treg 
suppressor function.

Four other miRNA, miR-7, miR-18a, miR-34a, and miR-155, 
have been shown to contribute to the stabilization of Treg sup-
pressor function (47, 55, 56). It is suggested that the activity of 
these miRNA is mediated by Treg expression of SATB1, a genome 
organizer that regulates chromatin structure and gene expression 
(57). In mature Tregs, Foxp3 directly suppresses the Satb1 locus. 
SATB1 is required for Treg suppressive function and to prevent the 
acquisition of helper T cell characteristics. Under non-activating 
conditions, Treg SATB1 is expressed at low levels; its forced expres-
sion results in complete loss of suppression to a level comparable 
with Foxp3 deficiency (55). In addition, T cell-specific deficiency 
of Satb1 impaired Treg-super-enhancer activation and Treg signa-
ture gene expression in thymic Treg precursors, resulting in severe 
autoimmunity due to Treg deficiency (58). Foxp3 repression of 
SATB1 is achieved by inducing miRNA (miR-155, miR-21, miR-7,  
miR-34a, and miR-18a) binding to the Satb1 3′ untranslated 
region, indirectly suppressing SATB1. Thus, increased expression 
of these miRs may be particularly useful in inflammatory diseases 
such as GVHD by promoting Foxp3 expression and function.

effect of miRnA on Treg Fitness
MicroRNAs are instrumental in maintaining Treg fitness and 
survival. As mentioned earlier, miR-155 has proven functionally 
relevant to Treg fitness (a measure of survival/death and expan-
sion) (59) with miR-155 KO mice having markedly reduced Treg 
number and impaired Treg proliferation (24, 60) associated with 
impaired STAT5 activation (24, 61) and increased SOCS1 (61). 
Conversely, miR-155 upregulation increases IL-2 sensitivity, pro-
moting Treg fitness and proliferation (24, 59). miR-17–miR-92  
also assists in maintaining Treg fitness (62). Treg-specific miR-
17–miR-92 deletion increased Treg apoptosis and reduced prolif-
eration, causing loss of Foxp3 expressing Treg in aged mice (63). 
By contrast, elevated miR-17–miR-92 in murine lymphocytes 
increased proliferation and reduced cell death (64), resulting in 
favored Treg accumulation in lymph nodes and non-lymphoid 
target tissues (63). By contrast, miR-146b impedes human Treg 
homeostasis (65), offering a potential therapeutic target that 
could be exploited to augment Treg fitness and survival. miR-146b  
antagomir treatment of Treg enhanced TRAF6 and the TRAF6–
NF-κB–Foxp3 axis, resulting in improved Treg survival and 
proliferation (65). Thus, superior GVHD control may be acquired 
by increasing Treg fitness by upregulating miR-155 or reducing 
miR-17 or miR-146b expression.

miRnA effects on Genes That Contribute 
to Treg Suppressive Function
MicroRNA also regulates genes directly involved in Treg-
mediated suppression. miR-15a/16 inhibits CTLA-4 expression 
(Figure  1C), precluding optimal Treg-mediated inhibition of 
dendritic cell (DC) maturation (48, 66). miR-142-3p inhibits 
expression of adenylyl cyclase 9, responsible for generating the 
inhibitory second messenger, cAMP (48, 66). Treg inhibition of 
Th1 proliferation and cytokine secretion in vivo has been demon-
strated after transfer of exosomes containing suppressive miRNA, 
including let-7d, shown to be required for Treg-mediated amelio-
ration of murine colitis (67).

COnClUDinG ReMARKS

The potential of miRNA therapeutics in human Treg cellular 
therapy was demonstrated by ex vivo inhibition of miR-146b 
that enhanced in vitro tTreg function and, upon adoptive tTreg 
transfer, superior in vivo xenogeneic GVHD lethality compared 
with scrambled miR control treatment (65). Clinical GVHD 
trials registered in http://clinicaltrials.gov employ in  vitro gen-
erated iTreg and IL-10, TGFβ-producing CD4+ Foxp3− Treg 
type 1 (Tr1) cells (NCT01634217: MacMillan; NCT03198234: 
Roncarolo). Stability of Foxp3 expression and suppressive func-
tion are of paramount concern for Treg therapies in the intense 
GVHD inflammatory environment and would be amenable to 
miR manipulation. Similar Treg therapies are being used to treat 
diabetes (7) and could be used to restore normal expression of 
miR-342, miR-191, and miR-510 in Treg from diabetes patients 
(68). In addition, while outside the purview of this review, it 
should be noted that manipulating miRNA expression in other 
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cell types (e.g., DCs) can have a significant impact on Treg induc-
tion and stability.

Regulatory T cell therapy, especially for GVHD, may benefit 
from miRNA therapeutics. First, because Tregs can be substan-
tially expanded in vitro, permitting a higher Treg:Teffector ratio 
needed for optimal GVHD suppression and miRNA increases or 
knockdown can be tightly controlled. By treating just the cell of 
interest, the miR reagents needed are minimized. In contrast to 
autoimmunity and organ transplantation, acute GVHD typically 
is high risk in 1–3  months post-allo-HSCT until central and 
peripheral tolerance mechanisms become operative. Although 
clinical development of miRNA-based therapeutics has been 
slow, progress is being made. Locked nucleic acid-based miRNA 
and antagomirs prolong half-life, miRNA encapsulated in anionic 
nanoparticles greatly increases uptake, and antibodies can be 
incorporated into the nanoparticles to aid targeting, providing 
a new avenue for maximizing the efficacy and safety of Treg 
infusional therapies for GVHD (69–71).
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