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Abstract

Background: microRNAs or miRNAs are small non-coding regulatory RNAs that play important functions in the regulation of
gene expression at the post-transcriptional level by targeting mRNAs for degradation or inhibiting protein translation.
Eugenia uniflora is a plant native to tropical America with pharmacological and ecological importance, and there have been
no previous studies concerning its gene expression and regulation. To date, no miRNAs have been reported in Myrtaceae
species.

Results: Small RNA and RNA-seq libraries were constructed to identify miRNAs and pre-miRNAs in Eugenia uniflora. Solexa
technology was used to perform high throughput sequencing of the library, and the data obtained were analyzed using
bioinformatics tools. From 14,489,131 small RNA clean reads, we obtained 1,852,722 mature miRNA sequences representing
45 conserved families that have been identified in other plant species. Further analysis using contigs assembled from RNA-
seq allowed the prediction of secondary structures of 25 known and 17 novel pre-miRNAs. The expression of twenty-seven
identified miRNAs was also validated using RT-PCR assays. Potential targets were predicted for the most abundant mature
miRNAs in the identified pre-miRNAs based on sequence homology.

Conclusions: This study is the first large scale identification of miRNAs and their potential targets from a species of the
Myrtaceae family without genomic sequence resources. Our study provides more information about the evolutionary
conservation of the regulatory network of miRNAs in plants and highlights species-specific miRNAs.
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Introduction

Eugenia uniflora is a tropical fruit tree native to South America.

The shrubby tree produces edible cherry-like fruits, which are

locally known as pitanga or the Brazilian cherry. This species

belongs to the Myrtaceae family, which is characterized by the

presence of tannins, flavonoids, monoterpenes and sesquiterpenes

whose presence and concentration varies between specimens from

different geographical locations [1–3]. Extracts from pitanga

leaves contain interesting biological properties that have been

reported in several studies, and pitanga juice is used in folk

medicine as a diuretic, antirheumatic, antipyretic, antidiarrhetic

and antidiabetic [4–9]. E. uniflora is also an important ecological

model to study because it grows in areas of medium and large

levels of rainfall and can also be found in different vegetation types

and ecosystems [10]. The variation in the metabolite concentra-

tion and the adaptability to different environments observed in E.

uniflora indicating that these are the result of the transcriptional

regulation of many genes involved in metabolic and signaling

pathways.

MicroRNAs (miRNAs) are small non-coding regulatory RNAs

widely found in unicellular and multicellular organisms that act as

regulators of gene expression at the post-transcriptional level on

genes containing miRNA target sites [11]. Mature miRNAs are

single-stranded RNA molecules of approximately 21 nucleotides

(nt) in length processed from a precursor molecule (pre-miRNA)

[12]. To regulate protein-coding genes, the mature miRNA binds

with perfect or imperfect complementarity to sites in the 59 or 39

untranslated regions (UTR) or coding sequences (CDS) of genes,

which leads to mRNA degradation or translation inhibition [13–

14]. In plants, miRNAs have diverse biological functions and are

involved in the regulation of optimal growth and development as

well as other physiological processes, including abiotic and biotic

stress responses [15]. Several studies showed that many miRNAs

are conserved across different plant families [16–17]. However,

family- and species-specific miRNAs that are expressed in lower
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levels and probably have evolved more recently have been

reported [18].

In the present study, in order to evaluate the importance of

miRNAs in the regulation of gene expression and metabolic

pathways in E. uniflora, we constructed small RNA (sRNA) and

polyA RNA-seq libraries from leaves and sequenced the libraries

with high throughput Solexa technology. The sequencing data

were analyzed to identify conserved and novel miRNAs and their

respective targets. This work represents the first report of miRNAs

identified in Myrtaceae.

Methods

Plant Material and RNA Isolation
Total RNA was isolated from E. uniflora leaves using the CTAB

method [19]. RNA quality was evaluated by electrophoresis on a

1% agarose gel, and quantification was determined using a

NanoDrop spectrophotometer (NanoDrop Technologies, Wil-

mington, DE, USA).

Deep Sequencing
Total RNA (.10 mg) was sent to Fasteris SA (Plan-les-Ouates,

Switzerland) for processing. One sRNA library was constructed

and sequenced using the Illumina HiSeq2000 platform. Briefly,

the construction of the sRNA library consisted of the following

successive steps: acrylamide gel purification of the RNA bands

corresponding to a size range of 20–30 nt; ligation of the 3p and

5p adapters to the RNA in two separate subsequent steps, each

followed by acrylamide gel purification; cDNA synthesis followed

by acrylamide gel purification; and a final step of PCR

amplification to generate a cDNA colony template library for

Illumina sequencing.

The polyadenylated transcript sequencing (RNA-seq) was

performed using the following successive steps: poly-A purification;

cDNA synthesis using a poly-T primer shotgun method to

generate inserts of 500 nt, 3p and 5p adapter ligations; pre-

amplification; colony generation; and sequencing. The Illumina

output data included sequence tags of 100 bases.

Accession Numbers
Sequencing data are available at the NCBI Gene Expression

Omnibus (GEO) ([http://www.ncbi.nlm.nih.gov/geo]). The ac-

cession number GSE38212 contains the sequence data from the

RNA-seq and sRNA libraries derived from E. uniflora leaves.

Data Analysis
The overall procedure for analyzing Illumina small libraries is

shown in Figure S1. All low quality reads with FASTq values

below 13 were removed, and 59 and 39 adapter sequences were

trimmed using the Genome Analyzer Pipeline (Illumina) at

Fasteris SA. The remaining low quality reads with ‘n’ were

removed with PrinSeq script [20]. Sequences shorter than 18 nt

and larger than 25 nt were excluded from further analysis. Small

RNAs derived from Viridiplantae rRNAs, tRNAs, snRNAs and

snoRNAs deposited at the tRNAdb [21], SILVA rRNA [22], and

NONCODE v3.0 [23] databases and from Rosales mtDNA and

cpDNA sequences deposited at the NCBI GenBank database

[(http://ftp.ncbi.nlm.nih.gov)] were identified by mapping with

Bowtie [24].

After cleaning the data (low quality reads, adapter sequences),

the RNA-seq data were assembled into contigs using the CLC

Genome Workbench version 4.0.2 (CLCbio, Aarhus, Denmark)

algorithm for de novo sequence assembly using the default

parameters (similarity = 0.8, length fraction = 0.5, insertion/dele-

tion cost = 3, mismatch cost = 3). In total, 170,568 contigs were

assembled and used as a reference for the discovery of pre-miRNA

and target sequences.

Identification of Conserved and Novel miRNAs
In order to determine conserved plant miRNAs, small RNA

sequences were aligned with known non-redundant Magnolio-

phyta miRNAs deposited at miRBase (Release 18, November

2011) using Bowtie. Complete alignment of the sequences was

required, and no mismatches were allowed. To search for novel

miRNAs, small RNA sequences were matched against contigs

obtained through de novo assembly of transcripts from mRNA

sequences of E. uniflora leaves using SOAP2 [25]. The SOAP2

output was filtered with an in-house filter tool (FilterPrecursor) to

identify candidate sequences as miRNA precursors using an

anchoring pattern of one or two blocks of aligned small RNAs with

perfect matches. The selected candidate precursors were manually

inspected using the software Tablet [26] to visualize the presence

of the anchoring pattern. As miRNA precursors have a

characteristic hairpin structure, the next step to select candidate

sequences included secondary structure analysis by RNAfold with

the annotation algorithm from the UEA sRNA toolkit [27]. In

addition, perfect stem-loop structures should have the miRNA

sequence at one arm of the stem and a respective anti-sense

sequence at the opposite arm. In the present study miRNAs were

named in two different ways: (i) miR000, when corresponding to a

family with two or more miRNA loci and (ii) MIR000, to design a

single locus. Finally, precursor candidate sequences were checked

using the BLAST algorithm from miRBase (www.mirbase.org).

Validation of miRNA by RT-PCR
In order to validate predicted miRNAs, a series of RT-PCR

were performed in RNA isolated from leaves of three individuals

of E. uniflora occurring in the Grumari native protected area in Rio

de Janeiro, Brazil. Among the analyzed miRNAs seventeen

corresponded to conserved miRNAs (eun-MIR156, eun-

MIR159, eun-MIR160, eun-MIR166, eun-MIR167-1, eun-

MIR167-2, eun-MIR167-3, eun-MIR167-4, eun-MIR395, eun-

MIR396-1, eun-MIR396-2, eun-MIR397-1, eun-MIR397-2, eun-

MIR482-1, eun-MIR482-2, eun-MIR530, eun-MIR827) and ten

were novel miRNAs (eun-MIR001-1, eun-MIR001-2, eun-

MIR004-2, eun-MIR005, eun-MIR006, eun-MIR008, eun-

MIR009, eun-MIR012, eun-MIR013, eun-MIR014). The stem-

loop primer, used for miRNA cDNA synthesis, was designed

according to Cheng et al. [28]. The forward miRNAs primers were

designed based on the full mature miRNA sequences and the

reverse primer was the universal reverse primer for miRNA. The

RT-PCR was performed according the conditions used by

Kulcheski et al. [29]. Briefly, reactions were completed in a

volume of 20 mL containing 10 mL of diluted cDNA (1:100),

0.025 mM dNTP, 1X PCR Buffer, 3 mM MgCl2, 0.25 U Hot

Start Taq DNA Polymerase (Promega) and 200 nM of each

reverse and forward primer. Samples were analyzed in biological

triplicate in a 96-well plate, and a no-template control was

included. The PCR conditions were performed in an ABI 7500

Real-Time PCR System (Applied Biosystems). The PCR products

were resolved on a 2% agarose gel and analyzed using Quantity

One software (Bio-Rad).

Prediction of miRNA Targets
Previously assembled mRNA contigs were clustered using the

Gene Indices Clustering Tools (http://compbio.dfci.harvard.edu/

tgi/software/) [30] to reduce any sequence redundancy. The

clustering output was passed to the CAP3 assembler [31] for

MicroRNAs in a Myrtaceae Species
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multiple alignment and consensus building. Contigs that did not

reach the set threshold and fell into any assembly remained as a list

of singletons.

The prediction of target genes for the most abundant mature

miRNAs from the conserved and novel pre-miRNAs was

performed by psRNAtarget [32]. The program uses a 0–5 scale

to indicate the complementarity between miRNA and their target,

with the smaller numbers representing higher complementary and

zero corresponding to a perfect complementation. Default

parameters with an expectation value of 4 and E. uniflora

assembled unigenes longer than 600 bp were used. Candidate

RNA sequences were then annotated by assignment of putative

gene descriptions based on sequence similarity with previously

identified genes annotated with details deposited in the protein

database of NR and the Swiss-Prot/Uniprot protein database

using BLASTx implemented in blast2GO v2.3.5 software [33].

The annotation was improved by the analysis of conserved

domains/families using the InterProScan tool and Gene Ontology

terms as determined by the GOslim tool from blast2GO software.

At the same time, the orientations of the transcripts were obtained

from BLAST annotations.

Finally, to verify if the genes targeted by the identified miRNAs

regulate any metabolic pathways involved in the secondary

metabolites synthesis, we obtained the enzyme EC numbers for

each target gene from the blast2GO annotation. These codes were

uploaded to iPATH2 server [34] to generate metabolic pathway

maps.

Results

E. uniflora RNA Library Sequencing
To identify conserved and novel miRNAs in E. uniflora, sRNA

library was constructed from leaves and sequenced using Solexa

high-throughput technology. After removing low quality sequenc-

es, those without inserts, or those with adapter contaminants or

lengths outside of the 18–25 nt range, a total of 14,849,131 reads

were obtained (Table 1). The number of reads with different

lengths in the redundant and non-redundant sRNA datasets is

shown in Figure 1 and Table S1. The most abundant sRNA

species contained 21 nt, whereas the highest sequence diversity

was observed in the 24-nt fraction. Approximately 6.55% of the

reads matched other types of non-coding sRNAs, such as rRNAs,

tRNAs, snRNAs or snoRNAs, and 9.45% matched organellar

DNA (Table 2).

As there is no genome sequence available for E. uniflora, we

sequenced the mRNA transcriptome of the E. uniflora leaf for use

as a reference sequence in further analyses. The pooled mRNA-

seq yielded 16,759,528 reads, which were imported into the CLC

Genomics Workbench and de novo assembled into 170,568 contigs

with an average length of 306 bp. Contigs and non-assembled

reads with minimum lengths of 100 bp were further considered.

The contigs ranged in size between the minimum set threshold of

100 bp and 7,808 bp (N50 = 447 bp), with 22,308 contigs more

than 500 bp in length.

Identification of Conserved miRNAs in E. uniflora
There are 4,677 miRNAs from 47 Magnoliophyta species

deposited in miRBase. To identify conserved miRNAs in E.

uniflora, the small RNA library was matched against a set of 2,585

unique, mature plant miRNA sequences from the database. In

total, 1,852,722 reads perfectly matched 204 known miRNAs

(Figure 2 and Table S2). All identified sequences are distributed in

45 miRNA families, with an average of approximately 4 miRNA

members per family. The largest family was miR166 with 21

members, which include isoforms found in several plant species.

The miR156 (19 members), miR396 (15 members) and miR395

(14 members) families were the second, third and fourth largest

miRNA families, respectively. Of the remaining miRNA families,

23 contained 2 to 10 members, and 18 were represented by a

single member (Figure 2).

Figure 1. Length distribution and diversity of small RNA reads
in the E. uniflora leaf library.
doi:10.1371/journal.pone.0049811.g001

Table 1. Summary of data from sequencing of E. uniflora
small RNA library.

Type Number of reads Percentage (%)

Total reads* 14,849,131 100

18–25 nt 12,759,506 86

,18 nt 1,554,975 10

.25 nt 534,650 4

*Reads with high quality with lenghts of 1 to 44 nt.
doi:10.1371/journal.pone.0049811.t001

Table 2. Categorization of E. uniflora noncoding and
organellar small RNAs*.

Small RNA type Number of reads Percentage (%)

miRNA 1,852,722 14.52%

rRNA 765,989 6.00%

tRNA 67,491 0.53%

snRNA 1,555 0.01%

snoRNA 859 0.01%

mtRNA 159,106 1.25%

cpRNA 1,046,305 8.20%

Other sRNA 8,865,479 69.48%

*18–25 nt reads considered.
doi:10.1371/journal.pone.0049811.t002

MicroRNAs in a Myrtaceae Species
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With respect to the abundance of each miRNA family, the

frequencies varied from 1 read (7 families) to 656,093 reads

(miR167), indicating that expression varies significantly among

different miRNA families. This relative abundance is also observed

in certain members from the same family. For example, the

abundance of miR167 varied from 98 to 616,862 reads, as was the

case for some other families, such as miR166 (1 to 381,733 reads),

miR159 (2 to 235,279 reads) and miR396 (2 to 217,485 reads).

These results indicate that different members have variable

expression levels within one miRNA family.

Since the genome of E. uniflora is not publically available, the

small RNA library was matched against a set of de novo assembled

contigs from the E. uniflora leaf RNA-seq to identify putative

miRNA precursor sequences. Candidate sequences with hairpin-

like structures and mature miRNAs anchored in either or both of

the 5p or 3p arms were further considered (Figure S2). Initial

analysis allowed for the identification of 25 precursor sequences

grouped into 15 conserved families (Table 3). The average value of

MFE was -66.51 in these precursors and included two precursors

(MIR167-2 and MIR169) with extreme values due to their long

sizes. With respect to the % GC and MFEI, the average values

were 47.63 and 20.94, respectively.

Within the identified families, MIR167 was the most abundant,

with 676,895 reads, and contained 4 members (MIR167-1,

MIR167-2, MIR167-3 and MIR167-4). In addition, several

miRNA isoforms were detected in the libraries, and several of

these were more abundant than the known miRNAs reported in

miRBase for other plants (Figure 3). Furthermore, in the family

MIR397, one precursor was identified with a typical structure and

mature reads in the sense and antisense orientations. Both

orientations were considered two independent precursors from

the same family for the following analysis.

Identification of Novel miRNAs in E. uniflora
Using the previously described criteria in the identification of

conserved pre-miRNAs, we obtained another 17 potential miRNA

candidates grouped into 15 families (Table 4). In addition to the

hairpin structure, the detection of miRNA* in 14 precursors is a

strong indication to consider these miRNAs as true candidates.

Comparisons among the mature sequences of candidate miRNAs

and those miRNAs deposited in miRBase suggest that these

candidates are novel miRNAs that have not been identified in

others species and are possibly specific to the Myrtaceae family.

These novel miRNAs displayed an average negative folding value

of 2137.89, which included 4 miRNAs with long sizes similarly

observed in some previously identified conserved pre-miRNAs.

With respect to the % GC and MFEI, the average values were

42.86 and 21.05, respectively. In addition, one novel pre-miRNA

was found with mature sequences in the sense and antisense

orientations and was considered to represent 2 members of the

same family (nMIR001-1 and 22).

Biological Confirmation of Identified miRNAs in E. uniflora
The stem-loop RT-PCR method was used to validate the

expression of seventeen conserved miRNAs (eun-MIR156, eun-

MIR159, eun-MIR160, eun-MIR166, eun-MIR167-1, eun-

MIR167-2, eun-MIR167-3, eun-MIR167-4, eun-MIR395, eun-

MIR396-1, eun-MIR396-2, eun-MIR397-1, eun-MIR397-2, eun-

MIR482-1, eun-MIR482-2, eun-MIR530, eun-MIR827) and ten

novel miRNAs (eun-MIR001-1, eun-MIR001-2, eun-MIR004-2,

eun-MIR005, eun-MIR006, eun-MIR008, eun-MIR009, eun-

MIR012, eun-MIR013, eun-MIR014). We confirmed that these

miRNAs were expressed in three different individuals collected in

situ (Figure S3).

Identification and Classification of miRNA Targets
To understand the biological function of miRNAs in E. uniflora,

the putative mRNA target sites of miRNA candidates were

identified by aligning the most abundant mature miRNAs of each

conserved and novel precursor to a set of E. uniflora assembled

unigenes using psRNA target with default parameters and a

maximum expectation value of 4. We found 87 potential targets in

total, where 52 were targets of conserved miRNAs and 35 were

targets of novel miRNAs, with an approximate average of 3 targets

per miRNA. Detailed annotation results are given in Table 5 and

S3.

Among the most important miRNA targets, also previously

identified in other plants, we found the squamosa promoter

binding protein (SBP)-like (SPL) genes, which are targets of the

miR156 family and have functions that are conserved across plant

species [17], affecting diverse developmental processes, such as leaf

development, shoot maturation, phase change and flowering in

plants [35-40]. We also identified the auxin response factor (ARF),

a plant-specific family of DNA binding proteins involved in

Figure 2. Number of identified miRNAs in each conserved miRNA family in plants. The values above the bars indicate the number of
members identified in each conserved miRNA family.
doi:10.1371/journal.pone.0049811.g002
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hormone signal transduction that are targets for the miRNA

families miR167 and miR160 [15,41,42]. Another important gene

identified and targeted by miR162, with a significant role in the

regulation of gene expression, is the pentatricopeptide repeat gene

(PPR). This gene belongs to a large family implicated in post-

transcriptional processes, such as splicing, editing, processing and

translation specifically in organelles like mitochondria and

chloroplasts [43]. These results substantiate the in silico identifi-

cation of conserved and novel targets from E. uniflora.

All targets regulated by the conserved and novel miRNAs

identified in this study were subjected to GO analysis to evaluate

their potential functions. The categorization of these genes,

according to biological processes, cellular components and

molecular functions, is summarized in Figure 4. Based on

biological processes, these targets were classified into 13 categories,

and the three most overrepresented GO terms, either for

conserved or novel miRNAs, were cellular processes, metabolic

processes and responses to stimulus, suggesting that Eugenia

miRNAs are involved in a broad range of physiological functions.

Categories based on molecular function revealed that the target

genes were related to 7 functions, and the four most frequent terms

were protein binding, nucleotide binding, hydrolase activity and

nucleic acid binding. In the category of cellular components, the

analysis revealed that the protein products from the genes targeted

by conserved and novel miRNAs are expressed mainly in the

plastid and nucleus.

The iPATH2 server was used to produce an overview of the

metabolic pathways involved in the secondary metabolites

synthesis and potentially regulated by miRNAs in E. uniflora.

Our results showed that three enzymes involved in several types of

metabolism and secondary metabolites are regulated by identified

miRNAs (Figure S4). The phosphoglycerate mutase is a potential

target of eun-MIR396-2 and is involved in the pathway of

gluconeogenesis while the hydroxyphenylpyruvate reductase is

Figure 3. Predicted secondary structures of conserved and novel miRNAs of E. uniflora. Secondary structures of the precursors eun-
MIR535-1 and eun-nMIR012, their locations and the expression of small RNAs mapped onto these precursors. Sequences of the most abundant
mature miRNAs in the 5p and 3p arms are labeled in purple and red, respectively. Values on the left side of the miRNA sequence represent read
counts in the leaf library.
doi:10.1371/journal.pone.0049811.g003
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targeted by eun-MIR162 and is involved in terpenoid-quinone,

tropane, pireridine and pyridine biosynthesis. In a similar way,

eun-nMIR007 regulates primary-amine oxidase, an enzyme

involved in the tropane, pireridine, pyridine and isoquinoline

alkaloid biosynthesis.

Discussion

Though several miRNAs have been identified via computa-

tional or experimental approaches in different plant families, there

is no sequence or functional information available about miRNAs

in any Myrtaceae species, which are economically important in the

spice, fruit, timber and pharmacology industries [44].

We used Solexa technology for deep sequencing of a small RNA

library to identify miRNAs in E. uniflora. The length distribution

pattern obtained indicates that the majority of the redundant small

RNAs from the library were 21 nt in length, which is atypical

because 24 nt is the most abundant size produced by DCL3 in

other plants [45]. This distribution pattern is similar to those

observed in previous reports of plant small RNA sequencing using

Solexa technology, such as wheat [46], grapevine [47], melon [48]

and trifoliate orange [49], suggesting that the composition of the

small RNA population varies among species. Additionally, other

important causes for this variation include the developmental stage

and environmental conditions in which the sample was collected.

Contrary to the results observed with the redundant sequences, the

analysis of the unique sequences showed that 24 nt was the

Table 5. Predicted targets of novel miRNAs in E. uniflora.

miRNA Inhibition Score* Putative Function

eun-nMIR001 Cleavage 1.5 Atp-dependent helicase rhp16-like

Cleavage 3 Cytochrome p450

Cleavage 3.5 Long chain acyl- synthetase 9

Cleavage 3.5 Kinesin-related protein

Translation 3 Transcription initiation factor iib

Translation 3 Brassinazole-resistant 1

Translation 3.5 Myosin family protein with dil domain

eun-nMIR002 Cleavage 3 Serine threonine-protein phosphatase 2a regulatory subunit b subunit alpha-like

Cleavage 3.5 Probable receptor-like protein kinase at1g67000-like

eun-nMIR003 Cleavage 4 Udp-glycosyltransferase 74b1

eun-nMIR004 Cleavage 2.5 Auxin efflux carrier protein

Cleavage 3.5 Sucrose nonfermenting 4-like

Translation 3.5 Type i inositol- -trisphosphate 5-phosphatase 2-like

eun-nMIR005 Translation 3 Pentatricopeptide repeat-containing protein

Cleavage 3.5 Protein reticulata-related 1

Cleavage 3.5 Agenet domain-containing protein

eun-nMIR006 Translation 3.5 Outward rectifying potassium channel

eun-nMIR007 Cleavage 3.5 Aspartate semialdehyde

Cleavage 3 Primary-amine oxidase

eun-nMIR008 Translation 3.5 Adenosine deaminase

eun-nMIR009 Cleavage 3 Cc-nbs-lrr resistance protein

eun-nMIR010 Translation 4 P8mtcp1

Cleavage 4 Nbs-lrr resistance protein

Translation 4 Cullin-1-like isoform 1

eun-nMIR011 Translation 3 E3 ubiquitin-protein ligase upl7

Cleavage 3.5 Eukaryotic peptide chain release factor subunit 1-1

eun-nMIR012 Translation 3.5 Tho complex subunit 2

eun-nMIR013 Translation 3.5 Beta-amylase

Translation 3.5 Integral membrane single c2 domain protein

eun-nMIR014 Cleavage 0 Ycf68 protein

eun-nMIR015 Cleavage 3.5 Rna-binding motif x-linked 2

Cleavage 3.5 Transducin wd-40 repeat-containing protein

Cleavage 3.5 Clip-associating protein

Cleavage 3.5 Probable exocyst complex component 4-like

Cleavage 3.5 Photosystem i p700 apoprotein a1

*psRNATarget value.
doi:10.1371/journal.pone.0049811.t005
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dominant read length in comparison to all other sequence lengths,

and similar results have been observed in other studies [50-53].

Small RNAs of 24 nt in length are known to be involved in

heterochromatin transcriptional silencing in genomes with a high

content of repetitive sequences [54], indicating the possible

genome complexity of E. uniflora.

In this study, we compared our small RNA library from E.

uniflora against known plant miRNAs from the miRBase database

and identified 204 conserved miRNAs from different species

grouped into 45 families. High throughput sequencing, which has

the ability to generate millions of small RNA sequences, is a

powerful tool to estimate expression profiles of miRNA. This

technology provides the resources to determine the abundance of

various miRNA families and even distinguish among different

members of a given family. In our case, we found significant

differences among the number and abundance of the members

identified in each family, which is in agreement with previous

studies [48,55,56] and suggests that this wide variation is due to a

functional divergence in the conserved miRNA families.

Although conserved miRNAs have been identified by sequenc-

ing and comparison against miRNAs from other species, most

plant species-specific miRNAs remain unidentified due to their

lower levels of expression, which result in a small number of

sequenced reads in comparison to the conserved miRNAs [57].

For this reason, we used a new approach to identify novel miRNAs

in species where genomic data and resources were not available.

We made use of simultaneous sequence comparison of small RNA

and RNAseq libraries. Using this methodology, we identified 17

potential miRNA candidates specific for E. uniflora. From these, 14

contained complementary antisense miRNA, which provided

Figure 4. Gene categories and the distribution of target genes of the most abundant mature miRNAs in the conserved and novel
pre-miRNA identified in E. uniflora.
doi:10.1371/journal.pone.0049811.g004
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more evidence for their existence as novel miRNAs, as observed in

cucumber [51] and grapevine [53]. The other miRNAs that do

not satisfy this last criterion require further investigation for their

confirmation as miRNAs.

To understand the function of the identified miRNAs, their

putative targets were predicted using a bioinformatics approach.

Several identified targets of conserved miRNAs of E. uniflora are

transcriptional factors, similar to the results reported in other

studies [47,48,58,59]. In the case of the novel miRNA targets, we

found that the transcription initiation factor iib and the

pentatricopeptide repeat-containing proteins are targeted by

eun-nMIR001 and eun-nMIR005, respectively.

It has been reported in Arabidopsis that regulation of ARF17 by

miR160 is important for growth and development [60], regulation

of ARF6 and 8 by miR167 is important for development of anthers

and ovules [61] and regulation of ARF10 and 16 by miR160 plays

a role in root cap formation [62]. In the present study, we found

that ARF17 is regulated by eun-MIR160 while other members of

ARF family were not targeted by eun-MIR167. This discrepancy

agrees with the previously reported in Arabidopsis because we used

a leaf transcriptome as reference for the target identification. We

confirm this observation not found homologs for AtARF6, 8, 10

and 16 by BLASTx in E. uniflora transcriptome.

In addition, with the analysis of GO terms, we identified 3

candidate targets likely involved in the response to abiotic stress:

ATP-dependent helicase rhp16-like (eun-nMIR002), sucrose

nonfermenting 4-like (eun-nMIR004) and serine threonine-protein

phosphatase 2a regulatory subunit b’’ subunit alpha-like (eun-

nMIR002). The sucrose nonfermenting 4-like (SNF4) protein is a

subunit of the probable trimeric SNF1-related protein kinase

(SnRK) complex, which may play a role in a signal transduction

cascade regulating gene expression and carbohydrate metabolism

in higher plants [63]. Otherwise, the serine threonine-protein

phosphatase 2A regulatory subunit b ’’subunit alpha-like PP2Ab99

is a structural subunit of the Ser/Thr phosphatases holoenzyme

(PP2A) and recent studies suggesting the possible physiological role

of PP2A in the drought stress response [64]. These results

indicated that the targets from novel miRNAs identified here are

possibly related to the adaptation of E. uniflora to different types of

stress and environmental conditions observed in natura. Future

experimental validation will determine how many of these

predicted targets are genuinely targeted by miRNAs in specific

environmental and physiological conditions.

Interestingly, we found three miRNAs involved in the

regulation of enzymes that play critical roles in secondary

metabolites synthesis. These findings suggest that variation in the

levels of expression of these miRNAs could alter the levels of

production of certain types of secondary metabolites. It is

consistent with the previous reports that the concentration of

these metabolites varies between specimens of E. uniflora from

different geographical locations [2,3]. More studies are necessary

to confirm these preliminary findings and evaluate the correlation

between the miRNA expression and secondary metabolite

production.

Conclusions
In summary, this study provides the first view of the diversity of

miRNAs and their abundance in Myrtaceae and strongly supports

the idea that miRNAs play an important conserved role in several

physiological processes, as previously proposed for other plants.

Our bioinformatics analysis indicates that miRNAs might

contribute to different processes by affecting multiple target genes

and different signaling pathways. Although the exact function of

these miRNA target genes remains to be confirmed, we believe the

present study provides novel insights into the molecular processes

involved in conserved miRNA function.
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