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Rare sugars are regarded as functional biological materials due to their potential
applications as low-calorie sweeteners, antioxidants, nucleoside analogs, and
immunosuppressants. D-Allose is a rare sugar that has attracted substantial attention
in recent years, owing to its pharmaceutical activities, but it is still not widely available.
To address this limitation, we continuously produced D-allose from D-allulose using a
packed bed reactor with commercial glucose isomerase (Sweetzyme IT). The optimal
conditions for D-allose production were determined to be pH 8.0 and 60◦C, with 500 g/L
D-allulose as a substrate at a dilution rate of 0.24/h. Using these optimum conditions, the
commercial glucose isomerase produced an average of 150 g/L D-allose over 20 days,
with a productivity of 36 g/L/h and a conversion yield of 30%. This is the first report of
the successful continuous production of D-allose from D-allulose by commercial glucose
isomerase using a packed bed reactor, which can potentially provide a continuous
production system for industrial applications of D-allose.

Keywords: D-allose, D-allulose, rare sugar, packed bed reactor, Sweetzyme IT, glucose isomerase

INTRODUCTION

A first-generation sweetener is a sweetness-oriented sugar such as sucrose, fructose, and
glucose. Second-generation sweeteners are low-calorie and high-sweetness sugars, including the
sugar alcohol xylitol, sucralose, aspartame, and oligosaccharides, which participate in intestinal
regulation. Currently, functional rare sugars are drawing attention as third-generation sweeteners.

A rare sugar is defined as a monosaccharide that is rarely found in nature according to
the International Society of Rare Sugars (ISRS) (Izumori, 2002, 2006). There are more than 50
kinds of rare monosaccharides. Two of these, D-tagatose and D-allulose, but not D-allose, have
been formally approved by the United States Food and Drug Administration (FDA) as Generally
Recognized As Safe (GRAS), and are allowed for use in the food industries (Levin, 2002; Kim, 2004;
Mu et al., 2012).
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The rare sugar D-allose has attracted substantial attention in
recent years because of its beneficial biological properties as an
anti-cancer (Sui et al., 2005a,b; Mitani et al., 2009; Kanaji et al.,
2018), anti-oxidant (Murata et al., 2003), anti-inflammatory (Gao
et al., 2001), and anti-hypertensive (Kimura et al., 2005) agent,
and its ability to protect against ischemia-reperfusion injury of
the liver (Hossain et al., 2003). Additionally, D-allose is a non-
caloric and non-toxic sweetener that has approximately 80% the
sweetness of sucrose (Chattopadhyay et al., 2014; Mooradian
et al., 2017; Chen et al., 2018). Despite these various benefits, D-
allose occupies a small proportion of the industrial market due
to its scarcity and high production costs. Thus, the continuous
production of D-allose is important for broadening its industrial
applications. However, only the production of D-allose using free
enzyme has been studied until now. For the industrial production
of D-allose, which is an important next-generation sweetener, it is
necessary to study the application of a reactor using a food grade
commercial enzyme.

D-Allose can be synthesized by chemical methods (Bernaerts
et al., 1963; Baker et al., 1972) but some disadvantages exist
from these approaches, such as complicated purification steps,
undesirable by-products, environmental pollution from chemical
waste, low productivity, and the inability to reuse substrates
(Lim and Oh, 2011). For these reasons, the biological synthesis
of D-allose is becoming a key foundation. Biologically, D-
allose can be synthesized from D-glucose by a three-step
enzyme-catalyzed pathway. In the first reaction, D-glucose is
converted to D-fructose by D-glucose isomerase. The second
reaction, the conversion of D-fructose to D-allulose, can be
catalyzed by D-tagatose 3-epimerase or D-allulose 3-epimerase.
D-Allose is produced in the final step by the conversion of D-
allulose by L-rhamnose isomerase from Clostridium stercorarium
(Seo et al., 2018), Thermobacillus composti (Xu et al., 2017),
Bacillus subtilis (Bai et al., 2015), or Pseudomonas sp. (Bhuiyan
et al., 1998); by ribose-5-phosphate isomerase from Clostridium
thermocellum (Park et al., 2007b) or Thermotoga lettingae (Feng
et al., 2013); or by galactose 6-phosphate isomerase from
Lactococcus lactis (Park et al., 2007a). Recently, a one-pot reaction
method was reported to successfully produce D-allose from D-
fructose using D-allulose 3-epimerase from Flavonifractor plautii
and D-ribose-5-phosphate isomerase from C. thermocellum
(Lee et al., 2018).

Here, we describe the first demonstration of the continuous
production of D-allose from D-allulose using commercial food-
grade D-glucose isomerase (Sweetzyme IT; GI) in a packed
bed reactor.

MATERIALS AND METHODS

Materials
Food-grade immobilized GI from Streptomyces murinus
(Sweetzyme IT) was purchased from Novozyme (Kalubdborg,
Denmark). D-allose, D-allulose, and other reagents were
purchased from Sigma Aldrich (St. Louis, MO, United States).
The packed bed reactor XK26/100 was purchased from GE
Healthcare Life Science (Uppsala, Sweden).

Enzyme Assay
The activity of GI was measured in a reaction mixture
containing 50 mM EPPS buffer (pH 8.0), 10 g/L D-allulose,
and 10 mg/mL GI at 60◦C for 30 min. One unit of enzyme
activity was defined as the amount of enzyme required to produce
1 µmol of D-allose from D-allulose per minute at 60◦C and
pH 8.0.

Optimization of D-Allose Production
Conditions
To determine the optimum pH and temperature for the GI-
catalyzed production of allose, the reactions were performed
for 30 min by varying the buffer pH from pH 4–9 at 60◦C
and by varying the temperature from 40–90◦C at pH 8.0
using 10 g/L D-allulose as a substrate. The thermostability
of GI was monitored as a function of time for incubation
by incubating the enzyme solution at different temperatures
(50–90◦C) in 50 mM EPPS buffer (pH 8.0). Samples were
withdrawn at various time intervals and then assayed in 50 mM
EPPS buffer (pH 8.0) containing 10 g/L D-allulose at 70◦C for
30 min.

Continuous D-Allose Production
The dilution rate and substrate concentration for continuous D-
allose production in the packed bed reactor were investigated.
The immobilized GI was packed into a XK26/100 packed
bed reactor with a bed volume of 300 mL and the D-
allulose concentration was varied from 100 to 700 g/L with
a dilution rate of 0.24/h for 5 h. The optimum dilution
rate was determined by varying the rate from 0.07 to 0.95/h
using a 500 g/L D-allulose solution and a Gilson Mini Plus
evolution peristaltic pump (Gilson, Inc., WI, United States) at
60◦C. The conversion yield was calculated as the percentage
of the concentration of the produced D-allose as a product in
relation to the concentration of D-allulose as a substrate put in
the reaction.

Analytical Methods
D-Allulose and D-allose concentrations were determined
using a Bio-LC system (Dionex ICS-3000, Sunnyvale,
CA, United States) with an electrochemical detector
and a CarboPac PAI column. The column was eluted at
30◦C with 0.1 M NaOH (0–5 min), followed by a linear
gradient of sodium acetate (0–0.2 M) at 1 mL/min for
5–35 min.

Nuclear Magnetic Resonance Analysis
The nuclear magnetic resonance (NMR) spectra of D-allose
were recorded on a Bruker 800 MHz spectrometer (Bruker,
Karlsruhe, Germany) using standard Bruker pulse programs.
Chemical shifts were given as δ-values with reference to
tetramethylsilane (TMS) as an internal standard. 1H and 13C-
NMR assignments were determined by gHSQC, gHMBC, and
1H-1H-COSY.
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RESULTS AND DISCUSSION

D-Allose Production From D-Allulose
Using a Commercial Enzyme
Previously, D-allose has been produced using microbial enzymes,
including L-rhamnose isomerase (Seo et al., 2018), D-ribose-5-
phosphate isomerase (Feng et al., 2013), D-galactose-6-phosphate
isomerase (Park et al., 2007a), and D-glucose-6-phosphate
isomerase (Yoon et al., 2009). The most effective enzyme reported
to date was L-rhamnose isomerase (Lim and Oh, 2011; Mu et al.,
2012; Chen et al., 2018). The conserved protein domain family
of L-rhamnose isomerase belongs to the AP2Ec super-family; this
family includes other sugar-converting enzymes such as xylose
(D-glucose) isomerase. The substrate specificities of commercial
glucose isomerase from S. murinus (Sweetzyme IT, GI) and L-
rhamnose isomerase from Dictyoglomus turgidum have also been
reported for L-rhamnose and D-fructose (Kim et al., 2013, 2018).

Not only does GI catalyze the reversible isomerization of D-
glucose and D-xylose to D-fructose and D-xylulose, respectively,
but the isomerization of allose was catalyzed by a recombinant
GI from Streptomyces sp. (Brucher et al., 2018) and a partially
purified D-xylose isomerase from Streptomyces albus (Sanchez
and Smiley, 1975). In this study, GI converted D-allulose to
D-allose, and the specific activity of GI for D-allulose was
2.4- and 2.0-fold lower than those for D-glucose and D-xylose,
respectively. Nevertheless, activity of GI toward D-allose was
approximately 624-fold higher than that of a partially purified D-
xylose isomerase from S. albus (Table 1). Thus, we successfully
produced D-allose using D-allulose as a substrate by immobilized
GI (see the reaction scheme in Figure 1). The reaction
product was identified as a D-allose by NMR spectroscopy
(Supplementary Figures 1–5). Commercial GI was used in this
case because this enzyme provides enhanced reaction stability
and better process control with minimization of the pressure drop
issue by a large particle size of 0.4–1.0 mm, and it can be applied
to the industrial production of D-allose (Allen et al., 1979).
Using our system, the conversion yield of D-allulose to D-allose
catalyzed by GI was approximately 30%. Previously reported
conversion yields of D-allose from D-allulose using microbial
enzymes such as L-rhamnose isomerases from C. stercorarium
(Seo et al., 2018), T. composti KWC4 (Xu et al., 2017), B. subtilis
WB600 (Bai et al., 2015), Caldicellulosiruptor saccharolyticus (Lin
et al., 2011), Thermoanaerobacterium saccharolytium NTOU1
(Lin et al., 2010), Bacillus pallidus Y25 (Poonperm et al., 2007),
and Pseudomonas stutzeri (Morimoto et al., 2006) were 33, 23,
37.5, 33, 34, 35, and 25%, respectively. The yields using D-
ribose 5-phosphate isomerases from C. thermocellum (Park et al.,
2007b) and T. lettingae TMO (Feng et al., 2013) were 33%
and 32%, respectively, and those using D-galactose-6-phosphate
isomerase from L. lactis (Park et al., 2007a) and D-glucose-6-
phosphate isomerase from Pyrococcus furiosus (Yoon et al., 2009)
were 28, 25, and 32%, respectively. This difference in conversion
yields is expected to be due to reaction environmental factors
such as temperature, and pH, and type of reactor, because the
equilibrium between D-allulose and D-allose is constant. To date,
there are no studies using a reactor to produce D-allose from

TABLE 1 | Specific activity of GI for sugars.

Substrate Product Specific activity (µmol/min/mg)

D-Glucose D-Fructose 367 ± 32

D-Xylose D-Xylulose 316 ± 15

D-Allulose D-Allose 156 ± 33

D-Ribose D-Ribulose 87 ± 7

L-Rhamnose L-Rhamnulose 103 ± 11

D-Galactose D-Tagatose ND

ND, not detected.

FIGURE 1 | Schematic diagram for the isomerization of D-allulose and
D-allose catalyzed by commercial glucose isomerase.

D-allulose. Although GI showed a lower conversion yield than
many enzymes, it was applied to a packed bed reactor in this
study because it is easy to industrialize as a commercially available
immobilized enzyme.

Effect of pH and Temperature on
D-Allose Production
The optimum pH and temperature for D-allose production using
GI were investigated using a pH range of 4–9 and a temperature
range of 40–90◦C. Maximum GI activity was observed at
pH 8.0 and 90◦C (Supplementary Figure 6). However, the
thermostability of GI at 90◦C could not sustain the production
of D-allose (Figure 2). The half-life of GI activity at 50, 60, 70,
80, and 90◦C was 1,021, 854, 352, 47, and 17 h, respectively. As
a result, the optimum pH and temperature for the GI-catalyzed
production of D-allose were determined to be pH 8.0 and 60◦C,
respectively. For the GI-catalyzed production of D-fructose from
D-glucose and of L-rhamnulose from L-rhamnose, the optimum
conditions were reported to be a pH 8.0–8.5 and 60–70◦C (Kim
et al., 2018). The optimal conditions for the production of D-
allose using L-rhamnose isomerases from C. stercorarium (Seo
et al., 2018), T. composti KWC4 (Xu et al., 2017), B. subtilis
WB600 (Bai et al., 2015), immobilized L-rhamnose isomerase
from P. stutzeri (Morimoto et al., 2006), D-ribose-5-phosphate
isomerase from C. thermocellum (Park et al., 2007b), D-galactose-
6-phosphate isomerase from L. lactis (Park et al., 2007a), and
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FIGURE 2 | Thermal inactivation of GI catalyzing D-allose production at 50◦C
(closed circles), 60◦C (open circles), 70◦C (closed inverted triangles), 80◦C
(open triangles), and 90◦C (closed squares). The enzyme was incubated at
temperatures ranging from 50 to 90◦C for varying periods of time. A sample
was withdrawn at each time interval and assayed for enzyme activity in
50 mM EPPS buffer (pH 8.0) containing 10 g/L D-allulose at 60◦C for 30 min.
The experimental data for thermal deactivation of the enzyme were fitted to a
first-order curve and the half-life of the enzyme was calculated using Sigma
plot 10.0 software (Systat software, San Jose, CA, United States). Data
represent the means of three experiments ± standard deviation (SD).

D-glucose-6-phosphate isomerase from P. furiosus (Yoon et al.,
2009) were pH 7.0–9.0 and 30–75◦C.

Optimization of Reaction Conditions for
Continuous D-Allose Production
The concentration of D-allulose as a substrate and its dilution
rate for the production of D-allose using GI were investigated
in a packed bed reactor (XK26/100; i.d. 26 mm × length
1,000 mm). The enzyme was applied to the packed bed reactor
with a working volume of 300 mL. D-Allulose (100–700 g/L)
was fed continuously into the packed bed reactor at 60◦C
with a dilution rate of 0.24/h. The optimum concentration of
D-allulose was 500 g/L (Figure 3). The concentration of D-
allose produced increased up to 600 g/L D-allulose; however,
the conversion yield of D-allulose to D-allose decreased when
the D-allulose concentration exceeded 500 g/L. This may have
been due to substrate inhibition at high concentrations. The
optimum concentration of D-allulose for D-allose production
using immobilized L-rhamnose isomerase from P. stutzeri was
reported to be 500 g/L (Morimoto et al., 2006) and that of L-
rhamnose for L-rhamnulose production using GI was reported
to be 300 g/L (Kim et al., 2018).

The optimum dilution rate for the continuous production of
D-allose using a packed bed reactor was investigated at different
dilution rates ranging from 0.07 to 0.95/h (Figure 4). From 0.07
to 0.35/h, the rate of production of D-allose increased, but the
productivity and conversion yield began to decrease after 0.24/h,
which is because the reaction time between the enzyme and the
substrate shortens as the dilution rate increases. Thus, the optimal
dilution rate for D-allose production was estimated to be 0.24/h.

FIGURE 3 | Effect of substrate concentration on D-allose production (closed
circles) and conversion yield (open circles) in a packed bed reactor. The
reactions were performed in 50 mM EPPS buffer (pH 8.0) containing
100–700 g/L D-allulose at 60◦C at a dilution rate of 0.24/h. Data represent the
means of three experiments ± SD.

FIGURE 4 | Effect of the dilution rate of D-allulose on D-allose production
(closed circles) and productivity (open circles) using a packed bed reactor. The
working volume of the reactor was 300 mL. A solution of 50 mM EPPS buffer
(pH 8.0) containing 500 g/L D-allulose in the feeding reservoir was fed
continuously into the reactor, and the effluent was allowed to flow out of the
reactor to a reservoir using a peristaltic pump. The temperature was
maintained at 70◦C using a water circulator. Data represent the means of
three experiments ± SD.

The optimum dilution rate for L-rhamnulose production from L-
rhamnose using GI was reported to be 0.6/h (Kim et al., 2018).
Although GI showed higher specific activity for D-allose than L-
rhamnose, it was optimal at a lower dilution rate for D-allose than
L-rhanmnose. This is presumably because the concentration of
D-allose (500 g/L) used in the reaction was higher than that of
L-rhamnose (300 g/L).

Continuous D-Allose Production in a
Packed Bed Reactor
GI was reused for 30 cycles with 500 g/L D-allulose under batch
reaction for 4 h (Supplementary Figure 7). In the first batch
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FIGURE 5 | Continuous production of D-allose (closed circles) from D-allulose
(open circles) using immobilized GI in a packed bed reactor. A solution of
50 mM EPPS buffer (pH 8.0) containing 500 g/L D-allulose was fed
continuously into the reactor, and the effluent was allowed to flow out of the
reactor at a dilution rate of 0.24/h. The reaction was performed at 60◦C for
30 days. Data represent the means of three experiments ± SD.

reaction, GI produced 150 g/L D-allulose with a productivity
of 37.5 g/L/h, which was about 1. 4-, 17. 9-, and 7,500-fold
higher than those by free enzymes such as D-ribose-5-phosphate
isomerase from C. thermocellum (Park et al., 2007b), D-galactose-
6-phosphate isomerase from L. lactis (Park et al., 2007a), and
glucose-6-phosphate isomerase from P. furiosus (Yoon et al.,
2009), respectively. However, the productivity by GI was 2.1-
fold lower than that of 79.6 by L-rhamnose isomerase from
C. stercorarium (Seo et al., 2018). Nevertheless, GI exhibited
more than 95 and 65% residual activity for 20 and 30 cycles,
respectively, indicating the possibility of continued use of GI in
continuous D-allose production. Based on the above experiments,
the optimal conditions for D-allose production from D-allulose
using GI in a 300-mL packed bed reactor were determined to be
pH 8.0, 60◦C, 500 g/L D-allulose, and a dilution rate of 0.24/h.
Using these conditions, D-allose was produced continuously in
the packed bed reactor for 30 days, a period within half-life,
taking into account the thermostability at 60◦C (Figure 5).
An average of 150 g/L D-allose was produced from 500 g/L
D-allulose substrate within 20 days, with a total of 5.18 kg D-
allose, a productivity of 36 g/L/h, and a conversion yield of 30%.
The D-allose concentration was reduced to approximately 43.9%
after 30 days. In a previous report, immobilized L-rhamnose
isomerase from P. stutzeri continuously produced 5.02 kg of D-
allose from 16.6 kg of D-allulose over 30 days, with a conversion
yield of 30% (Morimoto et al., 2006), which indicates about 1.5-
fold lower productivity than that by GI. Therefore, continuous
production of D-allose by GI can be a good alternative for
industrial applications.

CONCLUSION

Rare sugars are attracting attention as new functional materials
because of their various biological properties. The rare sugars

D-tagatose and D-allulose have already been industrialized, but
D-allose has not. The rare sugar D-allose has approximately
80% of the sweetness of common sugar, but without the
calories, and it exhibits several beneficial biological properties.
For industrialization research and application purposes, the
mass production of D-allose must be supported. However,
there are no continuous production systems in place for
the commercial synthesis of D-allose. In this study, we
demonstrated that commercial food-grade D-glucose isomerase
(Sweetzyme IT) converts D-allulose to D-allose by NMR
analysis, investigated substrate specificity of the enzyme. For
the continuous production of D-allose from D-allulose in a
packed bed reactor, optimum reaction conditions such as pH,
temperature, substrate concentration, and dilution rate were
determined to be pH 8.0, 60◦C, 500 g/L D-allulose, and 0.24/h,
respectively. Under the optimum condition, 150 g/L of D-allose
was produced from 500 g/L D-allulose, with a productivity of
36 g/L/h and a conversion yield of 30% within 20 days. This
is a new approach for D-allose production, and to the best of
our knowledge, this is the first report describing the continuous
production of D-allose using a commercial enzyme. These results
can be helpful for the industrial production of D-allose.
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