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Abstract 

Background:  India has a substantial burden of malaria, concentrated in specific areas and population groups. Spatio-
temporal modelling of deaths due to malaria in India is a critical tool for identifying high-risk groups for effective 
resource allocation and disease control policy-making, and subsequently for the country’s progress towards United 
Nations 2030 Sustainable Development Goals.

Methods:  In this study, a spatio-temporal model with the objective of understanding the spatial distribution of 
malaria mortality rates and the rate of temporal decline, across the country, has been constructed. A spatio-temporal 
“random slope” model was used, with malaria risk depending on a spatial relative risk surface and a linear time effect 
with a spatially-varying coefficient. The models were adjusted for urban/rural status (residence of the deceased) and 
Normalized Difference Vegetation Index (NDVI), using 2004–13 data from the Million Death Study (MDS) (the most 
recent data available), with nationwide geographic coverage. Previous studies based on MDS had focused only on 
aggregated analyses.

Results:  The rural population had twice the risk of death due to malaria compared to the urban population. Malaria 
mortality in some of the highest-risk regions, namely the states of Odisha and Jharkhand, are declining faster than 
other areas; however, the rate of decline was not uniformly correlated with the level of risk. The overall decline was 
faster after 2010.

Conclusion:  The results suggest a need for increased attention in high-risk rural populations, which already face chal-
lenges like inadequate infrastructure, inaccessibility to health care facilities, awareness, and education around malaria 
mortality and prevalence. It also points to the urgent need to restart the MDS to document changes since 2013, to 
develop appropriate malaria control measures.
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Background
Malaria contributes not only to the global infectious dis-
ease burden, but has serious economic consequences 
borne largely by those in their financially productive ages. 
Verbal autopsy studies in India report a national estimate 
of 130,000 malaria deaths before 70 years of age in 2015 

[1], down from about 200,000 deaths at these ages in 
2005 [2]. Malaria, like most other vector-borne diseases, 
is characterized by spatial and temporal variations due to 
climatic, ecological, and human factors. These variables 
can help predict spatio-temporal patterns of the disease 
and identify hot-spots to enable efficient disease moni-
toring, cost-effective allocation of resources, and ulti-
mately, effective disease control [3–7].

Environmental factors are not solely determinative 
of the spatio-temporal distribution of vector-borne 
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diseases. Political and state borders also play a major role, 
as they determine spatial distribution and implementa-
tion of control and prevention programmes. This is illus-
trated by a spatio-temporal study in Northern Thailand, 
where malaria incidence patterns contrast sharply with 
bordering Myanmar [5]. Furthermore, it has been argued 
that local disease variations cannot be accounted for by 
environmental or biological indicators alone [4].

Much of the current literature on spatio-temporal vari-
ation in risk of diseases uses ecologically-defined risk 
factors, i.e., average income by census area or satellite-
based land use categories, to explain disease dynamics 
[7–10]. An advantage of this type of research is that data 
on spatio-temporal risk factors may be publicly available 
without the need for new data collection [3, 8]. Moreover, 
spatial analyses can illuminate correlations of geographi-
cal areas and small-area variations [11].

A few studies have investigated spatial and spatio-
temporal distributions of malaria in specific states or dis-
tricts of India [3, 12–17]. However, no other study seems 
to have explored spatio-temporal distribution across 
the entire country using actual mortality data for over a 
decade.

In this study, spatio-temporal models for malaria mor-
tality in India, have been constructed, to investigate 
temporal trends and spatial distribution, with the aim of 
identifying the more vulnerable populations and regions. 
The rate of change in malaria mortality in high- and 
low-burden areas was also assessed. Particular emphasis 
has been put on the high-burden states, namely, Odi-
sha, Jharkhand, Chhattisgarh, Madhya Pradesh and the 
North-eastern states, in the exploratory analysis.

Methods
Data sources
This study uses data from India’s largest mortality survey, 
the Million Death Study (MDS), where data were col-
lected by the Registrar General of India’s (RGI’s) Sample 
Registration System (SRS) in collaboration with the Uni-
versity of Toronto’s Centre for Global Health Research 
(CGHR) for the years 1998 to 2017. The RGI divides the 
country into 1 million small areas based on the 10-year 
censuses of 1991, 2001, and 2011, respectively, for the 
three different sampling frames [18]. About 8,000 of 
these small areas are randomly selected by the SRS and 
all births and deaths are monitored in about 1.3 mil-
lion households in each round. The SRS sampling units 
are densely spread across the country (Additional file 1: 
Appendix A.2). Deaths in urban areas were geocoded 
to postal codes and deaths in the rural areas were geo-
coded to village locations. Because of greater inaccura-
cies in assigning cause of death (COD) in older adults 

[18–22], in this study, the focus is on deaths of people 
under 70 years of age. Results for older ages are provided 
in Table 1. Deaths with ICD-10 [23] codes B50-54 were 
assigned as death due to malaria. The data was collected 
during 2004–2013 by MDS, which had 7597 sampling 
units, of which 7416 were geocoded. Of these 7377 geo-
coded sampling units from the mainland, after exclud-
ing island units, were included. More recent data, that is, 
data beyond 2013 from MDS is not available. The MDS 
data were collected twice a year through verbal autopsies 
(VAs). Respondents from each household with a death in 
the last six months were interviewed by one of about 900 
non-medical trained staff to gather information on the 
circumstances, symptoms, and treatments before death 
of household members, including a half-page local lan-
guage narrative. These paper records were converted to 
electronic form and randomly assigned independently 
to two of 400 specially trained physician coders to assign 
the cause of death according to ICD-10, with differences 
undergoing anonymous reconciliation, and persisting dif-
ferences adjudicated by a senior physician [24]. The VA 
uses a modified version of the WHO 2012 VA instru-
ment which yields similar results to the longer WHO 
form [19]. United Nations (UN) population figures for 
India were used to calculate the age- and sex- specific 
death rates by applying the proportion of malaria deaths 
(weighted for sampling design) to the UN death totals in 
each year. Sub-national estimates of deaths used the rela-
tive SRS death rates applied to these UN totals.

Spatio‑temporal modelling
Generalized Linear Geostatistical Models (GLGMs), pro-
posed by Diggle, Moyeed, and Tawn [25], were used to 
model non-Gaussian spatial data [26]. The number of 
deaths in each sampling unit and each year, were mod-
elled with a Poisson distribution with the mean being the 
product of an age-adjusted expected count and a spa-
tially- and temporally-varying relative risk. The relative 
risk contains an urban–rural effect, a non-parametric 
time trend for years, an effect for Normalized Difference 
Vegetation Index (NDVI),  a spatially-varying risk sur-
face, which is a spatially-varying random effect, meant to 
account for unobserved spatial risk factors, and a linear 
time trend with a spatially varying slope, also a random 
effect. It is this final term which captures spatio-temporal 
variation: a location having a value of zero for this sec-
ond spatial surface is following the national time trend, 
and regions with negative or positive values for this sur-
face have malaria rates declining more rapidly or more 
slowly, respectively, than the national average. The two 
spatial surfaces have Matérn correlation functions, where 
the correlation between two locations is a decreasing 
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function of the distance between the locations. A spa-
tially-independent unit-level random effect was also 
included to account for possible overdispersion. Bayesian 
inference via Integrated Nested Laplace Approximation 
(or INLA) [27] was used for model fitting. Besides being 
relatively simple, INLA models are accurate, very fast to 
run, and their model diagnostics and predictive measures 
are simple to implement [28]. Details of the model are 
provided in Additional file 1: Appendix A.1.

The correlation between the spatial relative risk and 
the spatially-varying random time trend quantifies the 
relationship between malaria prevalence at baseline and 
changes in prevalence over time. Were it the case that the 
highest-risk areas are catching up to the rest of India and 
improving more quickly, the correlation would be nega-
tive as high spatial relative risk would coincide with nega-
tive values of the time trend. The posterior correlation 
between the two spatial random effects was calculated 
by generating 700 posterior samples and computing the 
empirical correlation between the two spatial effects.

Results
Annual malaria death rates from the MDS decreased 
over the 2004–13 period, with the pattern of decrease 
varying across different high-burden states (Fig.  1). 
Table 1 presents the national figures for the proportion 
of malaria deaths, and of those how many were health-
facility deaths and rural deaths, by age-group. Similar 
tables for the high-burden states have been included in 
Additional file 1: Appendix A.4.

A surprising finding by Dhingra et  al. [2] using the 
MDS data was the U-shaped age-specific mortality 
pattern for malaria, with mortality rising at older age 
groups, contrary to earlier assumptions that malaria 
mortality is highest in young children and remains low 
throughout the rest of life in high-transmission areas. 
A similar U-shaped pattern for malaria mortality in 
the individual high-burden states, was observed, both 
in urban and rural stratifications (Fig. 2), and for males 
and females. Rural populations are at twice the risk of 

Table 1  Malaria-attributed deaths from MDS (2004–13) by age-groups

Age Group Deaths attributed to 
malaria

All coded deaths Proportion of malaria deaths 
out of all deaths

Died in a health 
facility

Rural

2004–2006

 1–59 months 585 11,480 5.1 91 523

 5–14 years 382 4311 8.9 77 338

 15–29 years 377 8939 4.2 129 314

 30–44 years 305 11,728 2.6 87 250

 45–59 years 422 18,684 2.3 71 344

 60–69 years 500 21,788 2.3 46 430

 > 70 years 730 40,783 1.8 46 627

2007–2010

 1–59 months 656 12,600 5.2 146 593

 5–14 years 376 4573 8.2 107 314

 15–29 years 507 13,052 3.9 167 412

 30–44 years 398 17,838 2.2 118 313

 45–59 years 586 29,266 2 106 484

 60–69 years 644 33,115 1.9 77 559

 > 70 years 1041 62,028 1.7 72 893

2010–2013

 1–59 months 282 5909 4.8 74 246

 5–14 years 173 2469 7 62 156

 15–29 years 296 8976 3.3 110 244

 30–44 years 296 12,586 2.4 78 241

 45–59 years 403 22,439 1.8 94 328

 60–69 years 427 25,482 1.7 64 363

 > 70 years 701 50,074 1.4 49 580
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urban populations across all five high-burden states 
(Additional file  1: Appendix), which we explore fur-
ther in the spatio-temporal models. Among the high-
burden states, Odisha is uniformly highest across age 
groups and also across urban and rural stratifications. 
The North-eastern states are second behind Odisha 
for younger age groups but comparable to other states 
above age 44. Females are at a slightly higher risk than 
males.

The predicted spatial maps for the high-burden 
states, from the posterior samples of malaria mortality 
for the years 2004 and 2013 are presented in Fig. 3. The 
decline in the risk of malaria mortality over the years 
is evident across the high-burden states. A summary of 
the estimated model parameters is presented in Table 2.

Table  2 presents the parameter estimates and 95% 
credible intervals for the hyperparameters of the spa-
tio-temporal models. The details of the model and its 
parameters are provided in Additional file 1: Appendix 
A.1. Compared to the rural population, the urban pop-
ulation is at a 1 − exp(− 0.618) * 100 = 47% decreased 
risk of dying of malaria. This is consistent with findings 

in the exploratory analysis, where it was observed that 
the rural population is more vulnerable than the urban 
population. The posterior quantiles, that is the 95% 
quantiles from the posterior distribution, of the corre-
lation between the two spatial effects is shown in the 
rows marked “spatio-temporal correlation” in Table  2, 
and the correlation is not significantly different from 
zero. Figure  4 confirms an overall temporal decline in 
malaria mortality.

The spatial distribution of annual decline in malaria 
mortality rates are presented in Fig.  5. In Fig.  5B, the 
red and orange regions with positive log relative risk 
(RR) values indicate increased risk of malaria mor-
tality in these regions. The blue and green regions 
with negative log RR indicate regions with lower risk 
of malaria mortality. Figure  5B illustrates the rate of 
change of mortality risks across the country from 
2004- 2013. Positive rate of declining mortality (i.e., 
faster) is denoted in orange, and negative rate of mor-
tality decline (i.e., slower) is denoted in blue. The rate 
of decline is fastest in regions with the highest burden: 
Odisha and Jharkhand. However, the rate of decline is 

Fig. 1  Raw annual malaria death rates, using MDS data (2004–2013) for high-burden states. MP Madhya Pradesh
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one of the slowest in the north-eastern states, despite it 
being one of the higher-risk regions. Outside of the five 
high-burden states, the rate of decline is the slowest in 
southern states of Tamil Nadu and Kerala. The rate of 
decline in the northern states, especially in the states of 
Uttar Pradesh and Bihar, is at par with those in Odisha 
and Jharkhand.

Discussion
Malaria mortality data from the Indian MDS for the years 
2004–2013, were analysed, with spatio-temporal models 
to study trends in space and time, by sex, urban/rural set-
ting, and NDVI. Malaria mortality data from the MDS for 
years 1998–2003, analysed by Dhingra et al. [2] included 

age distribution, spatial distribution, and proportion of 
home deaths. U-shaped patterns similar to Dhingra et al. 
[2] were observed in the high-burden states, and across 
all age-groups and sex-specific strata. In exploratory 
analysis, it was observed that the rural population had 
twice the risk of malaria mortality than urban dwellers. 
The difference is consistent geographically, by age group, 
and over time. Of note is that about a quarter of these 
deaths occurred in health facilities (Table 1).

Spatio-temporal studies have been helpful in direct-
ing malaria control strategies in other countries, e.g., a 
study in Bhutan indicated a need to prioritize high-risk 
clusters of the disease [29]; in Nepal, a spatio-temporal 
study on malaria led to the conclusion that preventive 

Fig. 2  Age distribution of malaria mortality rates in rural areas across the high-burden states, for 2004–2013. MP Madhya Pradesh
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measures should be scaled up to entire districts and not 
just high endemicity areas [30]. All spatio-temporal stud-
ies have noted strong seasonal malaria patterns [4–6, 
29, 30]. Other studies have claimed that climatic factors 
such as temperature, rainfall, humidity, vapour pressure, 
and wind velocity are significant predictors of spatio-
temporal distribution of malaria [7, 31, 32]. Spatio-tem-
poral studies in malaria from different countries have 

documented an overall declining trend, consistent with 
global statistics [33].

The spatio-temporal analysis in this study confirms the 
high-burden states as identified by earlier studies. The 
results highlight that the rate of decline in malaria mor-
tality was fastest in the highest-burden states of Odisha 
and Jharkhand. However, for the north east states the rate 
of decline was one of the slowest. The improvement in 
Odisha might be attributed to employing auxiliary nurse 
midwives (ANMs) and accredited social health activ-
ist (ASHAs) to deliver artemisinin-combination therapy 
(ACT) and perform rapid diagnostic tests (RDTs), under 
the new malaria treatment policy of 2010 [34]. The spa-
tio-temporal model estimates confirmed that the rural 
populations were at a higher risk of malaria mortality.

A central hypothesis of this work was that malaria mor-
tality rates had declined fastest where malaria mortality 
was more prevalent. The spatio-temporal model found 
this not to be the case—in relative terms declines were 
uniform across India. In absolute terms declines were 
greater in the high-risk areas, as a 10% decline from a 
high baseline is a larger mortality reduction per unit of 
population than a comparable decline in a low-risk area.

Malaria mortality data from the MDS are consistent 
with data from the NVBDCP [35] in identifying high-
burden states (Additional file 1: Appendix A.3). A com-
mon feature of these states is the dominance of tribal 
populations, which are often less accessible, and lack 

Fig. 3  Predicted mortality rate. A. Age-adjusted malaria predicted mortality rate, relative to the national average for 2004. B. Age-adjusted malaria 
predicted mortality rate, relative to the national average for 2013. The black boundaries have been used to highlight the high-burden states. (State 
abbreviations: AR ’Arunachal Pradesh’, NL ’Nagaland’, MN ’Manipur’, MZ ’Mizoram’, TR ’Tripura’, ML ’Meghalaya’, AS ’Assam’, JH ’Jharkhand’, OD ’Odisha’, 
CH ’Chhattisgarh’, MP ’Madhya Pradesh’)

Table 2  Parameter estimates (posterior medians) and 95% 
credible intervals of log Relative Risk and  variance parameters 
from the spatio-temporal model

a CI Credible interval, The 95% CIs are based on posterior 2.5th and 97.5th 
quantiles

Model parameters Estimate 95% CIa

Urban/Rural status (reference: Rural) − 0.618 (− 0.735, 0.504)

NDVI 0.688 (0.100, 1.279)

Temporal standard deviation 0.003 (0.002, 0.007)

Spatio-temporal standard deviation 0.008 (0.004, 0.023)

Spatial–temporal Range 15.600 (3.680, 90.500)

Standard deviation for SRS units random 
effect

0.536 (0.481, 0.610)

Spatial standard deviation 1.101 (0.928, 1.355)

Spatial Range (km) 12.100 (9.5200, 16.100)

Spatio-temporal correlation 0.006 (− 0.250, 0.262)

Intercept − 0.520 (− 1.131, 0.040)
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adequate infrastructure and disease surveillance com-
pared to other areas. Other studies have also observed 
tribal populations to be more vulnerable to the dis-
ease [36]. Ahmad et  al. [3] have provided evidence of 
malaria-affected regions in Jharkhand, which has a tribal-
dominant population. In the current study, tribal ver-
sus non-tribal regions have not been compared, but this 
could be done in the future. Future studies could also 
compare the variation in spatio-temporal distribution 
between children and adults. Earlier studies from differ-
ent states of India present contradictory results on the 
comparison of malaria incidence among children and 
adults [15, 37–39]. For example, in the state of Rajasthan 
and in some of the north-eastern states, namely Assam 
and Arunachal Pradesh, children had a higher incidence 
of malaria, whereas it was an entirely opposite scenario in 
the indo-gangetic plains, where adults were more vulner-
able than children [40].

This study has some limitations. One is the reliance 
of the MDS on VA, which have some potential biases, 
because of a lack of medically-certified causes of deaths. 
There are both pros and cons of VA methods [24]. Mis-
classification of acute febrile deaths by VA among medi-
cally unattended adults is not unexpected, and likely 
results in malaria being over- diagnosed in some cases 
and under-diagnosed in others [1, 2]. Since this study 
relied only on mortality data, and comparable incidence 

data were not available, therefore case fatality ratios 
across space and time could not be compared. Another 
limitation is that the current INLA model for the spatio-
temporal analyses of malaria mortality does not accom-
modate analysing seasonality. One future direction of 
research could be adding seasonality for spatio-temporal 
modelling in the INLA. Finally, progress has been made 
in malaria control in some areas over the past few years, 
so this analysis should be updated as new data become 
available, and new interventions and policies should 
reflect current conditions, to the extent possible.

Conclusion
The analysis and models presented in this paper assessed 
spatial and temporal dynamics of malaria mortal-
ity across all age groups and for males and females, in 
India, from 2004 to 2013, using death records from a 
decade-long household mortality survey  — the Mil-
lion Death Study. Some spatial and temporal variations 
were observed across the country. Spatial variations vary 
across the time period, but there is an overall declin-
ing trend across the country. The high-burden states 
identified by earlier studies were confirmed as high-risk 
regions in this study. Lack of spatio-temporal correlation 
established that there is no association between the tem-
poral trends and risk of malaria mortality in a region.

Fig. 4  Temporal decline of malaria mortality across the country. Solid blue line represents temporal decline



Page 8 of 10Jana et al. Malaria Journal           (2022) 21:90 

These results suggest that control programmes and 
strategies with greater emphasis may be required in some 
parts of the country. The analyses presented in this paper 
should help state and national malaria control efforts bet-
ter target high-risk areas and populations, towards the 
goal of eventual malaria elimination from India. Collec-
tion and release of more current data will be needed to 
address the situation appropriately, however.
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