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Inferring gene regulatory networks from expression data is essential in identifying
complex regulatory relationships among genes and revealing the mechanism of certain
diseases. Various computation methods have been developed for inferring gene
regulatory networks. However, these methods focus on the local topology of the network
rather than on the global topology. From network optimisation standpoint, emphasising
the global topology of the network also reduces redundant regulatory relationships. In
this study, we propose a novel network inference algorithm using Random Walk with
Restart (RWRNET) that combines local and global topology relationships. The method
first captures the local topology through three elements of random walk and then
combines the local topology with the global topology by Random Walk with Restart.
The Markov Blanket discovery algorithm is then used to deal with isolated genes. The
proposed method is compared with several state-of-the-art methods on the basis of
six benchmark datasets. Experimental results demonstrated the effectiveness of the
proposed method.

Keywords: gene regulatory networks, random walk with restart, local topology, global topology, Markov Blanket
discovery algorithm

INTRODUCTION

Inferring accurate gene regulatory networks (GRNs) is an exciting but difficult topic in the
field of bioinformatics. Inferring accurate GRNs is not only helpful to understanding complex
regulatory relationships between genes in cells but also to understanding relationships between
genes and diseases (Lv and Bao, 2009; Altay and Emmert-Streib, 2010; Tang et al., 2015). With
the development of high-throughput technologies, huge gene expression data have been produced
from which researchers can infer GRNs (Maetschke et al., 2014; Liu, 2015).

Numerous network inference methods for inferring accurate GRNs have been developed.
These methods can be classified into two categories: model-based and similarity-based methods.
Model-based methods, which mainly include Boolean network model, differential equation model
and Bayesian network model, usually infer GRNs through a computational model. The Boolean
network model is a simple discrete model that contributes to understanding various states of cells,
such as proliferation, differentiation and apoptosis (Huang, 1999; Lim et al., 2016; Zhou et al., 2016).
However, the Boolean network model cannot be applied in networks with complex regulatory
relationships. The differential equation model is a continuous network model that can accurately
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describe the dynamic characteristics of GRNs. The expression
level of genes in differential equation is determined by related
genes and regulatory equations, thus allowing the underlying
phenomena of organisms to be accurately described (Alter et al.,
2000; Cantone et al., 2009; Honkela et al., 2010; Huppenkothen
et al., 2017). The Bayesian network model is a popular
graphical model of probability. In this model, the dependencies
between genes are described by a directed acyclic graph. The
Bayesian network model is superior to other models in terms
of dealing with noise and prior knowledge, but it has high
computational complexity (Tan et al., 2011; Betliński and Ślęzak,
2012; Shi et al., 2016).

Similarity-based methods, which primarily include
correlation-based and information theory-based methods,
identify regulatory relationships by measuring the dependencies
between genes (Li et al., 2011). In correlation-based methods,
the dependencies are determined by the degree of co-expression.
Typical measurement methods include Pearson’s correlation
coefficient, Euclidean distance and partial correlation coefficient
(de la Fuente et al., 2004; Saito et al., 2011; Fukushima, 2013;
Ruyssinck et al., 2014; Mohamed Salleh et al., 2015; Ghosh and
Barman, 2016). However, these measurement methods cannot
identify complex dependencies, such as non-linear dependencies
(Wang and Huang, 2014). Information theory-based methods
can capture complex non-linear regulatory relationships (Brunel
et al., 2010; Mousavian et al., 2016). Mutual information (MI)
is first used in information theory to measure the similarity
between signals and later used in the field of biology to measure
regulatory relationships between genes. Classical methods
include Relevance Network (RN), Minimum Redundancy
Network (MRNET), Path Consistency Algorithm based on
Conditional Mutual Information (PCA-CMI) and Redundancy
Reduction in the MRNET algorithm (RRMRNET). RN (Butte
and Kohane, 2000; Kuzmanovski et al., 2018) is one of the earliest
methods that used MI to measure relationships. MRNET (Meyer
et al., 2008) is a feature selection method. In MRNET, a feature
selection strategy is adopted in selecting regulatory relationships.
Although non-linear regulatory relationships can be measured
by MI, it cannot distinguish indirect regulatory relationships
(Margolin et al., 2006). To overcome this limitation, Zhang
et al. (2012) proposed PCA-CMI, in which MI is replaced by
conditional mutual information (CMI). However, CMI tends
to underestimate the relationship between genes, so Zhang
et al. (2015) proposed conditional mutual inclusive information
(CMI2) to solve the problem of underestimation of CMI. To
improve accuracy, Liu et al. (2017) proposed RRMRNET on the
basis of MRNET, in which two strategies are implemented in
eliminating redundant regulatory relationships.

In addition, several machine learning-based methods, such
as tree-based ensemble regression and neural network-based
inference methods, have been applied in this field (Huynh-
Thu et al., 2010; Huynh-Thu and Sanguinetti, 2015; Petralia
et al., 2015; Raza and Alam, 2016). Researchers have also
noticed that several regulatory relationships do not occur in
every cell. Thus, the GRN should be defined in specific cells
and situations (Moignard et al., 2015; Moris et al., 2016).
Therefore, network inference methods based on single-cell

expression data have attracted people’s interest, which has led
to the development of computational and statistical methods
that are aimed at discovering new insights into cell state
transitions (Bendall et al., 2014; Trapnell et al., 2014; Pina et al.,
2015; Rue and Martinez Arias, 2015). The use of single-cell
expression data to infer networks has many advantages. With
the development of single-cell technology, the amount of data
we can use will increase, which can effectively alleviate the
defects of high-dimensional and low-sample gene expression
data (Macosko et al., 2015). However, obtaining the time-series
data of single cells is currently impossible. Notably, these
methods infer the regulatory relationship based on the similarity
between the transcriptional states of genes and usually provide
strong assumptions, which are often unconvincing. However,
several methods can still be used for network reasoning
using single-cell expression data (Bendall et al., 2014; Trapnell
et al., 2014; Haghverdi et al., 2016; Moris et al., 2016;
Reid and Wernisch, 2016).

Although these aforementioned methods have extensively
promoted GRN research, they still have certain shortcomings.
For example, model-based methods usually have high
computational complexity. Most similarity-based methods
consider relationships between only two and not all genes at a
time. Moreover, these methods usually focus on the surrounding
information rather than on the global topology of network,
thus resulting in numerous redundant regulatory relationships.
Therefore, the present study mainly concentrates on inferring
GRNs by combining local and global topologies.

Random Walk with Restart (RWR) is an improvement
of the Random Walk (RW). RWR is widely used in the
field of bioinformatics because it can capture multivariate
relationships between nodes and explores the global topology
of networks (Rosvall and Bergstrom, 2008; Athanasiadis
et al., 2017; Peng et al., 2018; Valdeolivas et al., 2019).
Chen et al. (2012) used RWR to determine associations
between diseases and miRNAs. Sun et al. (2014) verified
the robustness of RWR for parameter selection. Luo et al.
(2016) proposed a new computational approach, MBiRW,
that uses a combination of similarity measures and a double
random Walk (BiRW) algorithm to identify potential new
indications for a particular drug. Yu et al. (2017) provided a
comprehensive framework for predicting new HCC drugs based
on multi-source random walk.

To address the limitations in gene network inference, we
propose a novel network inference algorithm using RWR
(RWRNET). The restart probability, initial probability vector
and roaming network in RWR is first improved to apply
it in network inference. Second, the improved RWR is
used in inferring network structure. Finally, the Markov–
Blanket discovery algorithm IPC-MB is used to optimise the
network structure to obtain the final gene network. The main
contributions of this study are described as follows:

(1) We improve the three key elements of RWR. First, the
proposed method obtains the restart probability and
initial probability vector according to node connectivity
and functional modularity and then captures the local
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topology structure of the network. Second, a roaming
network construction method is proposed for reducing the
complexity of regulatory relationships among genes.

(2) We use a Markov–Blanket discovery algorithm (IPC-MB)
to deal with isolated genes in the network that are
generated by the RWR process.

(3) Extensive experiments are conducted to evaluate
the performance of RWRNET. Experimental results
confirmed that RWRNET is an effective network
inference method.

THEORY

In this section, we review the concepts of (conditional) mutual
information, RWR and Markov–Blanket that are related to the
proposed method.

(Conditional) Mutual Information
Mutual information is an information measurement in
information theory. MI can be regarded as the information
shared by two random variables or the reduction of uncertainty
due to a known random variable. The MI between random
variable X and Y is defined as follows:

MI (X, Y) =
∑

x∈X,y∈Y

p
(
x, y

)
log

p
(
x, y

)
p (x) p

(
y
) (1)

where p(x, y) is the joint distribution of X and Y ; while p(X)
and p(Y) represent the marginal probability functions of X and
Y , respectively.

Conditional mutual information (CMI) is a variant of MI.
CMI represents the information shared between variable X and
variable Y under the influence of variable Z. The CMI between
variable X and variable Y is defined as follows:

CMI (X, Y|Z) =
∑

x∈X,y∈Y,z∈Z

p
(
x, y, z

)
log

p
(
x, y|z

)
p (x|z) p

(
y|z
) (2)

where p(x, y, z) is the joint distribution of X, Y and Z, p(x|z) is
the marginal distribution of variable X when variable Z occurs;
and p(x, y, z) is the joint distribution of X, Y under the influence
of variable Z .

Random Walk With Restart
Random Walk with Restart is an improvement of RW. RWR
contains a parameter α as the restart probability, and 1 − α

represents the probability of a walker moves from a node to an
adjacent node. The RWR of graph can be defined by assigning a
transition probability to each edge. In this way, a walker can jump
from one node to another, and the sequence of nodes visited by
the walker is called RWR. Let pt+1 (j) denote the probability that
walker locates at j-th node when it come to a stable state, then the
formula is:

pt+1 = (1− α) Wpt + αp0 (3)

where W = [aij]N×N is the transition probability matrix, aij is the
transition probability from the i-th node to the j-th node; and

p0 represents the initial probability vector of N × 1, in which the
i-th element is 1 and the others are zero. N is the number of
nodes in the graph.

Markov–Blanket
This section introduces Markov-Blanket (MB). In the complete
set U of random variables, for a given variable X ∈ U and variable
set MB ∈ U (X /∈ MB), the following exists:

X⊥{U −MB− {X}}|MB (4)

that is, if the variable X and the set {U-MB− {X}} are
independent of each other under MB, then the minimum variable
set MB that can meet the above conditions is called MB of X.

METHODS

In this study, we propose an effective network inference method
(i.e., RWRNET). To apply RWR in GRNs, we improve its
three key elements, namely, restart probability, initial probability
vector and roaming network. Then the RWR is used to infer
network structure. Finally, we use IPC-MB to optimise the
network structure. Figure 1 presents the flowchart of RWRNET.
Specific details are discussed in the following sections. At the
same time, we have uploaded the source code (MATLAB format)
to the Internet, and readers can view it by visiting the link1.

Improvements of RWR
This section mainly introduces specific improvements to the
three elements of RWR (i.e., restart probability, initial probability
vector and roaming network) when RWR is applied in GRNs.
First, the restart probability and initial probability vector are
determined according to node connectivity and functional
modularity to capture the network topology. Second, a roaming
network is constructed using the asymmetric MI ranking strategy
to reduce the complexity of regulatory relationships among
genes. Specific details are described as follows.

Calculation of Restart Probability
Different nodes in a network have different connectivity, which
reflects network topology structure to some extent. Laplacian
Eigenmaps is an effective way to obtain network topology,
because it can map high-dimensional data to low-dimensional
data and ensure their similarity to the original data as much as
possible. Applying discrete Laplacian Eigenmaps to the graph
network can obtain the Laplacian matrix L. And the pseudo
inverse L+ of L is a valid kernel that can provides a similarity
measure between nodes. On the basis of L+, the average
commute time ACT (gi,gj) between gene gi and gene gj can be
then defined as

ACT(gi, gj) = L+(gi, gi)+ L+(gj, gj)− 2L+(gi, gj) (5)

L = D−
1
2 (D−W) D−

1
2 (6)

1https://github.com/Dam-1517/RWRNET
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FIGURE 1 | Flowchart of RWRNET. This flowchart consists of four parts, namely, the original input stage, algorithm improvement stage, network inference stage and
network optimisation stage. (A) In the original input stage, the MI matrix was obtained through gene microarrays data. (B) In the algorithm improvement stage, three
key elements of RWR were improved. The first was the restart probability, which was calculated by the pseudo inverse of the Laplacian matrix. Then, the initial
probability vector was improved next. Different genes have various initial probability vectors, depending on the functional module. In the figure, the centres of
modules are represented by orange nodes, modular genes are indicated by green nodes, and others are denoted by blue nodes. Finally, the roaming network. In this
paper, the network represented by the mutual information matrix was considered a fully connected network, and the roaming network was obtained by adjusting this
network. (C) In the network inference stage, RWR was executed to obtain a stationary distribution, and the gene regulatory network was inferred based on the
stationary distribution. (D) In the network optimisation stage, the MB for each isolated gene was discovered to establish a relationship between the isolated genes
and others.

where W is the adjacency matrix of graph, which is MI matrix

in this paper; and D = diag(ai.) with dii = [D]ii = ai. =
n∑

j=1
aij;

ACT(gi, gj) describes the average number of steps that particles
moves from gi to gj and then back to gi .

The average commute time increases when the number of
paths connecting the two points increases and when the length
of paths decreases. According to this idea, the average commute
frequency ACF(gi, gj) and restart probability α can be defined as
follows:

ACF(gi, gj) =

{
1 , gi = gj
1

ACT(gi,gj)
, gi 6= gj

(7)

α =
1

N2

∑
gi∈G

∑
gj∈G

ACF(gi, gj) (8)

where G = {g1, g2, · · · , gN} is the set of genes, and N denotes the
number of genes.

Construction of Initial Probability Vector
Gene regulatory networks is scale-free network in which only a
few genes have regulatory relationships with numerous genes.
These genes have substantial expression levels and form their
own modules according to different functions. Genes in the same
module are closely related not only to each other but also to
genes in other modules. In addition, although RWR can obtain
the global information of the network, taking only these genes as
starting nodes is insufficient. Therefore, the functional module
of these genes is used as starting nodes to obtain sufficient
information in this paper.

In this study, the sum of MI between one gene and another is
used to represent its expression level. The genes whose expression
level is higher than the average expression level are selected
as the centre of functional module. At the same time, due
to the influence of noise on gene expression data, genes with
low expression levels less than MEAN (EL)− STD(EL) are also
selected to fully consider the surrounding information. These
genes then put together to form a set C that includes not only the
genes with high expression levels but also genes with abnormally
low expression levels. The expression level EL and the set C are
defined as follows:

EL
(
gi
)
=

∑
gj∈{G−gi}

MI(gi, gj) (9)

C =
{

gi|EL
(
gi
)

> MEAN (EL) or EL
(
gi
)}

{
< MEAN(EL)− STD (EL) , gi ∈ G

}
(10)

where MEAN(EL) is the average expression level, and STD (EL)
represents the standard deviation.

Finally, for each gene gi in the set C, the top log n genes
with the largest MI(gi, gj) are selected as the functional module
modulegi . Based on these modules, the initial probability vector
p0 can be constructed according to the following strategy: for
each gene gi in G, if gi is an element of C, then the elements
of gi-corresponding and module-corresponding have a value
of non-zero, with their sum equals to 1. Otherwise, only gi
-corresponding is 1, whereas the others are zero.

Construction of Roaming Network
Although GRN is sparse, the regulatory relationships
among genes are extremely complicated. Therefore,
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several classical methods have introduced redundant
regulatory relationships when inferring network structure.
To reduce the complexity of regulatory relationships
while maintaining the local topology, we propose a novel
method for constructing the roaming network. The basic
idea is to use the asymmetry of MI ranking to adjust
the relationships between genes, thereby weakening those
that are not closely related. The roaming network (i.e.,
transition probability matrix) W can be constructed using
the following formulas:

W(gi, gj) = Rankgigj
∗MI(gi, gj) (11)

Rankgigj =
1 , if MI(gi, gj) ≥ MIgi

1−
Rgigj

N , if MI(gi, gj) < MIgi and MI(gj, gi) ≥ MIgj

0.1 , if MI(gi, gj) < MIgi and MI(gj, gi) < MIgj

(12)

where Rankgigj is the attenuation factor, which represents
the attenuation degree of regulatory relationships; Rgigj
is the MI ranking of gj among the genes connected with
gi . MIgi represents the average MI between gene gi
and others. As depicted by the formulas, the regulatory
relationship between gi and gj is determined by Rgigj

when MI(gi, gj) < MIgi and MI(gj, gi) ≥ MIgj . The lower
the ranking, the higher the attenuation degree will be.
If MI(gi, gj) ≥ MIgi , the regulatory relationship between
gi and gj will not be weakened; if MI(gi, gj) < MIgi and
MI(gj, gi) < MIgj , the relationship between them will be
weakened by 0.1 times.

Gene Regulatory Network Inference
Based on RWR
This section covers network inference on RWR. Specific details
are discussed below.

The first stage involves initialisation of regulatory
relationships. In this stage, we obtain the MI matrix (MIij)N×N
from the gene microarrays expression data that contain
N genes and M samples. This matrix is then taken as the
input of the method.

The second stage entails implementation of RWR. Given the
restart probability, normalised transition probability matrix and
appropriate initial probability vector, RWR can be performed on
the roaming network for each gene gi to obtain the stationary
distribution pt+1 . Considering time efficiency and accuracy,

when
∣∣pt+1 − pt

∣∣ < 10−6, pt+1 is stable, p(gi)
t+1

(
gj
)

represents the
probability that gi finds gj .

The final stage concerns GRNs inference. In this stage,
stationary distribution is multiplied to transition probability to
obtain the final score MIP(gi)(gj) :

MIP(gi)(gj) = p(gi)
t+1 (gj)

∗W(gi, gj) (13)

Based on the final score, GRNs can be inferred according to the
following formula:

NETWORK(gi, gj) ={
1 , if MIP(gi)(gj) > Threshold

(
gi
)

0 , otherwise
(14)

Threshold
(
gi
)
=

3α

4

∑
gj∈G

MIP(gi)(gj) (15)

where NETWORK(gi, gj) represents the regulatory relationship
between gi and gj; Threshold(gi) is an adaptive threshold
for gi . In this paper, the threshold of each gene is
automatically determined by its prediction results based on
the following reasons. The prediction results of each gene
were obtained by executing the RWR with different initial
probability vectors, and different amounts of information
were generated by each execution of RWR. Therefore, the
prediction results obtained from different genes cannot be
compared and cannot be processed with a fixed threshold.
To this end, Eq. 15 was designed to screen the regulatory
relationships for each gene.

∑
MIP(gi)(gj) was selected as the

major component of formula to simultaneously consider the
effect of the predicted relationship between all genes and the
target gene on the results. However, the regulatory relationship
cannot be screened out if only one major component is used.
Therefore, we added a factor of 3α/4, which represents the
information occupancy of the target gene. Equation 15 indicates
that only when the predictive relationship between a gene
and the target gene exceeds the total information that the
target gene holds can the real regulatory relationship between
them be considered.

Network Optimisation Based on IPC-MB
Given that each gene in GRNs has a unique role, no gene
should be isolated. However, RWR cannot handle isolated
nodes. Therefore, the isolated nodes are processed by a
Markov–Blanket discovery algorithm (IPC-MB) to optimise
the network structure. IPC-MB is a classical feature selection
algorithm (Fu and Desmarais, 2008). Its main idea is involves
eliminating redundant and irrelevant regulatory relationships
according to conditional independence to find genes that have
direct regulatory relationships with the target gene, CMI stands
for the conditional independence in this article. The basic idea is
look for a parent–child set (PC) and a spouse set. These sets are
then merged to obtain the Markov–Blanket (MB) of the target
gene. However, since the genes in the spouse set are actually
redundant, we will not use all of Markov-Blanket, but only use the
parent-child set (PC). Finally, on the basis of PC, the regulatory
relationships between isolated genes and genes in the PC are
established to obtain optimised GRNs.

To describe the proposed method comprehensively, Table 1
summarises the complete RWRNET. As shown in the table,
Lines 2–10 of the pseudo code are the improvements of RWR,
including calculating the restart probability, construction of a
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TABLE 1 | Gene Regulatory Network Inference Algorithm Using Random
Walk with Restart.

Algorithm: RWRNET

Input: Gene microarrays data G = {g1, · · · , gN}

Output: A gene regulatory network

1: Construct a MI matrix MI according to Eq. 1;

2: Calculate restart probability α using Eq. 8;

3: Construct transition probability matrix W using Eq. 11;

4: Calculate gene expression level EL (gi) for each gene using Eq. 9;

5: Select centres of functional module and put them into set C according to
Eq. 10;

6: Construct functional modules:
moduleg1 = {g1} , moduleg2 = {g2} , · · · , modulegN = {gN};

7: For each gene gi ∈ C do

8: Rank the genes gj in {G− gi} according to MI(gi, gj) in descending order to
form ranking list MIL;

9: modulegi ← the top log N genes in MIL;

10: End For

11: For each gene gi ∈ G do

12: Construct initial probability vector p(gi)
0 according to modulegi ;

13: p(gi)
t+1 = RWR(α, W, p(gi)

0 );

14: Calculate final score MIP(gi) according to Eq. 13;

15: End For

16: Infer network using Eq. 14;

17: Process isolated genes based on IPC-MB;

18: Return the optimised gene regulatory network.

roaming network and search for functional modules to construct
the initial probability vector. In Lines 11–16, RWR was used to
infer the initial network structure. The 17th line was used in
IPC-MB to optimise the network structure.

EXPERIMENT

In this section, we introduce the datasets and evaluation
metrics used to evaluate RWRNET performance. In
the experiment, the performance of RWRNET was
compared with that of different methods, namely, CLR,
ARACNE, MRNET, MIDER, MI3, MRMSn, PCA-CMI,
and RRMRNET, based on information theory. Among
these methods, MI3 and MIDER can infer regulatory
directions. However, RWRNET does not infer regulatory
directions. Hence, we ignored the regulatory direction during
the comparisons.

Datasets
During the experiment, the proposed and other methods were
tested and compared in terms of six datasets. The test datasets
were divided into simulated and real data, which included the
reaction chain data, DREAM3 yeast gene expression data and
SOS data. The reaction chain data were downloaded from the
KEGG database2. The reaction chain data were time-series data.
The DREAM3 yeast gene expression data were downloaded from
the DREAM3 challenge project3. The DREAM3 challenge project
provided three types of data; the null-mutant gene knockout data
were selected in this article. The SOS data were downloaded from
E. coli database4. The SOS data were interference data, that is,
the measurement data obtained through a series of transcription
interference. Table 2 provides a summary of the details of the
above six datasets.

The reaction chain with four species datasets comes from a
small linear chain of chemical reactions (Samoilov, 1997). The
dataset contained four variables, each of which contained 100
samples. The real network of the reaction chain included of four
nodes and three edges.

The reaction chain with eight species datasets comes from a
small linear chain of chemical reactions (Samoilov et al., 2001).
The dataset contained eight variables, each of which contained
250 samples. The real network of the reaction chain included of
eight nodes and seven edges.

The Dream3-10 gene dataset is from a yeast network in
DREAM3 (Marbach et al., 2010). The dataset contained 10 genes,
each of which contained 10 samples. The corresponding real
network structure included of 10 nodes and 10 edges.

The Dream3-50 gene dataset is from a yeast network in
DREAM3 (Marbach et al., 2010). The dataset contained 50 genes,
each of which contained 50 samples. The corresponding real
network structure included 50 nodes and 50 edges.

The Dream3-100 gene dataset is also from a yeast
network in DREAM3 (Margolin et al., 2006). The dataset
contained 100 genes, each of which contained 100 samples.
The corresponding real network structure included 100
nodes and 166 edges.

The SOS dataset is from an SOS network (Ronen et al., 2002).
The dataset contained nine genes, each of which contained nine
samples. The corresponding real network structure included nine
nodes and 24 edges.

2https://www.genome.jp/kegg/
3http://dreamchallenges.org/project-list/
4http://regulondb.ccg.unam.mx/index.jsp/

TABLE 2 | Descriptions of the datasets in our experiments.

Datasets Variables Samples Type Network nodes Network edges

Reaction chain with four species 4 100 Simulated 4 3

Reaction chain with eight species 8 250 Simulated 8 7

DREAM3-10 genes 10 10 Simulated 10 10

DREAM3-50 genes 50 50 Simulated 50 77

DREAM3-100 genes 100 100 Simulated 100 166

SOS 9 9 Real 9 24
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Evaluation Metrics
To verify the effectiveness of the proposed method, we used four
evaluation metrics: true positive rate (TPR), false positive rate
(FPR), positive predictive value (PPV) and accuracy rate (ACC).
TP, FP, TN and FN denote the number of true positives, false
positives, true negatives and false negatives, respectively. These
four evaluation metrics are calculated as follows:

TPR =
TP

TP + FN
(16)

FPR =
FP

FP + TN
(17)

PPV =
TP

TP + FP
(18)

ACC =
TP + TN

TP + FP + TN + FN
(19)

RESULTS

Results of the Chain Structure Network
To verify whether the proposed method has an effect on special
networks, such as chain structure network, we selected the
expression data of chain structure network with sizes of four and
eight as the test datasets.

First, we tested the proposed method on the chain structure
network with a size of four. Table 3 shows the performance of
RWRNET and other methods in this dataset. Like most methods,
RWRNET achieved perfect performance (PPV = 1, ACC = 1)
in this dataset.

To verify further the effectiveness of the proposed method,
we selected a chain structure network with a size of eight for
testing. Table 4 shows the performance of all methods. RWRNET,
CLR and ARACNE predicted six correct regulatory relationships
(TP = 6), only one missing regulatory relationship and one
redundant regulatory relationship (FP = 1). Compared with
the performance of the other methods, RWRNET predicted the
most regulatory relationships, and its FPR performance was
only worse than that of MIDER. However, MIDER achieved
FPR = 0 at the cost of TPR. Hence, our proposed method still

TABLE 3 | Comparison of the different methods’ performances in the reaction
chain with four species dataset.

TP FP TPR FPR PPV ACC

CLR 3 0 1 0 1 1

ARACNE 3 0 1 0 1 1

MRNET 3 1 1 0.33 0.75 0.833

MI3 2 3 0.667 1 0.4 0.333

MIDER 3 0 1 0 1 1

MRMSn 3 0 1 0 1 1

RRMRNET 3 0 1 0 1 1

PCA-CMI 3 1 1 0.333 0.75 0.833

RWRNET 3 0 1 0 1 1

TABLE 4 | Comparison of the different methods’ performances in the reaction
chain with eight species dataset.

TP FP TPR FPR PPV ACC

CLR 6 1 0.857 0.048 0.857 0.929

ARACNE 6 1 0.857 0.048 0.857 0.929

MRNET 6 9 0.857 0.429 0.4 0.643

MI3 2 11 0.286 0.524 0.154 0.429

MIDER 5 0 0.714 0 1 0.929

MRMSn – – – – – –

RRMRNET 6 2 0.857 0.095 0.75 0.893

PCA-CMI 6 16 0.857 0.762 0.273 0.393

RWRNET 6 1 0.857 0.048 0.857 0.929

offered great advantages. To intuitively explain the advantages
of RWRNET, we show the network structure inferred by all
methods (Figure 2). The first network in the figure is the
true network structure, the second network is the network
structure inferred by RWRNET, and the other networks are
the network structures inferred by comparison method. The
figure shows that the network structure inferred by CLR,
RRMRNET, ARACNE, and MIDER was the closest to the true
network, whereas the results obtained by MRNET, PCA-CMI,
and MI3 contained considerable redundant control relationships.
RWRNET missed X1–X8 and incorrectly linked X8 to other
genes, similar to the other methods. Only MI3, MIDER and
PCA-CMI were able to predict X1–X8. However, MIDER missed
X3–X4 and X5–X6, MI3 and PCA-CMI introduced excessive
redundant regulatory relationships. In summary, the proposed
method showed excellent performance. Finally, by combining the
performance of RWRNET in these two datasets, we learned that
RWRNET is suitable for special networks.

Results of the DREAM3 Challenge
Network
To demonstrate that the proposed method can be used to infer
GRNs from simulated dataset, we tested it in DREAM3. The
DREAM3 Challenge Network is a version of the DREAM project
that provides various gene expression datasets and corresponding
golden networks to evaluate the performance of the inferred
model. The gene expression dataset provided by DREAM3 is a
simulation dataset. We used yeast gene expression data with a size
of 10, 50, and 100 as the test datasets.

First, we tested the proposed method in the yeast gene
expression dataset with a size of 10. A comparative analysis of
different methods is summarised in Table 5. RRMRNET had the
best performance (PPV = 1, ACC = 1). MRMSn and PCA-CMI
identified nine correct regulatory relationships (TP = 9), whereas
RWRNET identified eight regulatory relationships only (TP = 8)
and introduced a redundant regulatory relationship (FP = 1). To
analyse visually the gap between RWRNET and other methods,
we showed the network structure they inferred (Figure 3). The
figure contains nine networks. The first network is a standard
network, and the one on the right of the standard network is
the network inferred by RWRNET. Like most other methods,
RWRNET missed G4–G9 and predicted G2–G9 incorrectly
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FIGURE 2 | Comparison of the different methods in the reaction chain with eight species dataset.

TABLE 5 | Comparison of the different methods’ performances in the
Dream3-10 gene dataset.

TP FP TPR FPR PPV ACC

CLR 6 10 0.6 0.286 0.375 0.689

ARACNE 6 6 0.6 0.171 0.5 0.778

MRNET 6 12 0.6 0.343 0.333 0.644

MI3 8 6 0.8 0.171 0.571 0.822

MIDER – – – – – –

MRMSn 9 1 0.9 0.029 0.9 0.956

RRMRNET 10 0 1 0 1 1

PCA-CMI 9 1 0.9 0.029 0.9 0.956

RWRNET 8 1 0.8 0.029 0.889 0.933

probably because of noise in the data. Unfortunately, RWRNET
also missed G3–G5. Similar to RWRNET, the network structure
inferred by MI3 lost G3–G5 because MI3 cannot recognise the
triangle relationship between G1, G3, and G5. Similarly, the loss
of G3–G5 in our proposed method may have been caused by the
complex network structures between G1, G3 and G5. Although
RWRNET did not perform as well as the RRMRNET, MRMSn
and PCA-CMI, it still performed well in terms of these four
metrics compared with CLR, ARACNE, MRNET, and MI3.

We then tested the performance of the proposed method in the
yeast gene expression dataset with a size of 50 (Table 6). The TPR
of the proposed method was 0.377, whereas that of the others was
between 0.052 and 0.494. RRMRNET was the only method that
performed better than RWRNET in terms of TPR. The FPR of
the proposed method was only 0.014, whereas the minimum FPR
of the other methods was 0.015. The proposed method clearly
identified correct regulatory relationships and avoided redundant

regulatory relationships (TP = 29, FP = 16). In addition, the
proposed method outperformed the other methods in all metrics,
especially with an ACC of 0.948. In summary, the proposed
method evidently performed better than the other methods.

Finally, we tested the performance of proposed method
in the yeast gene expression dataset with a size of 100
(Table 7). The performance of RWRNET was superior
to that of CLR, ARACNE, MRNET, MI3 and MIDER in
all metrics. Compared with RRMRNET and PCA-CMI,
RWRNET selected about 65 correct regulatory relationships
(TP = 65) and introduced 50 redundant regulatory relationships
(FP = 50). Although the TPR of RWRNET was not the highest
(TPR = 0.392), its FPR was only 0.01. To sum up, the proposed
method was considerably reduced the number of redundant
regulatory relationships. Therefore, our method achieved
the best performance in terms of PPV (PPV = 0.565) and
ACC (ACC = 0.969).

In conclusion, RWRNET achieved a good performance
in the DREAM3 challenge network dataset. The proposed
method predicted as many correct regulatory relationships
as possible while introducing the least redundant regulatory
relationships. These features indicate that our method may
be more advantageous than the other methods in inferring
large-scale networks.

Results of SOS Network in E. coli
Finally, we tested the performance of our method in the SOS
network in E. coli. The SOS network is a signal pathway in
the SOS DNA repair system, which has been experimentally
confirmed and is often used to test the effectiveness of various
methods in real networks. For gene expression data, we chose
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FIGURE 3 | Comparison of the different methods in the Dream3-10 gene dataset.

interference data, which were obtained through a series of
transcription interference measurements.

The performance of all methods are analysed visually in
Table 8. The performance of the proposed method was superior

to that of the other methods, except for PCA-CMI in terms of
ACC. In addition, the performance of the proposed method was
the best in terms of PPV. At the same time, RWRNET had the
best performance in terms of FPR, indicating that our method
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TABLE 6 | Comparison of the different methods’ performances in the
Dream3-50 gene dataset.

TP FP TPR FPR PPV ACC

CLR 19 165 0.247 0.144 0.103 0.818

ARACNE 13 125 0.169 0.109 0.094 0.846

MRNET 21 215 0.273 0.187 0.089 0.779

MI3 21 68 0.273 0.059 0.236 0.899

MIDER 4 79 0.052 0.069 0.048 0.876

MRMSn 21 17 0.273 0.015 0.553 0.94

RRMRNET 38 56 0.494 0.049 0.404 0.922

PCA-CMI 25 19 0.325 0.017 0.568 0.942

RWRNET 29 16 0.377 0.014 0.644 0.948

TABLE 7 | Comparison of the different methods’ performances in the
Dream3-100 gene dataset.

TP FP TPR FPR PPV ACC

CLR 39 713 0.235 0.149 0.052 0.830

ARACNE 20 417 0.121 0.087 0.046 0.886

MRNET 49 984 0.295 0.206 0.047 0.778

MI3 27 165 0.163 0.035 0.141 0.939

MIDER 13 80 0.078 0.017 0.140 0.953

MRMSn – – – – – –

RRMRNET 92 238 0.554 0.05 0.28 0.937

PCA-CMI 70 64 0.422 0.013 0.522 0.968

RWRNET 65 50 0.392 0.01 0.565 0.969

TABLE 8 | Comparison of the different methods’ performances in
the SOS dataset.

TP FP TPR FPR PPV ACC

CLR 12 5 0.5 0.417 0.706 0.528

ARACNE 7 3 0.292 0.25 0.7 0.444

MRNET 17 6 0.708 0.5 0.739 0.639

MI3 9 5 0.375 0.417 0.643 0.444

MIDER – – – – – –

MRMSn 10 2 0.417 0.167 0.833 0.556

RRMRNET 10 2 0.417 0.167 0.833 0.556

PCA-CMI 19 3 0.92 0.25 0.84 0.778

RWRNET 15 1 0.625 0.083 0.938 0.722

introduced fewer redundant regulatory relationships than the
others. A real network usually has a complex network structure
and close regulatory relationships. Thus, inferring a real network
is difficult. However, compared with the other methods, the
proposed method performed well in the SOS network, especially
in identifying redundant regulatory relationships. This result
demonstrated that our method can effectively reduce network
complexity and thus it is suitable for inferring real networks.

DISCUSSION

In this article, we emphasised that combining local topology
with global topology can be used to improve the accuracy of
network inference. However, existing methods usually focus on

local topology rather than on global topology. Given that RWR
is a global search algorithm, we used it to obtain the global
topology of the network. To confirm that RWR can be better
applied to GRNs, we improved its three key elements. First, we
constructed restart probability and initial probability vector on
the basis of network characteristics and regulatory mechanisms
to obtain the local topology structure. Second, we adopted
the asymmetric ranking strategy in constructing the roaming
network to reduce the complexity of regulatory relationships.
Finally, we used IPC-MB to optimise the network structure.
Thus, the proposed method (RWRNET) could theoretically
infer accurate GRNs.

RWRNET was tested on simulated and real datasets. In
simulated datasets, the proposed method achieved excellent
performance. In the reaction chain with four species, the network
structure inferred by RWRNET was exactly the same as the true
network. In the reaction chain with eight species, the Dream3-50
gene dataset and the Dream3-100 gene dataset, RWRNET
accomplished superior performance. In the Dream3-50 gene
dataset, its PPV was 0.644 and ACC was 0.948, indicating that
the proposed method had a relatively good effect. These results
showed that combining local topology with global topology can
effectively improve the accuracy of network inference. In real
datasets, RWRNET also achieved satisfactory results. Under the
premise that RWRNET obtained enough regulatory relationships
(TP = 15), the redundant regulatory relationships it introduced
were the least (FP = 1) possibly because the processing of roaming
networks reduced the effects of complex regulatory relationships
on RWR. Interestingly, RWRNET performed unsatisfactorily
compared with the other network inference methods in the
Dream3-10 gene dataset and SOS dataset. Two possible reasons
can be offered: the complexity of network structure and the
amount of noise in the data. In the Dream3-10 gene network,
RWRNET missed G3–G5 because of the triangular relationship
between G1, G3, and G5 that increased the complexity of
the network structure. Moreover, the SOS network had a
lot of noise that negatively affected the performance of the
proposed method.

RWRNET was tested on networks of different sizes (i.e.,
different numbers of variables), containing 4, 8, 9, 10, 50,
and 100 genes. The experimental results show that RWRNET
achieved good performance on the six different scale networks.
As shown in Tables 3–8, except for networks of sizes 9 and
10, the performance of RWRNET showed an upward trend
with the increase in the number of genes (the number of
variables) in the network. Especially in networks with sizes
of 50 and 100, RWRNET achieved good results in terms of
the PPV and ACC metrics. Thus, combining global topology
with local topology can effectively improve the accuracy of
network inference.

The performance of RWRNET was also compared with
that of other gene network inference methods in terms of
different evaluation metrics. Results showed that RWRNET
performed better than the other methods for most datasets.
In the Dream3-10 Gene Network and SOS Network datasets,
RWRNET did not perform as well as PCA-CMI. Although the
performance of RWRNET in these datasets was not satisfactory,
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it nevertheless considerably reduced the number of redundant
regulatory relationships, indicating that the global topology
relationships of the network can also improve the performance
of network inference.

CONCLUSION

In this study, we proposed a novel network inference method
based on information theory and RWR. We improved
the three key elements of RWR to infer GRNs by using
the proposed method. Restart probability was calculated,
initial probability vector was constructed to adapt to
network characteristics and regulatory mechanisms as much
as possible to capture the network topology accurately.
Moreover, a roaming network construction algorithm based on
asymmetric ranking was proposed. This algorithm effectively
reduced the effects of complex regulatory relationships
on RWR. Finally, the local topology was combined with
the global topology through RWR to infer the network
structure. IPC-MB was used to deal with isolated nodes
and optimise the network structure. The proposed method
was tested in six standard network datasets, and its
performance was compared with that of eight state-of-the-art
methods based on information theory. Experimental results

confirmed that the proposed method can efficiently and
accurately infer GRNs.
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