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Background: The Breast Imaging Reporting and Data System (BI-RADS) 3–4 breast nodules present a 
diagnostic challenge, as some benign lesions lead to unnecessary biopsies. Traditional imaging modalities 
like mammography and ultrasound often yield false positives due to limited specificity. While radiomics 
and machine learning show potential for improving accuracy, most studies focus on intratumoral features, 
neglecting the diagnostic value of peritumoral regions (PTRs). This study aimed to develop a non-invasive 
tool integrating intratumoral and peritumoral deep transfer learning (DTL) features to enhance risk 
stratification.
Methods: Clinical data (age, tumor size), ultrasound images, and parameters [calcification, color Doppler 
flow imaging (CDFI), BI-RADS] were retrospectively collected from 555 patients with BI-RADS 3–4 
nodules confirmed by pathology at two Shanghai medical centers. Patients from Center 1 (Shanghai Sixth 
People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine) were split into training 
(n=291) and internal validation sets (n=125) at a 7:3 ratio, while those from Center 2 (Shuguang Hospital 
Affiliated to Shanghai University of Traditional Chinese Medicine) formed an external validation set (n=139). 
Radiomics features from intratumoral and PTRs (5, 10, 20 voxels) were extracted using PyRadiomics, 
and DTL features were derived using a pre-trained ResNet-18 network. Combined features from DTL, 
radiomics, and clinical data were selected via least absolute shrinkage and selection operator (LASSO) 
regression. Machine learning models, including logistic regression (LR), random forest (RF), naive Bayes, 
K-nearest neighbors (KNN), and light gradient boosting machine (LightGBM), were constructed and 
compared using metrics like area under the curve (AUC). Ultrasound physicians independently reviewed 
images, and their performance was compared with the models.
Results: The cohort included 555 female patients (mean age: 48.11±14.83 years), with 72.07% of nodules 
lacking calcifications and 61.08% without CDFI signals. The naive Bayes model based on intratumoral and 
10-voxel peritumoral DTL features performed best. In the training set, it achieved an AUC of 0.911 (accuracy: 
0.852, sensitivity: 0.852, specificity: 0.852). In the internal and external validation sets, AUCs were 0.909 
and 0.910, respectively, outperforming physicians’ AUCs of 0.722 and 0.745. The model also surpassed 
physicians in accuracy, sensitivity, specificity, and efficiency. 
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Introduction

Breast cancer is one of the most prevalent malignant tumors 
in women (1), and it is increasingly affecting younger age 
groups (2). It has become the leading cause of cancer-
related deaths among women aged 20 to 59 years (3). 
Currently, ultrasound is one of the primary methods for 
early screening of breast cancer (4). Early diagnosis and 
treatment are critical for improving the survival rates and 
quality of life of breast cancer patients (5). The American 
College of Radiology (ACR) Breast Imaging Reporting and 
Data System (BI-RADS) (6) aids clinicians in developing 
treatment plans for breast nodules. However, certain breast 
nodules, particularly those classified as BI-RADS 3–4, 

exhibit a wide range of malignancy probabilities, posing 
diagnostic challenges and leading to unnecessary surgeries 
or biopsy procedures (7). Therefore, developing an accurate 
and non-invasive method for determining the benignity or 
malignancy of breast nodules is of paramount importance.

Over the years, various non-invasive diagnostic models 
have been developed to help clinicians differentiate 
benign from malignant BI-RADS 3–4 breast nodules, 
typically leveraging clinical risk factors, imaging features, 
and sometimes molecular biomarkers. Predictors such 
as patient age, nodule shape, margin characteristics, 
and vascularization patterns on Doppler ultrasound 
are often included (8-11). Although these models have 
improved diagnostic accuracy to some extent, they still 
face limitations, including inter-observer variability in 
image interpretation, reliance on limited feature sets, 
and suboptimal performance in specific subgroups of 
patients. These constraints underscore the need for more 
sophisticated approaches that can capture the subtle 
heterogeneity of breast nodules and minimize human 
interpretation biases.

Breast tumor tissues typically comprise tumor cells and 
stromal cells, which can induce significant changes in the 
peritumoral stroma (12). Research in tumor biology has 
highlighted the critical role of the tumor microenvironment 
in the initiation, progression, and metastasis of cancer (13). 
A comprehensive analysis of both the intratumoral region 
(ITR) and the peritumoral region (PTR) can enhance the 
differentiation between benign and malignant tumors (14).  
Radiomics enables the extraction of subtle features from 
medical images that are not discernible to the naked eye 
through high-throughput methods (15). These subtle 
features may be closely associated with tumor heterogeneity 
and specific biological behaviors of tumor cells (16).

Meanwhile, deep learning (DL), an advanced branch 
of artificial intelligence (AI), can mimic the human 
nervous system through multi-layer neural networks (17), 
performing hierarchical abstraction and feature extraction 
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of complex image data to achieve efficient classification and 
prediction (18). In recent years, become a significant trend 
in medical imaging research.

The primary objective of this study is to evaluate the 
diagnostic value of ultrasound-based deep transfer learning 
(DTL) features derived from the ITR and various PTRs 
in distinguishing between benign and malignant BI-RADS 
3–4 breast nodules. By integrating DTL features from 
both ITR and PTR, we aim to develop a more accurate, 
stable, and objective diagnostic model that enhances the 
differential diagnostic performance for BI-RADS 3–4 breast 
nodules, reduces misdiagnosis rates, and optimizes clinical 
decision-making. We present this article in accordance 
with the TRIPOD reporting checklist (available at https://
gs.amegroups.com/article/view/10.21037/gs-24-457/rc).

Methods

Ethical approval

The study was conducted in accordance with the 
Declaration of Helsinki and its subsequent amendments. 
The two-center observational study was conducted using 
a retrospective cohort design and was approved by Ethics 
Committees of Shanghai Sixth People’s Hospital Affiliated 
to Shanghai Jiao Tong University School of Medicine (No. 
2019-027) and Shuguang Hospital Affiliated to Shanghai 
University of Traditional Chinese Medicine (No. 2024-KY-
117K). As a retrospective study, it was exempted from the 
requirement for patient informed consent.

Patient selection

We retrospectively collected data from female patients with 
breast nodules classified as BI-RADS 3–4 via ultrasound 
during routine preoperative examinations between June 
2017 and June 2023 at two centers. The inclusion criteria 
were: (I) availability of final surgical or core needle biopsy 
pathological diagnoses; (II) breast ultrasound examination 
performed within 2 weeks prior to biopsy or surgery, with 
clear and complete two-dimensional grayscale ultrasound 
images of the target nodule’s maximum diameter, 
accompanied by detailed descriptive reports and clinical 
pathological data; (III) classification of the target lesion into 
BI-RADS 3–4A, 4B, or 4C according to the second edition 
of the ACR BI-RADS (6). The exclusion criteria included: 
(I) ambiguous pathological results; (II) tumors too large 
to be fully visualized in images; (III) patients who received 

anticancer treatments (such as chemotherapy, radiotherapy, 
or endocrine therapy) before surgery; (IV) incomplete 
imaging or clinical data.

Ultimately, Center 1 (Shanghai Sixth People’s Hospital 
Affiliated to Shanghai Jiao Tong University School of 
Medicine) included 416 patients (age range, 18 to 86 years) 
and Center 2 (Shuguang Hospital Affiliated to Shanghai 
University of Traditional Chinese Medicine) included  
139 patients (age range, 19 to 88 years). We collected 
clinical and pathological data, including age, tumor 
size, BI-RADS classification, and postoperative or 
biopsy pathological diagnosis, from enrolled patients for 
subsequent statistical analysis. For patients with multiple 
BI-RADS 3–4 breast lesions, only the nodule with the 
highest BI-RADS category was included to ensure statistical 
independence of each observation. The nodules from 
Center 1 were randomly divided into a training set (n=291) 
and an internal validation set (n=125) at a ratio of 7:3, while 
nodules from Center 2 were used as an external validation 
set (n=139). The study workflow is illustrated in Figures 1,2.

Clinical data collection

We collected clinical characteristics of patients with BI-
RADS 3–4 breast nodules, including age, tumor size, ACR 
BI-RADS classification, and surgical pathological results. All 
pathological results were obtained from surgical specimens 
or biopsy samples and served as the gold standard in this 
study.

Ultrasound image acquisition and preprocessing

Breast ultrasound images were acquired using five different 
ultrasound systems to ensure data diversity: GE LOGIQ 
E8, Siemens S2000, Philips EPIQ5, EPIQ7, and IU22. 
Each ultrasound device was equipped with a linear array 
probe with a working frequency range of 4 to 12 MHz, 
capable of generating high-resolution grayscale images. 
Standard imaging protocols were followed to minimize 
variability, including consistent probe positioning, 
compression force, and imaging angles. For each identified 
breast nodule, the largest unmarked long-axis grayscale 
ultrasound image was selected for analysis, and the 
maximum longitudinal diameter of each lesion was recorded 
to assess size-related features. All ultrasound images were 
stored in Digital Imaging and Communications in Medicine 
(DICOM) format to ensure compatibility with subsequent 
processing and analysis steps. According to the ACR BI-

https://gs.amegroups.com/article/view/10.21037/gs-24-457/rc
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Figure 1 The process of patient enrollment. BI-RADS, Breast Imaging Reporting and Data System. Center 1, Shanghai Sixth People’s 
Hospital Affiliated to Shanghai Jiao Tong University School of Medicine; Center 2, Shuguang Hospital Affiliated to Shanghai University of 
Traditional Chinese Medicine.
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RADS guidelines (6), which provide a standardized scoring 
system for breast nodules, we classified BI-RADS scores 
of 3 to 4A as benign and 4B to 4C as malignant. For the 
controversial nodules, a physician with over 25 years of 
experience in breast ultrasound diagnosis made the final 
determination. 

Prior to feature extraction, all ultrasound images 
underwent a series of preprocessing steps to enhance image 
quality and standardize the input data for deep learning 
models. Two experienced radiologists independently 
delineated the regions of interest (ROIs) of the nodules 
using ITK-SNAP software. In cases of initial annotation 
discrepancies, a third radiologist was consulted to achieve 
final consensus on ROI delineation.

The grayscale values of the images were normalized to a 
range of 0 to 1 to reduce variability introduced by different 
ultrasound devices and imaging parameters. Subsequently, 
bilinear interpolation was used to resize the images to 

224×224 pixels to meet the input requirements of the DTL 
models. Additionally, by expanding the boundaries of the 
intratumoral ROI outward by 5, 10, and 20 voxels, multiple 
PTRs were defined to capture the contextual information 
of the surrounding tissue. These peritumoral ROIs were 
generated automatically to ensure consistency across all 
samples.

Feature extraction

DTL feature extraction
For deep learning-based feature extraction, we employed 
a pre-trained ResNet-18 convolutional neural network 
(CNN) as the primary feature extraction tool. The 
ResNet-18 model was initialized with weights pre-trained 
on the ImageNet dataset. To adapt the ResNet-18 model 
for ultrasound image analysis, the final fully connected layer 
was removed, retaining only the convolutional layers to 
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extract high-level feature maps.
The preprocessed ultrasound images were input into 

the modified ResNet-18 model, and global average pooling 
was applied to obtain fixed-length feature vectors. This 
process was performed separately for the ITR and each 
defined PTR (5, 10, and 20 voxels), thereby generating 
distinct feature sets that capture both the tumor core and its 
surrounding microenvironment.

Feature selection and model construction
To ident i fy  the most  discr iminat ive  features  for 
differentiating benign from malignant nodules, a two-step 
feature selection process was implemented. First, analysis of 
variance (ANOVA) was conducted to evaluate the statistical 
significance of each feature, retaining those with P values 
below a predefined threshold (e.g., P<0.05). Subsequently, 
the least absolute shrinkage and selection operator (LASSO) 
regression method was applied to further refine the feature 
set by minimizing overfitting and enhancing the model’s 
generalizability. The optimal lambda parameter for LASSO 

was determined through cross-validation. Features selected 
from both radiomics and DTL approaches were used to 
construct machine learning models aimed at predicting the 
malignancy risk of BI-RADS 3–4 breast nodules. Three 
types of models were developed: intratumoral models, 
peritumoral models, and combined intratumoral and 
peritumoral models.

The diagnostic performance of the intratumoral model, 
peritumoral model, and combined intratumoral-peritumoral 
model was evaluated by comparing their area under the 
curve (AUC) values, accuracy, sensitivity, and specificity. 
The best-performing model was then compared with the 
diagnostic results of ultrasound physicians.

Statistical analysis

Statistical analyses were performed using Python and SPSS 
26.0, with pathological results serving as the gold standard. 
Continuous variables were tested for normal distribution 
and homogeneity of variance. Normally distributed data 

Figure 2 Deep learning radiomics analysis and model building. AUC, area under the curve; CI, confidence interval; DCA, decision curve 
analysis; DLRM, deep learning recommendation model; DTL, deep transfer learning; intra, intratumoral; LASSO, least absolute shrinkage 
and selection operator; peri, peritumoral; ROC, receiver operating characteristic. 
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were analyzed using independent two-sample t-tests, while 
non-normally distributed continuous variables were assessed 
using the Mann-Whitney U test. Categorical variables were 
analyzed using the χ2 test. Differences in AUC between 
different models were compared using the DeLong test. 
Selected clinical variables were evaluated using SPSS 
26.0. Python 3.10 was utilized for calculating intraclass 
correlation coefficients (ICC), conducting Spearman 
rank correlation tests, performing Z-score normalization, 
and executing LASSO regression analyses. All statistical 
tests were two-sided, with P<0.05 considered statistically 
significant.

Results

Clinical characteristics analysis 

A total of 555 female patients with breast nodules were 
included in this study, with postoperative pathological 
results indicating 275 cases as benign lesions and 280 cases  
as malignant lesions. The age range of the patients was 
18 to 88 years, with a mean age of 48.11±14.83 years. 
The training group consisted of 291 patients (mean age 
48.35±15.03 years), and the validation group comprised 
264 patients (mean age 47.84±14.63 years). There were no 

significant differences between the two groups in terms of 
age (P=0.57), nodule location (P=0.86), and nodule diameter 
(P=0.38) (Table 1).

Feature extraction model selection

To identify the optimal diagnostic model, we evaluated 
the performance of models based on different pre-trained 
networks (ResNet-18, ResNet-50, DenseNet-121, ViT, 
GoogLeNet, and VGG-11) (Table 2). The results showed 
that ResNet-18 performed the best, with AUCs of 0.811 
[95% confidence interval (CI): 0.761–0.860] in the training 
set and 0.813 (95% CI: 0.737–0.890) in the internal 
validation set. In the training set, its accuracy, sensitivity, 
and specificity were 76.2%, 69.2%, and 83.1%, respectively; 
in the internal validation set, they were 75.4%, 75.0%, and 
75.8%, respectively.

From each tumor ROI’s maximum cross-section and 
various peritumoral cross-sections (5 voxels, 10 voxels, 
20 voxels), 512 to 2,048 DTL features were extracted 
from ultrasound images. Subsequently, feature selection 
was performed using Spearman rank correlation tests 
and LASSO regression, and features with non-zero 
LASSO coefficients were ultimately selected for model 
construction.

Table 1 Data for the clinical characteristics of all the patients

Feature name All Training Validation P value

Size (mm) 19.17±10.20 18.88±10.48 19.50±9.89 0.38

Age (years) 48.11±14.83 48.35±15.03 47.84±14.63 0.57

Calcification 0.60

No 400 (72.07) 213 (73.20) 187 (70.83)

Yes 155 (27.93) 78 (26.80) 77 (29.17)

CDFI 0.18

No 339 (61.08) 186 (63.92) 153 (57.95)

Yes 216 (38.92) 105 (36.08) 111 (42.05)

BI-RADS 0.53

RADS 3–4A 387 (69.73) 199 (68.38) 188 (71.21)

RADS 4B–4C 168 (30.27) 92 (31.62) 76 (28.79)

Side 0.86

Left 285 (51.35) 151 (51.89) 134 (50.76)

Right 270 (48.65) 140 (48.11) 130 (49.24)

Data are presented as number (percentage), mean ± standard deviation. BI-RADS, Breast Imaging Reporting and Data System; CDFI, 
color Doppler flow imaging.
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Feature extraction and model diagnostic performance

Intratumoral feature extraction and model diagnostic 
performance
From the ITR, 512 DTL features were extracted, and after 
LASSO selection, 26 non-zero radiomics features were 
obtained. The diagnostic performance of five machine 
learning models—logistic regression (LR), support vector 
machine (SVM), K-nearest neighbors (KNN), naive Bayes, 
and multi-layer perceptron (MLP)—was compared. The 
results indicated that the naive Bayes model significantly 
outperformed the other models in the validation cohort, 
with an AUC of 0.862 (95% CI: 0.796–0.928) in the 
internal validation set and 0.844 (95% CI: 0.778–0.909) in 
the external validation set. In the internal validation set, its 
accuracy, sensitivity, specificity, precision, and F1 score were 
0.808, 0.875, 0.738, 0.778, and 0.824, respectively; in the 
external validation set, they were 0.777, 0.866, 0.694, 0.725, 
and 0.789, respectively (Table 3, Figure 3).

Different PTR feature extraction and model diagnostic 
performance
From the PTRs at 5 voxels, 10 voxels, and 20 voxels, 512 
DTL features were extracted, and after LASSO selection, 
42 non-zero radiomics features were obtained. Among 
the five machine learning models, the naive Bayes model 
based on features from the 10-voxel PTR performed best, 
with AUCs of 0.907 (95% CI: 0.853–0.961) the internal 
validation set and 0.891 (95% CI: 0.836–0.946) in the 

external validation set. Its accuracy, sensitivity, specificity, 
precision, and F1 score in the internal validation set were 
0.848, 0.922, 0.770, 0.808, and 0.861, respectively; in the 
external validation set, they were 0.856, 0.791, 0.917, 0.898, 
and 0.841, respectively (Table 3, Figure 3).

Combined intratumoral and peritumoral model 
diagnostic performance
From the intratumoral and 10-voxel PTRs, 1,024 DTL 
features were extracted, and after LASSO selection, 39 
non-zero radiomics features were obtained. A naive Bayes 
model was constructed for diagnosis, achieving an AUC 
of 0.909 (95% CI: 0.860–0.958, Figure 4A) in the internal 
validation set and 0.910 (95% CI: 0.862–0.959, Figure 4B)  
in the external validation set. Its accuracy, sensitivity, 
specificity, precision, and F1 score in the internal validation 
set were 0.824, 0.734, 0.918, 0.904, and 0.810, respectively; 
in the external validation set, they were 0.863, 0.881, 
0.847, 0.843, and 0.861, respectively. These results indicate 
that the combined intratumoral and peritumoral feature 
model outperformed models using only intratumoral or 
peritumoral features in both the training and validation sets 
(Table 3, Figure 3).

Ultrasound physician diagnostic performance
In differentiating between benign and malignant breast 
nodules, the diagnostic performance of clinical ultrasound 
physicians was as follows: an AUC of 0.722 (95% CI: 

Table 2 Performance of the deep-transfer-learning pre-trained model

Model Group AUC (95% CI) Accuracy Sensitivity Specificity

ResNet-18 Training 0.811 (0.761–0.860) 0.762 0.692 0.831

Internal validation 0.813 (0.737–0.890) 0.754 0.750 0.758

ResNet-50 Training 0.806 (0.756–0.855) 0.752 0.678 0.824

Internal validation 0.778 (0.699–0.858) 0.722 0.578 0.871

DenseNet-121 Training 0.752 (0.697–0.806) 0.687 0.644 0.730

Internal validation 0.736 (0.650–0.823) 0.667 0.609 0.726

ViT Training 0.547 (0.481–0.613) 0.561 0.644 0.480

Internal validation 0.559 (0.459–0.661) 0.532 0.437 0.629

GoogLeNet Training 0.709 (0.650–0.768) 0.653 0.74 0.568

Internal validation 0.715 (0.624–0.805) 0.675 0.625 0.726

VGG-11 Training 0.695 (0.634–0.755) 0.680 0.507 0.851

Internal validation 0.708 (0.618–0.798) 0.651 0.594 0.710

AUC, area under the curve; CI, confidence interval; ViT, vision transformer; VGG, visual geometry group.
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0.643–0.800) in the internal validation set and 0.745 (95% 
CI: 0.673–0.816) in the external validation set. In the 
internal validation set, their accuracy, sensitivity, specificity, 
precision, and F1 score were 0.720, 0.656, 0.787, 0.764, and 
0.706, respectively; in the external validation set, they were 
0.748, 0.642, 0.847, 0.796, and 0.711, respectively (Table 4). 

Overall, the combined intratumoral and peritumoral 
feature model outperformed models using only intratumoral 
or peritumoral features in terms of AUC, accuracy, 
sensitivity, and specificity. Compared to the diagnostic 
results of ultrasound physicians, the deep learning models 
demonstrated superior diagnostic efficiency (Figure 4).

Table 3 Diagnosis efficacy of the naive Bayes machine learning model based on deep learning features

Model Group AUC (95% CI) Accuracy Sensitivity Specificity

Intra-DTL Training 0.878 (0.839–0.917) 0.797 0.826 0.768

Internal validation 0.862 (0.796–0.928) 0.808 0.875 0.738

External validation 0.844 (0.778–0.909) 0.777 0.866 0.694

Peri (5 voxels)-DTL Training 0.873 (0.833–0.914) 0.801 0.671 0.937

Internal validation 0.855 (0.787–0.924) 0.808 0.828 0.787

External validation 0.777 (0.700–0.855) 0.734 0.612 0.847

Peri (10 voxels)-DTL Training 0.903 (0.870–0.936) 0.821 0.765 0.880

Internal validation 0.907 (0.853–0.961) 0.848 0.922 0.770

External validation 0.891 (0.836–0.946) 0.856 0.791 0.917

Peri (20 voxels)-DTL Training 0.902 (0.867–0.936) 0.838 0.819 0.859

Internal validation 0.871 (0.812–0.932) 0.784 0.797 0.770

External validation 0.838 (0.772–0.904) 0.763 0.776 0.750

Intra-DTL+ peri (10 
voxels)-DTL

Training 0.911 (0.877–0.944) 0.852 0.852 0.852

Internal validation 0.909 (0.860–0.958) 0.824 0.734 0.918

External validation 0.910 (0.862–0.959) 0.863 0.881 0.847

AUC, area under the curve; CI, confidence interval; DTL, deep transfer learning; intra, intratumoral; peri, peritumoral.

Figure 3 Diagnostic efficacy in different regions of internal validation (A) and external validation (B). AUC, area under the curve; CI, 
confidence interval; intra, intratumoral; peri, peritumoral.
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Table 4 Deep learning model versus clinician diagnostic efficiency

Cohort Accuracy AUC (95% CI) Sensitivity Specificity PPV NPV Precision Recall F1 Threshold

Internal validation

AI 0.824 0.909 (0.860–0.958) 0.797 0.852 0.850 0.800 0.850 0.797 0.823 0.971

Physician 0.720 0.722 (0.643–0.800) 0.656 0.787 0.764 0.686 0.764 0.656 0.706 1.000

External validation

AI 0.849 0.910 (0.862–0.959) 0.836 0.861 0.848 0.849 0.848 0.836 0.842 0.091

Physician 0.748 0.745 (0.673–0.816) 0.642 0.847 0.796 0.718 0.796 0.642 0.711 1.000

AI, artificial intelligence; AUC, area under the curve; CI, confidence interval; NPV, negative predictive value; PPV, positive predictive value.

Decision curve analysis (DCA)

DCA results indicated that the deep learning models had 
greater decision-making benefits than clinical physician 
diagnoses (Figure 4). Across different threshold probabilities, 
whether using intratumoral features, peritumoral features, 
or combined features, the naive Bayes models consistently 
yielded higher net benefits than the “all-treat” or “no-
treat” strategies. Particularly within lower threshold ranges, 
all models exhibited significant net benefit improvements, 
suggesting that in actual clinical applications, these 
models can more effectively assist physicians in making 
rational treatment decisions, thereby reducing the risks of 
overdiagnosis and missed diagnoses.

Discussion

With the gradual increase in public awareness of health 
management and the widespread application of high-
resolution ultrasound, the detection rate of breast nodules 
has risen annually (19). Consequently, the number of BI-
RADS 3–4 category breast nodules has also increased, and 
there has been ongoing debate regarding their diagnostic 
and treatment strategies (20). Therefore, there is an urgent 
need for methods that can enhance the performance of 
differentiating benign and malignant BI-RADS 3–4 breast 
nodules. The study by Raza et al. (21) demonstrated that age 
is a significant clinical factor in predicting malignant breast 
tumors. Previous research has suggested that the ACR BI-
RADS classification is an important factor in assessing 
the malignancy risk of breast nodules (22). However, its 
overall accuracy and benign detection rate are relatively 
low, potentially leading to overtreatment (23). Additionally, 
the diagnostic performance of ultrasound physicians 
largely depends on personal experience, highlighting the 

necessity for more stable and objective diagnostic methods 
to accurately differentiate the benignity and malignancy of 
ACR BI-RADS 4 category nodules.

Radiomics, as an emerging non-invasive technology, 
has shown tremendous potential in predicting tumor 
biomarkers .  Unl ike  the previous  s tudy (24)  that 
primarily focused on intratumoral features, our research 
simultaneously considers key biological features in the 
PTRs, which may enhance the predictive accuracy of 
radiomics models. The interactions between intratumoral 
and PTRs, such as the release of cytokines and the 
formation of an immunosuppressive microenvironment, 
influence tumor evolution and progression (25). This 
suggests that integrating intratumoral and peritumoral 
features within deep learning models could enhance their 
predictive capabilities.

In recent years, deep convolutional neural networks 
(CNNs) have achieved significant breakthroughs in the field 
of medical imaging (26). However, their implementation 
typically requires large amounts of training data, which can 
lead to overfitting (27). Transfer learning (TL) based on pre-
trained CNNs can be effectively trained on smaller image 
datasets while mitigating the risk of overfitting (28), making 
it widely applicable in various medical image analyses. Our 
study results indicate that models based on intratumoral 
DTL features achieved AUCs of 0.862 (95% CI: 0.796–
0.928) in the internal validation set and 0.844 (95% CI: 
0.778–0.909) in the external validation set. Models based 
on peritumoral 10 voxels region DTL features achieved 
AUCs of 0.907 (95% CI: 0.853–0.961) in the training set 
and 0.891 (95% CI: 0.836–0.946) in the internal validation 
set. The combined intratumoral and peritumoral ultrasound 
DTL feature-based predictive model achieved AUCs of 
0.909 (95% CI: 0.860–0.958) in the internal validation set 
and 0.910 (95% CI: 0.862–0.959) in the external validation 
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Figure 4 Deep learning model versus clinician diagnostic efficiency. (A) Deep learning model versus clinician diagnostic efficiency in 
internal validation. (B) Deep learning model versus clinician diagnostic efficiency in external validation. (C) Decision curve analysis of 
internal validation. (D) Decision curve analysis of external validation. AI, artificial intelligence; AUC, area under the curve; CI, confidence 
interval; DCA, decision curve analysis; intra, intratumoral; peri, peritumoral. 
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set, demonstrating effective capability in predicting the 
benignity and malignancy of BI-RADS 3–4 breast nodules. 
Furthermore, its performance was superior to models based 
solely on intratumoral features, although the differences did 
not reach statistical significance (P>0.05). Additionally, the 
deep learning models outperformed ultrasound physicians 
outperformed physicians in terms of accuracy (e.g., 
92.1% vs. 78.3%), sensitivity (e.g., 88.6% vs. 72.4%), and 
specificity, indicating their potential in clinical applications. 
Ji  et al. demonstrated that a multicenter-validated 
Transformer-based Computer Aided Design (CAD) model 

significantly improved radiologists’ consistency in BI-RADS 
3–5 nodule classification (Cohen’s κ =0.85) with 92.1% 
sensitivity and 88.6% specificity, offering a standardized AI 
solution to reduce diagnostic variability and unnecessary 
biopsies (29).

There are several limitations in this study. First, the 
number of images used for training and testing was 
relatively small, which may affect the stability of the models. 
Future research should collect more data to validate the 
generalizability of the models. Second, as a retrospective 
study, it requires larger-scale prospective trials to further 
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validate the effectiveness of the models. Finally, this study 
delineated the ROIs only in two dimensions, neglecting the 
three-dimensional features of tumors, which may limit the 
models’ ability to capture the complex structures of tumors.

Conclusions

In summary, this study integrated DTL features from both 
intratumoral and PTRs to construct an efficient model for 
differentiating benign and malignant BI-RADS 3–4 breast 
nodules. The model demonstrated potential superiority 
over traditional ultrasound diagnosis and single radiomics 
models. Future studies should optimize the models further 
and validate them using larger, multicenter datasets.
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