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1-isothiocyanato-(4R)-(methylsulfinyl) butane (SFN) is 
a phytochemical present in cruciferous vegetables, including 
broccoli, radishes, cabbage, and Brussels sprouts, with the 
highest concentrations found in broccoli sprouts [1]. This 
isothiocyanate is produced by plants in response to predation 
via the vesicular release of the hydrolytic enzyme myrosi-
nase, which enters damaged cells and converts the precursor 
compound glucoraphanin into glucose and SFN [2]. This 
predation response is also elicited by chewing or heating 
these vegetables. The relatively high bioavailability of SFN 
is further promoted via myrosinase produced by microbiota 
resident in the human intestine [3].

Since the discovery of SFN in 1992 [4], the phyto-
chemical has shown therapeutic efficacy in rodent models of 
human diseases ranging from arthritis and cancer to chronic 
obstructive pulmonary disease and autism (reviewed in [5,6]). 
These promising findings spurred dozens of clinical trials 
evaluating the compound, but to date, SFN has not received 
approval from the U.S. Food and Drug Administration (FDA). 

Confounding factors that may be limiting the clinical appli-
cations of SFN include dosing amounts and frequency, as 
well as formulations [6]. Compounding these challenges is 
the growing list of cellular proteins and pathways targeted 
by SFN. These include HDAC inhibition [7-12], induction 
of mitochondrial fusion [13], inhibition of Phase I metabolic 
enzymes [14], and induction of apoptosis [15-17]).

SFN has been extensively studied in the context of 
activating Nrf2, a master anti-stress transcription factor that 
regulates the expression of Phase II detoxification genes, 
antioxidant genes, and genes encoding enzymes of anabolic 
and bioenergetic pathways [18]. SFN stabilizes Nrf2 by 
thionoacylating multiple cysteines within KEAP1 [19-23], the 
substrate adaptor of a multisubunit E3 ligase that marks Nrf2 
for proteasomal degradation [19,21,24]. SFN modification 
of KEAP1 liberates the KEAP1-Nrf2 complex from the E3 
ligase, thus preventing Nrf2 from being marked for degrada-
tion with polyubiquitin chains. The stabilized transcription 
factor enters the nucleus and induces target gene expression. 
The protein products of Nrf2 target genes cooperatively main-
tain and restore redox and proteome homeostasis, making 
Nrf2 activation by SFN an attractive therapeutic option for 
diseases linked to unchecked oxidative stress, including those 
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Purpose: Sulforaphane (SFN) is an isothiocyanate derived from cruciferous vegetables that has therapeutic efficacy in 
numerous animal models of human disease, including mouse models of retinal degeneration. However, despite dozens of 
clinical trials, the compound remains to be tested as a clinical treatment for ocular disease. Numerous cellular activities 
of SFN have been identified, including the activation of Nrf2, a transcription factor that induces a battery of target gene 
products to neutralize oxidative and xenobiotic stresses. As Nrf2 expression and function reportedly decrease with aging, 
we tested whether the loss of the transcription factor limits the therapeutic efficacy of SFN against retinal degeneration.
Methods: Six- to 8-month-old wild-type and Nrf2 knockout mice were treated with SFN beginning 1 month after 
ribozyme-mediated knockdown of superoxide dismutase 2 (SOD2) mRNA in the RPE. The impacts of MnSOD (the 
protein product of SOD2) knockdown and the efficacy of SFN were evaluated using a combination of electroretinography 
(ERG), spectral domain optical coherence tomography (SD-OCT), and postmortem histology.
Results: SFN restored the ERG photopic b-wave suppressed by MnSOD loss in wild-type mice, but not in the Nrf2 
knockout mice. In contrast, ERG scotopic a- and b-wave loss was not restored for either genotype. SFN significantly 
improved retinal thickness in the Nrf2 knockout mice with MnSOD knockdown, but this was not observed in the wild-
type mice. In both genotypes, SFN treatment reduced morphological markers of RPE atrophy and degeneration, although 
these improvements did not correlate proportionally with functional recovery.
Conclusions: These findings highlight the capacity of SFN to preserve cone function, as well as the potential challenges 
of using the compound as a standalone treatment for age-related retinal degeneration under conditions associated with 
reduced Nrf2 function.
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impacting the retina (e.g., dry age-related macular degenera-
tion [dAMD]) [25].

Preserving RPE cell function and integrity during aging 
is a long-standing treatment goal, as atrophy of this cell layer 
precipitates or accompanies photoreceptor loss during AMD 
development [26]. Whether SFN has clinical utility for AMD 
remains to be established in part because Nrf2 expression 
and Nrf2-mediated transcription can be compromised with 
aging. Dysmorphic macular RPE in postmortem AMD eyes 
have reduced expression of Nrf2 and Nrf2 target gene prod-
ucts [27,28], and the RPE cells of aged mice have impaired 
Nrf2 signaling [29]. Furthermore, cigarette smoking is the 
leading environmental risk factor for AMD and impairs Nrf2 
signaling in an age-dependent manner [30].

In the present study, we directly tested whether Nrf2 
is required for the therapeutic efficacy of SFN in a mouse 
model of retinal degeneration induced by RPE mitochondrial 
oxidative stress. This model uses a ribozyme to knockdown 
manganese superoxide dismutase (MnSOD) expression in 
the RPE of C57BL/6 mice, inducing pathologies consistent 
with those observed in AMD despite the lack of a macula 
in mice [31-33]. MnSOD localizes within mitochondria and 
dismutates superoxide produced by the electron transport 
chain into hydrogen peroxide (H2O2) and oxygen. The H2O2 
is subsequently converted into oxygen and water. Suppressing 
MnSOD expression in the RPE layer leads to oxidative 
stress that alters RPE and choroidal morphology, increases 
autofluorescent bis-retinoids in extracellular deposits, and 
causes disorganization and loss of the RPE and underlying 
photoreceptors. These deficits reduce vision and ERG ampli-
tudes [31-34]. Complementary work in which the SOD2 locus 
was genetically ablated from the RPE of either C57BL/6 or 
BALB/c mice using Cre-lox manipulation revealed a time-
dependent progression of changes initiated by RPE oxidative 
stress. Subsequent pathological features observed included 
increased lipofuscin-associated autofluorescence, scotopic 
and photopic ERG deficits, reduced outer nuclear layer (ONL) 
thickness, increased RPE cell area in the central retina, disor-
ganized mitochondrial cristae, decreased mitochondrial DNA 
content within the RPE, and compensatory upregulation of 
glycolytic enzymes, indicative of RPE cells switching from 
respiration to glycolysis [34,35]. Transition of the RPE to 
glycolysis deprives photoreceptors of sufficient glucose and 
underscores the metabolic interdependence and cooperation 
between the two cell types [36-40]. Similarly, SOD2 gene 
ablation from muscle decreases oxidative phosphorylation 
and upregulates the expression of several glycolytic enzymes 
[41].

In the present study, we used the SOD2 ribozyme 
knockdown approach in RPE cells to evaluate the efficacy 
of interventional SFN administration in mitigating disease 
pathologies in wild-type and Nrf2 knockout (KO) mice. 
Global Nrf2 KO mice have been valuable for elucidating the 
contributions of oxidative stress to the pathophysiology of a 
range of cancers as well as liver, lung, and kidney diseases 
(e.g., [42-45]). In the context of the RPE and neuroretina, 
Nrf2 knockout mice model aspects of wet and dry AMD 
in an age-dependent manner, with phenotypes manifesting 
primarily after 1 year of age [46]. To amplify these AMD-
like phenotypes, investigators have coupled aged global Nrf2 
knockout mice (i.e., 12–18 months old) with dietary manipu-
lations (e.g., high-fat or high-glycemic diets) [47,48] or with 
co-knockout of peroxisome proliferator-activated receptor 
gamma coactivator-1α (PGC-1α) [49]. In the work reported 
here, Nrf2 KO mice were fed standard chow, and the studies 
were completed before mice reached 1 year of age to limit 
ocular deficiencies caused by absence of the transcription 
factor.

We report that administering SFN three times weekly 
to RPE-MnSOD knockdown mice beginning 1 month 
after SOD2 mRNA-targeting ribozyme injections restored 
cone function and improved morphological markers of 
RPE atrophy and degeneration. Notably, this efficacy was 
dependent on Nrf2 expression. These findings highlight the 
therapeutic utility of SFN to counter retinal degeneration, as 
well as potential limitations of the compound in scenarios of 
compromised Nrf2 expression and function.

METHODS

Materials: Paraformaldehyde was obtained from Sigma-
Aldrich Co. (St. Louis, MO). Antigen retrieval solution, 
Rodent Decloaker, 10X was purchased from Biocare Medical 
(Concord, CA). Rabbit anti-IBa1 was obtained from Wako 
Chemicals USA, Inc. (Richmond, VA; Catalog# 019–19741). 
Rat anti-F4/80 was purchased from ThermoFisher Scientific 
(Rockford, IL; Catalog# 14–4801–82), and the Alexa Fluor 
594- and 488-tagged secondary antibody (goat anti-rabbit, 
Catalog # A35560; and goat anti-rat, Catalog # SA5–10018) 
were from Invitrogen (Carlsbad, CA). All sections were 
mounted with Vectashield medium from Vector Laboratories 
(Burlingame, CA). R- sulforaphane (SFN, Product ID S8048; 
Catalog# 142,825-10–3) was purchased from LKT Laborato-
ries, Inc. (St. Paul, MN).

Mice and injections of AAV1 knock down SOD2 and SFN: 
All mouse experiments were performed in accordance with 
the guidelines of the Association for Research in Vision 
and Ophthalmology Statement for the Use of Animals in 
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Ophthalmic and Visual Research. Experimental procedures 
were approved by the University of Alabama Institu-
tional Animal Care and Use Committee (IACUC# 21,271, 
Birmingham, AL). Wild-type C57BL/6J mice and Nrf2 KO 
mice (global KO) were obtained from Jackson (JAX) Labo-
ratories (Bar Harbor, ME; strains #000664 and #017009, 
respectively). The Nrf2 KO mice were backcrossed into the 
C57BL/6J background and simultaneously screened for loss 
of retinal degeneration 8 (rd8). Ablation of the Nrf2 gene was 
confirmed with PCR (95˚C for 3 min,

95 ˚C for 15 s, 60 ˚C for 15 s, 72 ˚C for 45 s, 72 ˚C for 
3 min 4 ˚C hold) using JAX-designed primers (common 
forward primer sequence: 5′-GCC TGA GAG CTG TAG GCC 
C-3′; wild-type reverse primer sequence: 5′-GGA ATG GAA 
AAT AGC TCC TGC C-3′; mutant reverse primer sequence: 
5′-GAC AGT ATC GGC CTC AGG AA-3′. Mice were 6–8 
months of age at the beginning of the study and 10–12 months 
old by the end of the study. The right eyes (OD) of the mice 
were injected subretinally with 0.5 μl of 2.5 × 1012 particles/
ml of recombinant AAV1 constructs based on the pTR-UF2 
vector expressing SOD2-specific hammerhead ribozyme, 
Rz432, driven by the RPE-specific VMD2 promoter (AAV1-
Rz-SOD2), to drive ribozyme gene expression in the RPE 
layer as previously described [31]. The contralateral control 
eye (OS) was untreated. The total number of animals was 42, 
and they were separated into groups for untreated controls, 
untreated + sulforaphane (SFN), SOD2 KD, and SOD2 KD+ 
SFN. Each treatment group contained five to six mice. The 
mice were administered vehicle (PBS; Phosphate-Buffered 
Saline, pH7.4, 1X contains 137 mM NaCl, 2.7 mM KCl, 8 
mM Na2HPO4, and 2 mM KH2PO4) or SFN (50 mg/kg) in 
PBS by intraperitoneal injection every Monday, Wednesday, 
and Friday for 3 months, beginning 1 month after the AAV1-
Rz-SOD2 injection.

Visual function test: Visual function was assessed with elec-
troretinography (ERG) performed at pretreatment as baseline, 
1 month after AAV1-Rz-SOD2 injection, and 4 months after 
AAV1-Rz-SOD2 injection as previously described [33]. For 
the ERGs, the mice were dark-adapted overnight, and full-
field ERGs were recorded with a visual electrodiagnostic 
system (UTAS-E 2000; LKC Technologies, Gaithersburg, 
MD) using gold wire loop electrodes placed on each cornea 
and a reference electrode placed subcutaneously between the 
eyes. Scotopic rod recordings were performed with stimuli 
presented at intensities of 0.025, 0.25, and 2.5 log cd-s/m2 
at 10-, 20-, and 30-s intervals, respectively. Ten responses 
were recorded and averaged at each light intensity. Photopic 
cone recordings were performed after the mice were light 
adapted to a white background light of 100 cds/m2 for 5 

min. Recordings were performed with four-increasing flash 
intensities from 0, 5, 10, and 25 log cd-s/m2 in the presence 
of a constant 100 mcds/m2 rod suppressing background light. 
Fifty responses were recorded and averaged at each intensity. 
The a-waves were measured from the baseline to the peak in 
the negative direction, and the b-waves were measured from 
the negative peak to the major positive peak. The ERG data 
are presented as comparisons between treatment conditions 
for the mean of the maxima for a- and b-wave responses.

SD-OCT imaging: Eyes were dilated with 1% atropine, 
followed by 2.5% phenylephrine hydrochloride (Alcon, 
Fort Worth, TX), and then mice were anesthetized with 
ketamine (72 mg/kg)/xylazine (4 mg/kg). One drop of 2.5% 
hydroxypropyl methylcellulose (Gonak; Akorn, Lake Forest, 
IL) was applied to each eye before examination. Spectral 
domain optical coherence tomography (SD-OCT) was 
performed using the InVivoVue OCT system (Bioptigen, 
Inc., Durham, NC). Three lateral images (nasal, central, and 
temporal) were collected, starting 0.2 mm above the meridian 
crossing through the center of the optic nerve (ON), at the 
ON meridian, and 0.2 mm below the ON meridian. A corre-
sponding box centered on the ON with eight measurement 
points separated by 0.2 mm from each other was created. 
Corresponding neural retinas from different treatments were 
compared at the same location (0.2 mm temporal to the ON) 
from the vitreous face of the ganglion cell layer to the apical 
face of the RPE across the retina.

Histopathology and immunohistochemical analyses: Eyes 
were enucleated, immediately fixed in 4% paraformaldehyde 
overnight at 4 °C, and embedded in paraffin. Five-micron 
sections were prepared. For routine histology, sections were 
stained with hematoxylin and eosin (H&E) according to 
standard protocols by the UAB Pathology Core. The stained 
sections were evaluated by microscopy and photographed.

For immunohistochemistry, the sections were deparaf-
finized and processed for antigen-epitope retrieval. Samples 
were incubated in a steamer (Histofine, Nichirei Biosciences 
Inc., Tokyo, Japan) at 120 °C for 30 min in antigen retrieval 
solution and rodent deblocker (Biocare Medical) for antigen 
retrieval and then allowed to cool. The sections were permea-
bilized with 0.3% Triton X-100 for 10 min and then blocked 
with 5% normal goat sera, plus 1% bovine serum albumin 
(BSA) for 1 h at room temperature and incubated with rabbit 
anti-IBa1 (1:400 in blocking solution) or rat anti-F4/80 (1:200) 
overnight at 4 °C. The sections were then incubated with 
Alexa Fluor 594 goat anti-rabbit immunoglobulin G (IgG) or 
Alexa Fluor 488 goat anti-rat (1:600 in blocking solution; Invi-
trogen) for 1 h at room temperature. After extensive washing 
with PBS, the sections were mounted with Vectashield 
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4’,6-diamidino-2-phenylindole (DAPI; Vector Laboratories) 
for nuclear staining. Negative control samples were processed 
with omission of the primary antibody. The sections were 
examined using an Axio Vert 135 fluorescence microscope 
(Carl Zeiss, Thornwood, NY) with identical settings for laser 
intensity, gain, etc.

For MnSOD immunohistochemistry, the sections were 
deparaffinized and processed for antigen-epitope retrieval 
at 95–100 °C for 10 min in R-Universal Epitope Recovery 
Buffer Electron Microscopy Sciences, Hatfield, PA and then 
allowed to cool. The sections were blocked with 10% normal 
donkey sera plus 3% BSA for 1 h at room temperature and 
incubated with rabbit anti-MnSOD (ProteinTech, Rosemont, 
IL, cat# 24,127-1-AP, 1:1,000 in blocking solution) overnight 
at 4 °C. The sections were then incubated with Alexa Fluor 
546 donkey anti-rabbit IgG (1:400 in blocking solution; 
Invitrogen) plus Hoechst 33342 (Molecular Probes Eugene, 
OR) for 1 h at room temperature. After extensive washing 
with PBS, the sections were mounted with ProLong Gold 
(ThermoFisher Scientific, Waltham, MA). Negative control 
samples were processed with omission of the primary anti-
body. The sections were examined using a Nikon TE2000 
(Tokyo, Japan) as previously described [50]. MnSOD labeling 
of the RPE layer and photoreceptor inner segments was 
quantified from images using ImageJ. Those involved in the 
experiments were masked to the treatments.

Statistical analysis: The results are expressed as mean ± stan-
dard error of the mean (SEM). All experiments were assessed 
by comparing two group mean values using an unpaired 
Student t test. Comparisons of different treatments between 
more than two groups were assessed using one-way ANOVA 
with Bonferroni post hoc tests to determine the significance 
of the results in all assays and functional tests. All analyses 
were performed using Prism 5 ver. 5.01 (GraphPad Software, 
Inc., La Jolla, CA). A p value of less than 0.05 considered 
statistically significant.

RESULTS

To test whether the efficacy of SFN to mitigate retinal degen-
eration requires Nrf2, we performed the study outlined in 
Figure 1. Six- to 8-month-old, strain-matched wild-type (WT) 
and global Nrf2 KO mice in a C57BL/6J background nega-
tive for the Rd8 mutation were subjected to baseline ERG 
and OCT measurements. The animals were then injected 
subretinally with AAV1-RzSOD2, an adeno-associated 
virus (AAV) expressing a ribozyme targeting superoxide 
dismutase 2 (SOD2) mRNA to induce oxidative stress in the 
RPE [31-33]. The contralateral eye of each animal was not 
injected. One month after the subretinal injections, ERG and 

OCT measurements were recorded again. The mice were 
subsequently administered 50 mg/kg of SFN (or PBS vehicle) 
by intraperitoneal injection three times per week (Monday, 
Wednesday, and Friday) for 3 months. Final ERG and OCT 
measurements were recorded before the mice were eutha-
nized. Mice were euthanized by intraperitoneal injection 
of xylazine and ketamine (2.5 and 17.5 mg/kg body weight 
respectively), followed by the cervical dislocation. Post-
mortem histology of the posterior eye was performed using 
H&E staining to evaluate the retinal morphology and specific 
antibodies to detect markers of inflammation. The mice were 
10–12 months of age at study completion. In keeping with 
convention, we use the term “SOD2” when referring to the 
gene and mRNA species and “MnSOD” when referring to 
the enzyme.

A comparison of the ERG profiles from the 6- to 
8-month-old mice before MnSOD knockdown revealed that 
relative to the untreated WT mice, the Nrf2 KO mice had 
modestly decreased scotopic a- and b-waves (Figure 2A,B, 
respectively), a phenotype previously observed in mice 
lacking this transcription factor [46], whereas photopic 
b-waves were comparable between genotypes (Figure 2C). 
Although there were no significant ERG differences detected 
between the left (OS) and right (OD) eyes of the WT mice 
(Figure 2D–F), the Nrf2 KO animals curiously displayed 
modestly reduced scotopic a-waves in the OS compared to 
OD eyes (Figure 2D). AAV1-RzSOD2-mediated knockdown 
(KD) of MnSOD enzyme expression induced a significant 
reduction in all ERG waves for the WT and Nrf2 KO mice 1 
month after ribozyme subretinal injection (Figure 2G–I). The 
extent of the ERG decreases was comparable between geno-
types (Figure 2G–I), indicating that the absence of Nrf2 did 
not amplify the functional consequences of MnSOD suppres-
sion in the RPE. Three months of SFN treatment conferred no 
significant improvement on the scotopic a- and b-waves in the 
SOD2 kDa eyes for either the WT or Nrf2 KO mice (Figure 
2J–K) but significantly improved the photopic b-waves in 
the WT-SOD2 kDa eyes (Figure 2L). This photopic b-wave 
recovery required Nrf2 expression, as a comparable improve-
ment in cone function did not occur in the Nrf2KO-RzSOD2-
SFN mice (Figure 2L).

In parallel with the longitudinal ERG measurements, 
SD-OCT was performed to track morphological integrity 
in vivo. Comparing untreated 6- to 8-month-old WT and 
Nrf2 KO mice before any treatments, we did not observe 
significant differences in retinal thickness between genotypes 
(Figure 3A) or between left and right eyes within a genotype 
(Figure 3B). However, we observed modest RPE disruptions 
in a subset of Nrf2 KO mice (Figure 3C versus 3D, arrows). 
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One month after ribozyme-mediated SOD2 mRNA KD, we 
observed the expected retinal thinning in the WT and Nrf2 
KO mice (Figure 3E), and this thinning was exacerbated by 
12% in the Nrf2 KO animals. Three months of SFN treatment 
conferred no significant protection on MnSOD KD retinas 
in the WT animals (Figure 3F). In contrast, SFN modestly 
recovered the retinal thickness in the Nrf2 KO-MnSOD KD 
retinas (Figure 3F). Similarly, SFN improved the retinal 
thickness in the uninjected eyes of the Nrf2 KO animals, 
with statistics bordering on significance (Figure 3F, p=0.051).

Complementary postmortem histological analyses 
of retinas from 10- to 12-month-old mice were performed 
on four sets of mice for each genotype [1]: untreated [2], 
SFN treatment in the absence of MnSOD KD [3], vehicle 
treatment following MnSOD KD, and [4] SFN treatment 
following MnSOD KD. Analysis of the untreated eyes 
revealed comparable retinal morphology (Figure 4A, top 
and bottom panels). The WT and Nrf2 KO mice treated with 
SFN in the absence of MnSOD KD had mild morphological 
defects (Figure 4B). Specifically, in the WT mice, the RPE 
layer consistently showed patchy areas of atrophy (Figure 
4B, top panels, red arrows), whereas the RPE layers in some 
Nrf2 KO mice contained vacuoles (Figure 4B, bottom panel, 
red arrows). The WT mice subjected to MnSOD KD and 
treated with vehicle displayed gross disorganization of the 
neural retina, retinal thinning, severe atrophy of the RPE 
layer, and the presence of subretinal cellular infiltrates likely 
representing infiltrating inflammatory cells (Figure 4C, top 
panel). Likewise, the Nrf2 KO mice subjected to MnSOD 
KD and treated with vehicle exhibited highly disorganized 
neural retina morphology, severe retinal thinning and RPE 
atrophy, and extensive subretinal infiltrates accompanied by 
fibrosis (Figure 4C, bottom panel, red arrows). Treatment of 

the WT mice with SFN following MnSOD KD improved the 
morphology of the retina and the RPE compared to vehicle 
treatment, although the morphology was not comparable 
to baseline levels (Figure 4D, top panel). Similarly, SFN 
partially preserved the retinal and RPE morphology in the 
Nrf2 KO mice administered SFN after MnSOD KD, although 
RPE atrophy, infiltrates, and fibrosis were still detectable 
(Figure 4D, bottom panel).

Transverse retinal sections were labeled for the inflam-
matory markers Iba1 and F4/80. Iba1 staining was minimal 
in untreated animals but significantly increased in both 
genotypes after MnSOD KD, with increased numbers of 
ramified microglia in the inner retina and subretinal space 
(Figure 5A). This was markedly reduced in the MnSOD KD 
mice following SFN treatment. Staining for the macrophage 
marker F4/80 revealed a similar profile with maximum 
staining confirming macrophage infiltration in the WT and 
Nrf2 KO-MnSOD KD mice, which was reduced by SFN 
treatment (Figure 5B).

DISCUSSION

This study tested the capacity of SFN to restore retinal integ-
rity and function in mice following oxidative stress–induced 
damage to the RPE layer induced by the ribozyme-mediated 
knockdown of MnSOD in the RPE. This model increases 
mitochondrial superoxide levels, which yield dAMD-like 
pathologies [31-35]. SFN treatment was initiated 1 month 
after delivery of an SOD2-targeting ribozyme to evaluate 
the interventional utility of this phytochemical during active 
disease and to complement previous studies testing the 
prophylactic efficacy of the compound (e.g., [51-53]). SFN 
was administered three times a week for 3 months such that 

Figure 1. Study schematic. Base-
line electroretinography (ERG) 
and OCT measurements from 6- to 
8-month-old WT and Nrf2 KO mice 
were recorded before any interven-
tions, and the animals were subse-
quently injected subretinally with 
AAV1-RzSOD2 to knock down 
MnSOD enzyme expression in the 
RPE layer of the right eyes (OD). 
The contralateral eye (OS) was 
untreated. One month later, ERG 

and OCT measurements were taken again, and the mice were administered sulforaphane (50 mg/kg) or vehicle every Monday, Wednesday, 
and Friday for 3 months. Mice were 10–12 months old at the end of the study. Final ERG and OCT measurements were recorded before 
postmortem harvesting of the posterior eyes for histopathology and immunohistochemistry.
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Figure 2. SFN improves the photopic b-wave ERG deficit induced by MnSOD knockdown in an Nrf2-dependent manner. Full-field scotopic 
and photopic electroretinography (ERG) were performed on WT and Nrf2 KO mice. Error bars represent SEM (standard error of the mean). 
A–C: Graphs show baseline scotopic a-waves, scotopic b-waves, and photopic b-waves, respectively, for each genotype with data from both 
eyes combined. D–F: Graphs of baseline scotopic a-waves, scotopic b-waves, and photopic b-waves, respectively, for each genotype from 
the right (OD) and left (OS) eyes. G–I: All mice were injected with AAV1-RzSOD2 in the OD, and 1 month post-AAV administration, ERGs 
were recorded. J–L: One month post-AAV administration, mice from each genotype were evenly divided into two groups and treated with 
either vehicle (Veh) or SFN. After 3 months of treatment (i.e., 4 months post-AAV administration), a final set of ERGs were recorded for 
each animal. Statistical significance (p<0.05) was determined with an unpaired Student t test or one-way ANOVA using GraphPad Prism.
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Figure 3. MnSOD knockdown decreases retinal thickness as measured with OCT, and SFN improves retinal thickness in Nrf2 KO mice. 
A–B: spectral domain-optical coherence tomography (SD-OCT) was used to measure and compare retinal thickness in the eyes of WT 
and Nrf2 KO mice before any treatments. Error bars represent SEM (standard error of the mean). Representative SD-OCT images of WT 
(C) and Nrf2 KO (D) eyes before subretinal injections. Arrows in (D) denote disruptions to the RPE layer observed in a subset of Nrf2 KO 
mice before the AAV1-RzSOD2 injection. Graphs of SD-OCT measurements taken 1 month (E) and 4 months (F) after AAV1-RzSOD2 
delivery (i.e., 3 months after SFN treatment was initiated). Statistical significance (p<0.05) was determined with an unpaired Student t test 
or one-way ANOVA using GraphPad Prism.
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the study was terminated 4 months after ribozyme injection, 
a time point at which AMD-like structural and functional 
pathologies from MnSOD knockdown are readily detect-
able [31]. This study further compared the efficacy of SFN 
in WT mice versus Nrf2 KO mice, as SFN activates Nrf2, 
but age-dependent reductions of Nrf2 in the RPE [28,29] and 
other cell types (e.g., [30]) may limit the clinical feasibility of 
exploiting Nrf2 activation in elderly patients.

SFN restored the ERG photopic b-wave deficit induced 
by MnSOD loss in a Nrf2-dependent manner (Figure 2L), 
consistent with unchecked oxidative stress within the RPE 
causing functional deficiencies in photoreceptor cones (e.g., 
[34,35]) and Nrf2 target gene products neutralizing this stress 
sufficiently to recover cone function [54,55]. This functional 
rescue is promising, as cone loss associated with oxidative 
stress is characteristic of AMD [56,57] and retinitis pigmen-
tosa (RP) [58]. In contrast, SFN did not recover rod function 
(Figure 2J,K). Cones are likely more vulnerable to oxidative 
damage than rods due to the higher mitochondrial content 
[58] and higher sensitivity to the mitochondrial toxin, FeSO4 

(e.g., [59]). The elevated mitochondrial content of cones may 
be accompanied by a more robust antioxidant capacity to 
neutralize endogenous free radicals generated by mitochon-
drial respiration, conferring on cones higher resistance to 
oxidative stress originating in neighboring RPE cells and 
rods. The differential sensitivity between rods and cones 
to exogenous stresses has been observed in diabetic mice; 
rod a- and b-wave ERGs decreased by 50%, whereas cone 
a- and b-wave ERGs were not deleteriously impacted [60]. 
In addition, Nrf2 overexpression selectively rescued cones 
in several mouse models of retinal degeneration (rd) [55], as 
did antioxidant supplementation [61], and greater functional 
rescue of cones by SFN has been reported for the rd10 model 
of RP [62].

Rod photoreceptors may incur irreparable damage 
from chronic oxidative stress, consistent with scotopic ERG 
deficits in untreated Nrf2 KO mice (Figure 2A,B), whereas 
cone photopic ERGs were comparable between genotypes 
(Figure 2C). Zhao et al. reported a selective reduction in 
rod function in mice genetically ablated for Nrf2 [46]. The 

Figure 4. SFN treatment can restore the retinal morphology disrupted by MnSOD knockdown. Postmortem histological sections (5 m thick) 
of retinas prepared from WT and Nrf2 KO mice and labeled with hematoxylin and eosin (H&E) staining. The images in the top row are from 
WT eyes, and the images in the bottom row are from Nrf2 KO eyes. Sections were prepared from animals: (A) untreated, (B) treated with 
SFN in the absence of MnSOD knockdown, (C) administered AAV1-RzSOD2 to knock down MnSOD, and (D) administered AAV1-RzSOD2 
to knock down MnSOD and treated with SFN. Red arrows in (B) mark patchy areas of atrophy (top panel) and subretinal vacuoles (bottom 
panel). In the bottom panel of (C), red arrows denote severe retinal/RPE thinning and subretinal infiltrates.
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Figure 5. SFN treatment reduces 
microglia and macrophage infiltra-
tion in SOD2 knockdown mice. 
Representative transverse sections 
of retinas from wild type (WT) and 
Nrf2 KO mice either untreated, 
MnSOD KD or MnSOD KD plus 
SFN treatment. A: Immunostaining 
for the microglia marker IBA1 (red) 
shows increased microglia and 
ramification in the retinas of the 
MnSOD KD animals and reduction 
after SFN treatment. B: Immunos-
taining for the macrophage marker 
F4/80 (green) shows increased 
infiltration in the retina following 
MnSOD KD and reduction after 
SFN treatment.
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higher susceptibility of rods to Nrf2 loss could also stem 
from differences in rods and cones with respect to fatty acid 
compositions [63], metabolic and bioenergetic requirements 
[39], and autophagic capacity [58,64-66]. Nrf2 activity is 
required for efficient autophagy and lysosomal function in 
the RPE [46], and SFN protects RPE cells from blue light–
induced inflammation and apoptosis by inducing autophagy 
[67]. These findings, along with reports that SFN can either 
induce or inhibit autophagy depending on the cell type and 
experimental conditions (e.g., [68,69]), highlight an important 
future direction to determine the extent by which SFN differ-
entially impacts the autophagic machinery in rods versus 
cones. The balance between autophagy and proteasomal 
degradation in photoreceptors governs the capacity of these 
cells to retain function in response to stress (e.g., [70]). As 
SFN can increase lysosomal and mitochondrial biogenesis 
(e.g., [68,71-73], we favor that the benefit to cones stems 
from SFN concomitantly increasing the removal of damaged 
mitochondria by mitophagy while inducing the biogenesis of 
replacement mitochondria.

SFN mitigates retinal degeneration in rodent models of 
ischemia/reperfusion [51,74,75], light damage [52,53], genetic 
models [62,76], and diabetes [60,77,78]. The compound 
improves ERGs [52,53,62,74,76,78], reduced retinal thinning 
[74,75], and suppressed proinflammatory cytokines [51,77]. 
These positive effects have been consistently reported and 
include studies that initiated SFN treatment before the onset 
of pathologies (e.g., [51-53]. In this context, SFN preserves rod 
ERG function when administered before light-induced retinal 
damage [52,53], implying that protecting rods depends on 
mitigating the initial (photo)oxidative insult before damage.

Despite failing to recover rod function in Nrf2 knockout 
mice with MnSOD knockdown, SFN modestly increased 
retinal thickness in these mice (Figure 3F) and improved the 
morphological markers of RPE atrophy and retinal degenera-
tion in both genotypes (Figure 4D). However, these improve-
ments did not correlate proportionally with functional 
recovery in either genotype. Incomplete morphological and 
functional rescue has been observed with other therapeutic 
interventions (e.g., [79,80]), likely reflecting irreparable 
damage of photoreceptors during the first month of MnSOD 
knockdown before SFN treatment. Further protection may be 
achievable if SFN treatment is initiated simultaneously with 
ribozyme delivery.

This study has potential caveats and limitations. First, 
control mice injected with an AAV-inactive ribozyme were 
not included due to the limited number of Nrf2 KO animals 
available because of breeding issues and reduced litter sizes. 
Second, MnSOD expression can be induced as a direct Nrf2 

target gene product, as most convincingly demonstrated by 
the Nrf2 antibody chromatin immunoprecipitation (CHIP) 
approach in cells treated with astragaloside [81]. Constitu-
tive MnSOD expression, however, is independent of Nrf2 
(e.g., [82]). Numerous other transcription factors regulate 
MnSOD expression, including NF-kB, specificity protein 1 
(SP1), AP-2, and C/EBP (reviewed in [83], raising the possi-
bility that the efficacy of SFN in wild-type mice results from 
Nrf2-mediated transcription of SOD2 mRNA that counters 
the efficiency of the ribozyme. However, the evidence does 
not favor this scenario because the activity of the ribozyme 
was not detectable during the time period that SFN was 
administered, as indicated by a plateauing of the ERG deficits 
between the first and fourth months after ribozyme delivery 
in vehicle-treated mice, irrespective of genotype (Appendix 
1). Moreover, labeling of the RPE in paraffin sections with an 
MnSOD antibody did not show a detectable change in enzyme 
expression in response to SFN compared to RPE cells from 
vehicle-treated eyes (Appendix 1). As SFN treatment was not 
initiated until 1 month after ribozyme administration when 
the ERG deficits plateaued, the improved photopic ERG read-
ings in the WT mice are more consistent with the compound 
restoring cone function independent of replenishing MnSOD 
expression in the RPE.

An additional consideration is that the SOD2 mRNA 
knockdown is targeted to the RPE layer, but SFN was deliv-
ered systemically. Thus, the impacts of SFN are not restricted 
to the RPE; however, the individual relative contributions of 
each cell type (e.g., RPE, photoreceptors, or Mller cells) to the 
overall efficacy of SFN are unknown. These relative contri-
butions depend on [1] the expression levels of Nrf2 and other 
factors activated or inhibited by SFN (e.g., histone deacety-
lases) [2, 7-12], the susceptibility and responses of each cell 
type to oxidative stress and mitochondrial dysfunction, and 
[3] the metabolic flexibility and bioenergetic needs of each 
cell type. Notably, the MnSOD levels in the inner segments 
of photoreceptors were not detectably changed by SFN in the 
WT mice but trended higher in the Nrf2 KO mouse inner 
segments (Appendix 1). However, functional rescue was 
observed only in the WT animals, indicating that MnSOD 
induction in photoreceptors is not likely a major contributor 
to SFN efficacy in this study.

Extrapolating the in vivo impacts of SFN on the mouse 
retina to human AMD is complicated by the lack of a macula 
in rodents. Thus, whether SFN exerts similar protective 
effects on cones in the macula or fovea cannot be inferred 
from these studies. Further, because the photoreceptor 
subpopulations in this specialized region of the primate retina 
may have distinct physiologic and bioenergetic requirements 
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[39], the impacts of SFN on each of these cell types may 
differ from the response of photoreceptors in the peripheral 
retina of humans or in the mouse retina. The relative levels of 
Nrf2 transcriptional activity in photoreceptor subpopulations 
within and surrounding the macula during health and disease 
is currently unknown, but would be valuable for determining 
the therapeutic potential of manipulating Nrf2 to ameliorate 
retinal degeneration [54,55]. An additional caveat is that this 
study utilizes a genetic knockout model of Nrf2, whereas 
only a partial Nrf2 deficiency has been reported in human 
RPE [28]. Therefore, SFN may confer some benefit on cone 
function for humans retaining partial Nrf2 transcriptional 
activity in the RPE.

Moving forward, it will be important to determine which 
cell types mediate SFN efficacy, as well as the mechanisms 
conferring neuroprotection. We speculate that these findings 
reflect the differential responses of rods and cones to reduced 
ATP production by mitochondria in the RPE layer. Genetic 
ablation of Nrf2 and knockdown of MnSOD compromise 
mitochondrial integrity and ATP generation [34,41,84]. The 
suppression of mitochondrial respiration in RPE cells delete-
riously impacts photoreceptor survival and function [38], as 
RPE cells utilize oxidative phosphorylation to spare glucose 
for photoreceptors (e.g., [34,37,85-87]). Suppressed ATP 
production by RPE mitochondria induces a cellular switch 
to glycolysis, thus reducing glucose availability for photo-
receptors, as documented in the RPE [34] and muscle [41] 
following SOD2 gene ablation. Limiting glucose oxidation by 
photoreceptors further reduces lactate production and secre-
tion for use by the RPE and Müller glia resulting in disrupted 
bioenergetic homeostasis across the posterior eye (reviewed in 
[37,85]). Glucose starvation of photoreceptors may adversely 
affect rods disproportionately compared to cones, as rods 
have a higher reliance on glycolytic metabolism [88-90] but 
contain lower glycogen stores than cones [90]. This may 
account for the preferential restoration of cone function by 
SFN (Figure 2). Reduced mitochondrial respiration in RPE 
cells also decreases oxygen consumption, resulting in a local 
hyperoxia that can be toxic to photoreceptors [91-93].

ATP deficits and mitochondrial dysfunction in RPE 
cells impact the mammalian target of rapamycin (mTOR) 
kinase complexes (mTORC1 and mTORC2), which integrate 
nutrient availability with bioenergetics, protein synthesis, and 
proliferation (reviewed in [94]). RPE mTOR activity is medi-
ated by ATP levels as well as by mitochondrial (dys)func-
tion (e.g., [95,96]), and chronic mTOR signaling in the RPE 
causes dedifferentiation, leading to photoreceptor and choroid 
degeneration [96-98]. However, SFN induces mitochondrial 

biogenesis [71,99,100], a cellular response accompanied by 
enhanced mTOR activity that may underlie the neuroprotec-
tion conferred by the compound [101]. Notably, enhanced 
mTOR activity protects cones in mouse models of RP 
[102,103]. Thus, the efficacy of SFN given every other day in 
the present study could involve periodic elevations of mTOR 
activity in cones. Additional factors contributing to the effi-
cacy of SFN may involve Nrf2-mediated induction of the 
rate-limiting enzymes for numerous bioenergetic pathways 
(e.g., the pentose phosphate pathway, the polyol pathway, the 
hexosamine pathway, the β-oxidation of fatty acids, or other 
intermediary pathways of metabolism) [18,84,104].

In conclusion, the findings of this study underscore that 
SFN has efficacy in maintaining retinal function and morpho-
logical integrity but likely requires optimization of the timing 
of administration and dosing frequency [2], preserves cone 
function in a Nrf2-dependent manner, and [3] may optimally 
be used as an adjuvant treatment with other therapies that 
enhance photoreceptor function. These findings highlight the 
therapeutic value of SFN and the potential limitations of the 
compound in ocular cells with compromised Nrf2 activity.

APPENDIX 1. ERG DEFICITS ARE COMPARABLE 
1 MONTH AND 4 MONTHS AFTER SUB-
RETINAL INJECTION OF AN SOD2-TARGETING 
RIBOZYME.

To access the data, click or select the words “Appendix 1.” 
Longitudinal analysis of ERG amplitudes in WT and Nrf2 KO 
mouse eyes comparing measurements taken 1 month and 4 
months post AAV1-RzSOD2 injection. The ERG differences 
between the two time points were not statistically significant 
in either genotype for the scotopic a-wave (A), the scotopic 
b-wave (B), or the photopic b-wave (C). All comparisons 
represent mean + SEM, p>0.05 using t test and one-way 
ANOVA n≥6 mice per genotype per treatment. (D) Repre-
sentative photomicrographs taken with a 60× objective of 
RPE sections labeled with an MnSOD antibody from WT and 
Nrf2 KO eyes that have not (-Rz) or have (+Rz) been injected 
with a ribozyme targeting MnSOD expression. Mice were 
treated with vehicle (Veh) or SFN (SFN). Graph compiled 
from 3 independent sections quantified for each experimental 
condition. No statistically significant differences (ns) were 
detected between MnSOD levels using Student t test. (E) 
Representative photomicrographs taken with a 20× objective 
of retinal sections labeled with an MnSOD antibody, as in 
(D). MnSOD expression in the inner segments of Nrf2 KO 
mice compared to WT mice trended toward but did not reach 
statistical significance (ns) using Student t test.
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