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Abstract: Metallic material concepts associated with the sustainable and efficient use of resources
are currently the subject of intensive research. Al addition to steel offers advantages in view of
lightweight, durability, and efficient use of high-Fe scrap from the Al industry. In the present
work, Al was added to Fe-12Cr-(9,12)Ni-3Mn-0.3C-xAl (x = 0.1–6) (wt.%) stainless steels to assess its
influence on microstructure and mechanical properties. According to density measurements based on
Archimedes’ principle, densities were between 7.70 and 7.08 g/cm3. High-energy X-ray diffraction
estimations of the lattice parameter indicated that nearly 31% of density reduction was caused by
the lattice expansion associated with Al addition. Depending on Al concentration, austenitic and
duplex matrix microstructures were obtained at room temperature. In the presence of up to 3 wt.%
Al, the microstructure remained austenitic. At the same time, strength and hardness were slightly
enhanced. Al addition in higher quantities resulted in the formation of duplex matrix microstructures
with enhanced yield strength but reduced ductility compared to the austenitic alloys. Due to the
ready formation of B2-(Ni,Fe)Al intermetallics in the ferrite phase of the present alloy system, the
increase in strength due to the presence of ferrite was more pronounced compared to standard duplex
stainless steels. The occurrence of B2 intermetallics was implied by dilatometry measurements and
confirmed by electron microscopy examinations and high-energy X-ray diffraction measurements.

Keywords: low-density steel; stainless steel; intermetallics; mechanical properties; microstructure

1. Introduction

In order to preserve the environment and guarantee resource efficiency, it is impor-
tant to intensify efforts on sustainable material solutions. A well-established strategy
involves increasing the specific strength by microstructure design aiming for a raised yield
strength [1]. Another approach is to reduce the density. Al addition to steels offers the
potential to combine both approaches [2–4]. Due to their high corrosion resistance and
durability, stainless steels are among sustainable material solutions [5,6]. They can also be
reused in a circular economy [7,8]. Stainless steels with high Al contents have been devel-
oped for reasons such as raised corrosion resistance and enhanced oxidation performance
at high temperatures [2,9–11]. Given that the majority of conventional stainless steels are
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austenitic and therefore paramagnetic, it is not possible to use scrap-lifting magnets to
separate them from non-magnetic scraps, such as Al components. Design of Al-alloyed
stainless steels can increase the tolerance to Al-containing stainless-steel scrap, since a
complete separation is then no longer necessary. Furthermore, it provides a solution to
exploit low-grade Al scrap, for instance, scrap containing a high Fe content, which is not
recyclable without extensive metallurgical purification.

Although the concept of Al addition to stainless steels is very promising in view
of resource efficiency, it cannot be a viable solution unless the associated metallurgical
changes in both liquid and solid states, as well as interactions of Al with Fe and alloying
elements, are closely examined. In the solid state, alloying elements such as C, Cr, Ni, Mn,
Mo and N are commonly used to control the microstructure and mechanical properties of
stainless steels [12,13]. By increasing the thermodynamic driving force for the formation of
ferrite, Al contributes to the stabilization of the ferrite phase. Accordingly, if Al is gradually
added to an austenitic stainless steel, the base microstructure changes to austenitic-ferritic
(duplex) [14]. Duplex stainless steels exhibit a favorable combination of ductility and
strength, imparted by austenite and ferrite, respectively [15]. In other words, the presence
of ferrite in duplex stainless steel is responsible for an increased yield strength and hardness
compared to austenitic counterparts [2,13,16]. In the presence of even higher Al contents,
fully ferritic matrix microstructures are obtained [14,17–21]. Al-alloyed stainless steels
could even exhibit martensitic matrix microstructures if the following two conditions are
met. On the one hand, high-temperature austenite must be guaranteed by maintaining a
high ratio of Ni-equivalent to Cr-equivalent. This limits the permissible Al concentration.
On the other hand, a high martensite start temperature must be adjusted by a relatively
lean alloy design [22].

To counteract the ferrite-stabilizing effect of Al, the austenite potential can be raised
by the addition of elements such as C, Ni and Mn. By an appropriate balance of alloying
elements, it is also possible to obtain Al-added steels with fully austenitic microstructures.
Al addition to Hadfield steels and stainless steels with austenitic microstructures has been
found to improve the wear resistance and resistance to hydrogen embrittlement [13,23–25].

Compared to ferrite, the work-hardening behavior of austenite is subject to consider-
able variations depending on the deformation mechanism. The deformation mechanism is,
in turn, regulated by the stacking fault energy (SFE). The SFE is largely affected by tempera-
ture and chemical composition [26–28]. In particular, Al is known to increase the SFE [29,30].
To account for the influence of dislocation density and character on the strain energy of
stacking faults, the concept of “effective SFE” has been proposed [31]. At SFEs below
nearly 20 mJ/m2, the deformation mode of austenite is dominated by deformation-induced
martensite formation. SFEs between 20–40 mJ/m2 have been suggested to be favorable for
the occurrence of deformation twinning. As the SFE increases further (SFE > 40 mJ/m2),
partial dislocations can constrict and cross slip. As a result, glide planarity is gradually
reduced. This results in wavy glide and the formation of dislocation cells [26,27].

In addition to its influence on the SFE, Al addition to austenitic stainless steel could
change the solidification mode from austenitic to ferritic [4,32]. Due to differences in the
segregation behavior of alloying elements between dendritic and interdendritic areas in
cases of austenitic and ferritic solidification [33–36], the spatial distribution of alloying
elements such as Al, Cr, Mn and Ni—therefore, the spatial distribution of SFE—will be
influenced if the solidification mode is changed.

In the case of Al-added stainless steels with ferritic matrix microstructures, the for-
mation of B2 intermetallics is known to occur, especially if nickel is also present [17–19].
The orientation relationship between the B2 phase and ferrite is cube-on-cube, namely,
(011)B2//(011)α and [0,1,2,3,4,5,6,7,8,9,10,11]B2//[0,1,2,3,4,5,6,7,8,9,10,11]α. B2 formation
in Al-added martensitic stainless steels can lead to very high strength levels, as exempli-
fied by Fe-10.5Cr-12Ni-3Al [22]. Hardness levels in excess of 600 HV in B2-strengthened
martensitic stainless steels make them, strength-wise, superior to 17-4PH and 15-5PH
precipitation-hardenable stainless steels and comparable to 18Ni maraging steels.
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The present work includes a detailed investigation of the microstructure and me-
chanical properties in novel Fe-Cr-Ni-Mn-Al-C stainless steels with varying contents of
Al. Compared to our first developments [37,38], C and Cr concentrations are reduced to
oppose the formation of Cr-rich carbides. Compared to the second generation [4], which
were already low in C and Cr but mechanically too stable to exhibit maximum elongation at
room temperature, a leaner alloy design is proposed and investigated here. Therefore, this
study can be regarded as a consecutive exploration of Al-alloyed steels. The microstructural
characterizations and mechanical tests conducted in the present work aim to clarify the
microstructure–property relationship in this novel class of stainless steels and pave the way
for further optimizations.

2. Materials and Experimental Procedure

Experimental materials had nominal compositions Fe-12Cr-9Ni-3Mn-xAl-0.3C (wt.%)
with x varying between nearly 0.1 and 6 wt.%, in increments of approximately 1.5 wt.%.
To examine the effect of Ni, one additional alloy containing nearly 6 wt.% Al and a raised
Ni concentration of 12 wt.% was cast as well. The alloy IDs and chemical compositions
are given in Table 1. The Al content was quantified by inductively coupled plasma optical
emission spectroscopy (ICP-OES) using an Agilent 5100 VDV spectrometer. The C content,
on the other hand, was determined by combustion analysis using Bruker G4 ICARUS
equipment. The remainder of the elements were quantified by optical emission spectrome-
try using a Belek Vario Lab spectrometer. Ingots were prepared by melting and casting in a
vacuum induction melting (VIM) furnace under an Ar atmosphere. To adjust the chemical
compositions according to Table 1, Armco iron and high-purity elements were added to a
Fe-17Cr-0.05C master alloy. Cast ingots were homogenized at 1150 ◦C for 1 h and subse-
quently cooled with an approximate cooling rate of 50 K/s. The density was measured in
accordance with Archimedes’ principle by measuring the buoyant force (upthrust). A Kern
ABT01 density measurement system equipped with a Kern ABT 220 precision scale was
used for the measurements [39].

Table 1. Alloy IDs and chemical compositions (wt.%).

Alloy ID Color C Al Cr Ni Mn Fe

0Al
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For the examination of undeformed microstructures, specimens in the as-homogenized
condition were prepared by electrical discharge machining (wire cutting). To eliminate the
influence of wire cutting, specimens were ground with 1200 and 2000 grit SiC papers under
a stream of boiling water. This was followed by multiple polishing steps with a mixture of
diamond paste (9, 3 and 1 µm-particles) and lubricant for a mirror-like surface finish. For
the final polish, 24 h of vibration polishing with 0.05 µm colloidal suspension was used.

Microstructure characterizations using secondary electrons (SE), electron channel-
ing contrast imaging (ECCI) and electron backscatter diffraction (EBSD) methods were
performed in Zeiss Auriga scanning electron microscope (SEM).

Vickers hardness measurements with an indentation load of 10 kgf (HV10) were
performed according to the DIN EN ISO 6507-1 standard using a Wolpert universal hardness
tester [40]. Quasi-static tensile tests with an initial strain rate of 10−4 s−1 were conducted
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using a Zwick Kappa 100 DS machine. Round tensile specimens with threaded shoulders
(M10) were machined from materials in the as-homogenized condition in accordance with
the DIN 50125 standard [41]. The parallel length, gage length and gage diameter were
36 mm, 30 mm and 6 mm, respectively. To eliminate the mechanical damage induced near
the surface by machining, machined tensile specimens were solution annealed at 1150 ◦C
for 5 min under an Ar atmosphere and cooled with an air gun. In this manner, an estimated
average cooling rate of 30 K/s was obtained between 1150 ◦C and 600 ◦C.

Dilatometry studies using cylindrical rods, 10 mm in diameter and 15 mm in length,
were carried out using the dilatometry module of a Gleeble 3500 GTC thermomechani-
cal simulator. Heating and cooling were performed under a vacuum. The heating and
cooling rates were both 5 K/s. The apparent coefficient of thermal expansion (CTEa) was
determined using the first derivative of relative length change with respect to temperature.
From the temperature of interest, a range of −15 ◦C to +15 ◦C was used to construct the
first derivative curve. This procedure was intended to reduce CTEa fluctuations that would
otherwise occur if derivation was performed using two consecutive data points. Due to
conductive heating in the Gleeble dilatometer, heating-rate-dependent irregularities arising
from specimen–inductor interactions and the abrupt release of magnetostrictive forces
encountered in dilatometers with inductive heating were avoided [17,42]. To study the
solidification mode, differential scanning calorimetry (DSC) measurements were performed
under vacuum in a Netzsch-404C Pegasus calorimeter. For the measurements, cylindri-
cal specimens with a diameter of 4 mm and a height of 1 mm of all alloys were heated
to 1550 ◦C at 50 K/min and then cooled to room temperature at 10 K/min. To ensure
reproducibility, 2 specimens were measured from each alloy.

Diffraction measurements with a high-energy monochromatic X-ray beam (HE-XRD)
having a photon energy of 83.3 keV, corresponding to a wavelength of 0.14884 Å, were
performed at the PETRA III, P21.2 beamline at the “Deutsches Elektronen-Synchrotron”,
(DESY). The schematic illustration of the experimental setup is shown in Figure 1. The
beam size was controlled by slits to an area 200 × 200 µm2 in size. This was carried out
to obtain a high diffracted signal intensity while covering a relatively large number of
grains. A Varex 4343CT flat-panel detector with 2880 × 2880 pixels, each 150 × 150 µm2

in size, was positioned about 1.5 m farther from the specimen. The specimens used for
the HE-XRD experiments were obtained by further processing of the as-homogenized
material for the purpose of grain refinement. Grain refinement reduces the spottiness
of diffraction patterns by increasing the number of grains meeting the Bragg condition.
Processing for grain refinement involved double-step cold rolling with intermediate and
final recrystallization annealing at 1150 ◦C for 5 min. Since the HE-XRD experiments were
continued after applying different tensile strain levels (not relevant to the present study),
the 6Al steel with poor ductility was not investigated.
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For each experiment, the specimen was subjected to a back-and-forth rotation around
the z-axis to 90◦ with an angular speed of 5◦ per second, while pausing for 1 s at 90◦. Then,
2D diffraction patterns were recorded continuously with an exposure time of 1 s. In this
manner, a total of 38 diffraction patterns were collected for each specimen. These patterns
were subsequently superimposed to reduce the spottiness of diffraction patterns caused
by the relatively large grain size of experimental steels compared to the volume exposed
to the X-ray beam. The 2D diffraction patterns were then azimuthally integrated (0–360◦)
using the PyFAI software [43,44] to obtain an intensity vs. 2θ ASCII format data. The
diffraction patterns were further calibrated for the angular positions using a LaB6 specimen
supplied by the National Institute of Standards and Technology (NIST). The 1D diffraction
patterns were then analyzed to determine the lattice parameter. The X-ray profile shapes
were approximated by a pseudo-Voigt function.

3. Results and Discussion
3.1. Thermodynamic Equilibrium Calculations and Solidification Mode

Figure 2 shows the pseudo-binary Fe-12Cr-9Ni-3Mn-0.3C-xAl (x = 0–7 wt.%) phase
diagram calculated by the TCFE9 database of Thermo-Calc. The calculated diagram sug-
gests that the equilibrium matrix microstructure at 600 ◦C consists of ferrite and austenite
for 0Al, 1.5Al and 3Al steels but only of ferrite for 4.5Al and 6Al steels. Furthermore, C
is stabilized in the form of M23C6 carbides. For 3Al, 4.5Al and 6Al steels, the presence of
the B2 phase is also predicted by Thermo-Calc. The type of carbides changes to M7C3 at
higher temperatures. The phase diagram also suggests that the solidification of all steels
containing 9 wt.% Ni, except for 0Al with an entirely austenitic (A) solidification mode,
begins with the formation of ferrite and continues with the formation of austenite (FA
solidification mode). The formation of austenite in the 1.5Al steel begins slightly below
liquidus temperature, whereas it is postponed to the latest stages of solidification, namely,
slightly above solidus temperature, in the case of 6Al. An overview of solidification modes
based on Thermo-Calc calculations is provided in Table 2.
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Table 2. Solidification modes based on thermodynamic equilibrium calculations by Thermo-Calc
and DSC measurements. A and FA stand for austenitic and ferritic-austenitic solidification modes,
respectively. In the latter case, the solidification begins with the formation of primary ferrite and
continues with the formation of austenite.

Assessment Method 0Al 1.5Al 3Al 4.5Al 6Al

Thermo-Calc A FA FA FA FA

DSC A FA FA FA FA

To examine the Thermo-Calc predictions with regard to the solidification mode, heat-
exchange curves during the heating segment of DSC measurements are shown in Figure 3.
The use of the DSC signal during heating for the interpretation of reactions during the
preceding solidification offers numerous advantages including reduced contamination,
reduced evaporation of alloying elements as well as a high contact area with the bottom of
the DSC crucible [22]. This leads to highly reproducible DSC data, as evidenced by the close
proximity of the two DSC curves for each specimen. According to the DSC traces in Figure 3,
the melting of the 0Al alloy is associated with a single endothermic peak, indicating the
absence of ferrite formation, thereby confirming the A solidification mode as predicted by
Thermo-Calc. For the remainder of the alloys, melting occurs with two endothermic peaks,
the lower temperature peak being related to the formation of ferrite. In the case of 1.5Al,
the ferrite formation peak is less noticeable than alloys with higher Al contents. The ferrite
formed from austenite during heating would then melt at higher temperatures. Given that
the solidification of 1.5Al begins with the formation of ferrite and the stability of ferrite
relative to austenite increases at higher Al contents, the solidification of all alloys except
0Al begins with the formation of ferrite. Accordingly, the onset of the ferrite formation
peak during heating is shifted to lower temperatures as the Al concentration is raised. Since
the peak due to the formation of ferrite overlaps with the peak due to the melting of ferrite,
even in the case of 6Al, an FA solidification mode is expected for all alloys except 0Al
(Table 2). This agrees with the Thermo-Calc prediction results.
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Variations in the intensity of the ferrite formation peak during heating could be
justified by the already-existing ferrite in the solid state. Accordingly, the lower intensity of
the γ→ α peak in the 6Al steel compared to that for the 6Al12Ni steel implies the presence
of a higher fraction of ferrite in the 6Al steel just below the solidus temperature and agrees
well with its lower Ni content. The observations made here with regard to the effect of
Al on the solidification mode are in good agreement with the DSC results reported in the
authors’ previous studies [4,32].

3.2. Contributions to Density Reduction

Density measurements indicated a linear relationship between the density and Al con-
centration, as shown in Figure 4. The experimental steels show a weight reduction potential
of 1.45% per 1 wt.% of Al addition. This is comparable with the density reduction of 1.3%
per 1 wt.% Al reported for an Al-alloyed Hadfield steel by Frommeyer et al. [15]. Lattice
expansion and the lower atomic weight of Al compared to the common substitutional
alloying elements in steels are the two mechanisms responsible for the density reduction
upon Al addition to steels [45–47]. To quantify the contribution of lattice expansion to
density reduction in the present alloys, lattice parameters were measured by HE-XRD. The
1D diffraction patterns in Figure 5 indicate almost fully austenitic microstructures for 0Al,
1.5Al and 3Al steels. A closer inspection of diffraction patterns in Figure 5 indicates weak
peaks attributable to ferrite or martensite in 0Al, 1.5Al and 3Al steels, which have formed
close to the surface due to decarburization during heat treatment or due to the mechanical
damage induced by grinding.
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Figure 4. Density as a function of Al content. Hatched fill for the 6Al12Ni alloy is meant to emphasize
its higher Ni content compared to the rest of the alloys. For the austenitic alloys, namely, alloys with
up to 3 wt.% Al, the contributions of lattice dilatation and atomic weight to density reduction are
separated by the solid line passing through star symbols. Star symbols indicate density on the mere
basis of lattice parameter change with respect to the 0Al steel. The dashed line for duplex alloys
indicates that the separation of contributions to density reduction was not based on actual lattice
parameter measurements but extrapolated from the range of austenitic alloys.
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Due to the negligibility of phases other than austenite, thus the irrelevance of lattice
parameter changes due to the partitioning of alloying elements among phases, the lattice
parameters of 0Al, 1.5Al, and 3Al steels were used to quantify the lattice dilatation caused
by Al. The austenite lattice parameters in 0Al, 1.5Al and 3Al steels were calculated to
be 0.35964 ± 0.8 × 10−4 nm, 0.36059 ± 1.0 × 10−4 nm and 0.36127 ± 0.7 × 10−4 nm,
respectively. On this basis, the addition of each wt.% Al results in an increase in the
austenite lattice parameter by nearly 5.4 × 10−4 nm, which agrees well with the authors’
previous studies [4,48] as well as with the results reported in [49]. Accordingly, as marked
in Figure 4 by star symbols and the solid line passing through them, density reduction
caused merely by lattice expansion of austenite accounts for nearly 31% of the total density
reduction. Since the density of steels continues to decrease almost linearly at higher Al
concentrations and the share of density reduction due to the substitution of atoms by Al
remains constant, the share of density reduction due to lattice expansion is retained at Al
concentrations above 3 wt.%, where the microstructures are no longer fully austenitic.

3.3. Microstructural Aspects

Figure 6 presents the SEM results for 0Al, 1.5Al and 3Al steels in the homogenized con-
dition. According to the EBSD inverse pole figure (IPF) maps for austenite in Figure 6a–c,
the microstructure of all steels consists of coarse austenite grains of the order of a few
hundred microns. In addition, subgrain boundaries characterized by small misorientation
angles can be observed in 1.5Al and 3Al steels, especially in the latter steel. Subgrain
boundaries are highlighted by superimposition of low-angle grain boundaries (LAGBs)
on the EBSD IPF maps. The abundance of subgrains in the 3Al steel, their occasional
observation in the 1.5Al steel, and their absence in the 0Al steel are also revealed in the SEM
micrographs of Figure 6d–i. The occurrence of subgrains in Fe-18Cr-9Ni-7Mn-4Al-0.43C
steel has been explained by the formation of ferrite during solidification [32]. Based on
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Thermo-Calc predictions and DSC results presented in Section 3.1, this explanation is also
applicable to present steels. Regions containing subgrains in the 1.5Al steel are expected to
correspond to those solidified as ferrite.
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Figure 6. EBSD IPF maps (a–c), and SEM micrographs (d–i) for the austenitic steels in the homoge-
nized condition; (a,d,g) 0Al, (b,e,h) 1.5Al and (c,f,i) 3Al steels. Black and gray lines superimposed on
IPF maps indicate HAGBs and LAGBs, respectively. HAGBs and LAGBs refer to boundaries with
misorientation angles above 15◦ and in the range of 1–15◦, respectively. The lower threshold for
LAGBs was reduced to 0.5◦ for the 1.5Al steel.

Figure 7 presents the SEM results for 4.5Al, 6Al and 6Al12Ni steels in the as-homogenized
condition. According to the EBSD IPF maps in Figure 7a–c and the corresponding phase
maps in Figure 7d–f, duplex ferritic–austenitic matrix microstructures are identified in
all cases. The ferrite fractions quantified by EBSD for 4.5Al, 6Al and 6Al12Ni steels were
17, 73, and 34 vol.%, respectively. These fractions are in qualitative agreement with the
relative Al and Ni concentrations of these alloys. Given the ferritic solidification of duplex
alloys, the ferritic regions persisting in the room temperature microstructure correspond
to the dendrite cores. This is due to the inverse segregation of Al in the case of ferritic
solidification, namely, its enrichment within the solid dendrites and its depletion in the
coexisting liquid phase. The remainder of alloying elements, on the other hand, enrich in
the coexisting liquid phase. This segregation pattern increases the austenite potential of the
liquid phase and favors the formation of austenite at later stages of solidification [33–36,50].
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Due to the involvement of ferrite as a precursor of austenite, austenitic regions in the duplex
alloys contain subgrains. The subgrains are best revealed by the LAGBs superimposed
on the EBSD phases maps in Figure 7d–f and contrast variations in the SEM images of
Figure 7g–i.
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Figure 7. EBSD IPF maps (a–c), EBSD phase maps (d–f), and SEM micrographs (g–l) for the homoge-
nized steels with duplex matrix microstructures; (a,d,g,j) 4.5Al steel, (b,e,h,k) 6Al steel and (c,f,i,l)
6Al12Ni steels. The SEM micrographs in (j–l) provide a magnified view of features in ferrite. Black
and gray lines superimposed on EBSD phase maps indicate HAGBs (misorientation angles larger
than 15◦) and LAGBs (misorientation angles in the range of 1–15◦) within each phase, respectively.
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The SEM micrographs in Figure 7j–l provide a magnified view of the ferrite phase in
the duplex alloys. Contrast variations within ferrite in 4.5Al and 6Al alloys (Figure 7j–k)
imply the presence of precipitates within ferrite. The presence of an array of precipitates is
most obvious for the 6Al12Ni steel (Figure 7l). To examine the possibility of precipitates
within ferrite being B2-(Ni,Fe)Al intermetallics, as also predicted by Thermo-Calc, the
HE-XRD patterns for 4.5Al and 6Al12Ni steels were consulted (Figure 5). According to
the patterns, ferrite peaks are readily detected in the 4.5Al and 6Al12Ni steels. Due to the
coincidence of the majority of peaks for the B2-(Ni,Fe)Al intermetallics and ferrite, they
are reported not to be distinguished readily [22]. However, the characteristic (100)B2 and
(111)B2 peaks [29,51] are readily identified in the diffraction patterns for 4.5Al and 6Al12Ni
steels, especially in the latter alloy. This reaffirms that the presence of ferrite and a high
concentration of Al and Ni both promote the formation of B2. As marked by arrows in
Figure 5, weak reflections not attributable to austenite, ferrite, and B2 were identified for the
6Al12Ni steel. Peak positions are in fair agreement with those for hexagonal M7C3 [52,53].
Nevertheless, due to the small number of peaks and the existence of two perspectives
(orthorhombic and hexagonal) for the crystal structure of M7C3 [37,54], a reliable phase
identification was not possible. The facilitated occurrence of carbides in duplex steels is
justified by the low solubility of C in ferrite, thereby its enrichment and precipitation as
carbide in the coexisting austenite.

Dilatometry was used to study the dissolution and precipitation of B2 intermetallics in
the 6Al steel with the highest fraction of ferrite, therefore the highest ability to form B2. This
would amplify the length change signal due to the evolution of B2 within ferrite. Based on
the diameter change with the temperature of a single specimen during sequential heating
to 1250 ◦C at a rate of 5 K/s and cooling at the same rate, CTEa values were calculated
as functions of temperature. Two representative CTEa curves during heating and two
curves during cooling are plotted in Figure 8. In the absence of phase transformations and
elemental redistribution among phases, the CTEa would correspond to the rule-of-mixture
CTE of individual phases. In the present case, however, the possible evolution of ferrite
and austenite fractions with temperature and possible changes in the fraction of precipi-
tates such as Cr-rich carbides (e.g., interphase boundary carbides, as in Figure 7k) and B2
intermetallics overlap with the base rule-of-mixture CTE of the alloy. Therefore, dynamic
microstructure evolution is a source of complication during the interpretation of dilatom-
etry data. Nevertheless, the CTEa signal is very useful for the interpretation of highly
reversible transformations. The high reversibility of B2 dissolution and formation during
heating and cooling of a ferritic Fe-17Cr-9Ni-7Al-6Mn-0.46C (wt.%) stainless steel has been
demonstrated in [17], for which the onset of B2 formation during cooling and the end of
dissolution during heating occurred over a narrow temperature range between 1025 ◦C
and 1050 ◦C. The net expansion during the dissolution of B2-(Ni,Fe)Al intermetallics has
been shown to be mainly related to the Al and Ni enrichment of ferrite, thus an expanded
ferrite lattice [17].

According to Figure 8, abrupt CTEa changes occur during thermal cycling of the 6Al
alloy in the vicinity of 975 ◦C. By analogy with the Fe-17Cr-9Ni-7Al-6Mn-0.46C steel [17],
the CTEa increase starting at around 850 ◦C during heating of the 6Al steel can be attributed
to the dissolution of B2 precipitates. The CTEa decreases abruptly at the approximate
temperature of 960–1000 ◦C (Figure 8), which is an indication of an approach towards the
end of B2 dissolution. The B2 dissolution-finish temperature of 1000 ◦C in the present
case is in qualitative agreement with the B2 dissolution-finish temperature of 1050 ◦C for
the Fe-17Cr-9Ni-7Al-6Mn-0.46C ferritic steel with a higher Al content compared to the
6Al steel in the present work [17]. However, it is somewhat higher than the Thermo-Calc
prediction of 920 ◦C (Figure 2). During cooling, the increase in the CTEa at nearly 1000 ◦C
would indicate a net contraction as B2 begins to form. This contraction could be justified
by the depletion of ferrite with respect to the constituents of B2, in particular Al. Due to
the possibility of dynamic changes in the balance of phases during the dilatometry heating
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cycles with the multiphase 6Al steel, no effort was made to interpret the progression of
dilatometry curves over the entire temperature range.
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3.4. Hardness

The Vickers hardness of specimens in the homogenized condition was measured with
an indentation load of 10 kgf. According to the hardness values presented in Figure 9,
hardness for the austenitic steels 0Al, 1.5Al and 3Al increases slightly with Al content. This
indicates a solid solution strengthening effect of Al. Although subgrain boundaries are not
as efficient as high-angle grain boundaries against the slip transmission [14], strengthening
by subgrain boundaries might have contributed partially to the higher hardness of 1.5Al
and 3Al steels. Since hardness measurements involve significant plastic deformation of
regions near the indenter, differences in deformation-induced processes, thus differences in
the work hardening rate, also play a role. The work hardening behavior of steels under
tensile loading conditions is discussed in Section 3.5.

For the duplex steels 4.5Al and 6Al, the hardness increases further as the Al content
increases. The higher hardness of 4.5Al steel compared with the 3Al steel results from
the solid solution strengthening of Al and the presence of ferrite, which is additionally
strengthened by the precipitation of B2 intermetallics. The hardness increases significantly
as the Al concentration increases to 6 wt.%. On the one hand, this is related to the increase
in the ferrite fraction. On the other hand, the driving force for the formation of B2-(Ni,Fe)Al
intermetallics in ferrite increases with Al concentration [18,55]. The strengthening con-
tribution of B2-(Ni,Fe)Al intermetallics in steels with ferritic [14] and martensitic [22,56]
matrix microstructures is well-documented. In the case of a Fe-10.5Cr-12Ni-3Al martensitic
stainless steel, strengthening by B2 after a short aging treatment resulted in hardness values
in excess of 600 HV [22], which exceeds the hardness of standard precipitation-hardenable
stainless steels such as 15-5PH and 17-4PH, in which Cu precipitates are responsible for
precipitation hardening [57–59]. The lower hardness of 6Al12Ni steel compared to 6Al
steel—despite the higher driving force for the formation of B2 in the former steel—can be
attributed to the reduction in the fraction of ferrite.
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meant to emphasize its higher Ni content compared to the rest of the alloys. Ferrite fractions marked
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3.5. Tensile Properties, Work Hardening Behavior and Deformation-Induced Processes

Figure 10a presents the engineering stress–strain curves for steels with different Al
concentrations during tensile tests until fracture at room temperature. The three austenitic
steels (0Al, 1.5Al and 3Al) exhibit higher elongations but lower strength levels compared
to the duplex steels (4.5Al, 6Al and 6Al12Ni). The results clearly indicate strengthening
but ductility loss induced by the presence of ferrite. Given the high ductility of standard
duplex stainless steels without B2 in ferrite [60,61], the pronounced ductility loss in the
present case can be attributed to the presence of B2 intermetallics within ferrite [62].
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The austenitic microstructure of 0Al, 1.5Al and 3Al steels enables to study the influence
of Al on the work hardening response of austenite. Given the comparable C concentration
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of 0Al and 3Al alloys and the large difference in their Al concentration, the work hardening
behavior is compared for these two steels only. The strain dependence of true work
hardening rate for 0Al and 3Al alloys is plotted in Figure 10b. According to Figure 10b,
the work hardening rate at low strains is higher for the 3Al steel. The initially high work
hardening rate of 3Al steel gradually decreases at higher strains. The 0Al steel, on the
other hand, exhibits an almost constant work hardening rate until necking. As a result, the
work hardening curves cross at a true strain of 0.21. The observation of an initially higher
work hardening rate for the 3Al steel does not agree with the well-documented effect of
Al as an SFE raiser and promoter of wavy glide [15,26,63,64] and the observations made
for a similar stainless-steel system in wrought condition [4]. Each wt.% of Al has been
reported to increase the SFE of austenitic steels by nearly 8.8 mJ/m2 [65]. If the empirical
relationship proposed by Qi-Xun et al. [66] is used for a rough estimation of SFE and the
effect of Al on the SFE is accounted for by the preceding factor, SFEs for 0Al, 1.5Al and 3Al
steels are estimated to be of the order of 33 mJ/m2, 49 mJ/m2 and 58 mJ/m2, respectively.

To identify the deformation mechanisms and clarify the origin of initially high work
hardening rates in the 3Al steel, post-mortem microstructural examinations by EBSD were
conducted for 0Al and 3Al steels. Figure 11a,b present the IPF maps with Σ3 twin bound-
aries superimposed in black. The corresponding phase maps are shown in Figure 11c,d.
According to the EBSD IPF maps, twins are clearly induced in both alloys, even though
Al increases the SFE and the critical stress for twinning [67]. Therefore, the SFE increase
due to Al addition has not been significant enough to suppress the formation of twins.
Deformation twinning has also been reported after room temperature tensile deformation
of Fe-17Cr-9Ni-7Al-6Mn-0.46C (wt.%) [47], even though the empirical relationship pro-
posed by Qi-Xun et al. [68]—coupled with the factor proposed by Jeong et al. [65] for the
effect of Al—returns a high SFE of 105 mJ/m2. Given the orientation dependence of twin-
ning [68], the limited spatial resolution of EBSD in detecting fine twins [69], and low EBSD
pattern qualities in the case of highly deformed microstructures [70], no effort was made
to quantify and compare deformation twin fractions in 0Al and 3Al steels. Nevertheless,
continuous fragmentation of austenite grains by deformation twins, also referred to as the
dynamic Hall-Petch effect [71], is expected to have contributed to the work hardening of
both alloys [72].

The EBSD phase maps in Figure 11c,d indicate the presence of a small fraction of
deformation-induced martensite in the case of the 3Al steel. This is not compatible with
the higher SFE of the 3Al steel and the observation of a reduced Md

γ→α‘ temperature
upon Al addition to a similar stainless-steel system in the wrought condition [4]. The
occurrence of deformation-induced martensite is a likely mechanism responsible for the
initially high work hardening rate of the 3Al steel. A closer inspection of the spatial
distribution of regions having undergone deformation-induced martensitic transformation
indicated that the transformation was confined to the dendrite cores and did not extend into
interdendritic regions. On this basis, the ferritic solidification of the 3Al steel influenced
the segregation pattern of alloying elements in such a manner that the SFE of ferritic
dendrite cores became low enough to trigger martensitic transformation, even though
these regions are enriched with Al. Although the solidification segregation was weakened
by homogenization heat treatment, it is not eliminated fully. In the case of an austenitic
stainless steel with pronounced segregation of alloying elements, the localized formation
of martensite within the dendrite cores has been clearly demonstrated [73]. In such cases,
the work hardening rate from the tensile test can be regarded as the average for regions
with different SFEs. In the present case, the high glide planarity of the low-SFE regions
near dendrite cores and the associated occurrence of deformation-induced martensitic
transformation is expected to have contributed to the initially high work hardening rate of
the 3Al steel. The strengthening of these regions will then cause deformation propagation
to the surrounding high-SFE interdendritic regions, which, in turn, decreases the work
hardening rate.
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parallel to the tensile direction. In (a,b), boundaries within ±5◦ from the Σ3 twin relationship are
superimposed using black lines.

As an alternative or complementary to the preceding mechanism, the initially high
work hardening rate of the 3Al steel could be related to the presence of LAGBs, as presented
in Figure 6c,f. Although such boundaries are not as effective as HAGBs against the motion
of dislocations [48], they could still serve as barriers, thereby supplementing the effect of
HAGBs. The efficiency of LAGBs would, however, gradually diminish at higher strains as
planar glide features, especially deformation twin boundaries, replace grain boundaries
as dominant barriers regulating the mean free path of dislocations. The observation of an
initially higher work hardening rate in an Al-added austenitic stainless steel containing
LAGBs, but too stable to undergo deformation-induced martensite formation during tensile
deformation at room temperature [14,48], lends support to the possibility of LAGBs being
responsible for the behavior observed in the present case.

3.6. Fractography

Fracture surface examinations after tensile tests indicated a fairly similar appearance
for all three austenitic steels. In Figure 12, the fracture surface for a tensile-tested specimen
of 3Al steel is shown as representative for the austenitic steels. According to the low-
magnification images in Figure 12a,b, the topology of the fracture surface is strongly
influenced by the outline of dendrites and grain boundaries. Decohesion perpendicular
to the plane of view (parallel to loading direction), as marked by arrows in Figure 12b,
indicates the development of high tensile stresses perpendicular to the tensile loading axis.
Since the glide systems activated in each grain are decided by their initial orientation and
vary across grain boundaries, the shape change caused by the activation of slip systems
varies from one grain to another. In the case of the present materials with coarse grain sizes,
the density of geometrically necessary dislocations and the magnitude of stresses at grain
boundaries can become high enough to induce decohesion and tunneling parallel to the
loading axis. In the case of the 3Al steel, fractography also revealed light decohesion along
some of the subgrain boundaries, as exemplified by arrows in Figure 12c. Otherwise, the
occurrence of dimples characteristic of ductile fracture was the most obvious feature of the
fracture surface for the austenitic alloys (Figure 12d).
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Figure 12. Fracture surface of 3Al steel at different magnifications. (a) Overview of the fracture
surface; (b–d) magnified view of the regions marked by rectangles, see the label within each rectangle
to locate. Arrows in (b,c) indicate decohesion along grain and subgrain boundaries, respectively.
(d) provides a magnified view of dimples in the austenite.

Figure 13 presents fractographs of 4.5Al, 6Al and 6Al12Ni duplex stainless steels at
two different magnifications. In all cases, the fracture surface consists of regions exhibiting
both ductile and brittle fracture. The fraction of regions exhibiting ductile fracture with
characteristic dimples, as marked by arrows in Figure 13d–f, is proportional to the fraction
of austenite. Accordingly, fracture surface of the 4.5Al steel with the highest austenite
fraction of duplex steels consisted of a large proportion of dimpled areas. The remainder of
fracture surface for the 4.5Al steel consisted of dimple-free areas characteristic of cleavage
fracture, as, for instance, visible to the right of Figure 13d. Regions with dimple formation
and cleavage fracture are interpreted as austenite and ferrite, respectively. In the case of
the 6Al steel with the lowest austenite fraction of duplex steels, on the other hand, the
majority of the fracture surface exhibits cleavage fracture features with obvious terrace steps.
Given that planes are the common cleavage planes in body-centered cubic materials [74,75],
including Fe-Al binary steels [75], the terraces most readily visible in Figure 13b are thought
to correspond to planes in ferrite. In the case of the 6Al12Ni steel, a mix of cleavage fracture
in ferrite with numerous well-aligned cracks (Figure 13c) and dimples in austenite (arrows
in Figure 13f) were observed. Given that standard duplex stainless steels are immune to
cleavage fracture after conventional processing [60,61], cleavage in ferrite in the present
duplex steels is attributed to the presence of Al. This susceptibility is likely caused by
the formation of B2 precipitates or the clustering of Al and Ni in the early stages of
B2 formation.
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4. Conclusions

The influence of Al on the density, microstructure, and mechanical properties of Fe-
12Cr-9Ni-3Mn-0.3C-xAl (x = 0.1–6 wt.%) steels, as well as a Fe-12Cr-12Ni-3Mn-0.3C-6Al
steel, was studied. The following conclusions were drawn:

(1) Al addition changes the solidification mode from austenitic to ferritic-austenitic. After
heat treatment at 1150 ◦C followed by quenching, the microstructure becomes almost
fully austenitic for steels containing up to 3 wt.% Al and duplex for steels with higher
Al contents. The fraction of ferrite in duplex steels increases with the Al content. In
contrast to the primary austenite formed directly from the liquid phase, the austenite
formed from primary ferrite contains low-angle boundaries.

(2) Al addition decreases the density by approximately 1.45% per 1 wt.% Al. A share of
nearly 31% arises from the lattice dilatation, the rest from the substitution of heavier
atoms by Al.

(3) Al addition only has a mild influence on the hardness of austenite. A dramatic in-
crease in hardness is observed as the microstructure evolves to duplex. The noticeable
hardening caused by the presence of ferrite is due to the formation of B2-(Ni,Fe)Al
intermetallics in ferrite. The existence of B2 in ferrite was confirmed by SEM examina-
tions and HE-XRD measurements.

(4) Tensile tests indicate hardening without a noticeable change in ductility as the Al
concentration is increased to 3 wt.%. The work hardening rate of the austenitic steel
containing 3 wt.% Al is initially higher than that of its Al-free counterpart. At higher
strains, however, the relative values of work hardening rates are reversed. The initially
high work hardening rate of the 3Al steel is correlated with the existence of LAGBs.
An additional likely mechanism is the occurrence of a small fraction of deformation-
induced martensite in the less stable microstructural regions. For steels with duplex
microstructures, the yield and ultimate tensile strengths are higher than the austenitic
steels and correlate with the ferrite content. Strengthening occurred at the expense of
ductility. Fracture surface examinations after tensile tests revealed dimple formation in
austenite and cleavage fracture in ferrite, the latter being responsible for the ductility
loss in the presence of high ferrite contents.
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