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Drug resistance to tuberculosis (TB) has become more widespread over the

past decade. As such, understanding the emergence and fitness of antibiotic-

resistant subpopulations is crucial for the development of new interventions.

Here we use a simple mathematical model to explain the differences in the

response to isoniazid (INH) of Mycobacterium tuberculosis cells cultured

under two growth rates in a chemostat. We obtain posterior distributions of

model parameters consistent with data using a Markov chain Monte Carlo

(MCMC) method. We explore the dynamics of diverse INH-resistant subpopu-

lations consistent with these data in a multi-population model. We find that

the simple model captures the qualitative behaviour of the cultures under

both dilution rates and also present testable predictions about how diversity

is maintained in such cultures.
1. Introduction
The battle to eradicate tuberculosis (TB), a disease caused by the pathogen

Mycobacterium tuberculosis, has been on for more than half a century. In 2014,

the World Health Organization estimated 9.6 million new TB cases and 1.5 million

TB deaths [1]. The management of human TB relies heavily on vaccination, case

finding and antibiotic treatment. Current treatments for TB are complex and

lengthy leading to incomplete treatment, non-compliance and the development

of multi-drug resistance (MDR). Unfortunately, on a global scale, drug-resistant

(DR) forms of TB have become more widespread over the past decade, with an

estimated 3.3% of new cases and 20% of previously treated cases with MDR-TB

in 2015 [1]. In particular, isoniazid (INH) and rifampicin form the core of standard

treatment regimens, and resistance to them is a keystone of MDR tuberculosis.

Understanding the emergence and fitness of antibiotic-resistant subpopu-

lations is crucial for the development of new interventions. Because it is a

highly clonal bacterium, M. tuberculosis acquires antibiotic resistance through

mutation as opposed to DNA acquisition. For INH, clinically relevant resistance

mutations have been identified, primarily in katG and inhA. katG encodes for the

catalase-peroxidase responsible for activating the pro-drug INH and approxi-

mately 50–90% of all clinical INH-resistant isolates have a mutation at katG
codon Ser315 [2]. In addition to katG and inhA, other mutated genes have been

found in INHR (resistant) isolates [3–8]. Resistance can arise due to selection of

randomly generated pre-existing resistance-conferring mutations, or by less

direct mechanisms such as development of tolerance to hostile environments

which can then confer compensatory advantages in the event that a population

is exposed to antibiotics [9–11]. Drug tolerance may also be due to the expression

of a phenotype that limits drug activity. For example, during INH exposure, epi-

genetic events leading to KatG pulsing result in a pattern of dynamic persistence

[12]. Exposure to antibiotics can also lead to hypermutability and resistance. It has
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previously been shown upon INH treatment in guinea pigs

that a slowing in the bactericidal activity of INH following an

early rapid reduction in the bacterial population resulted

from the selection of phenotypically tolerant slow-growing

‘persisters’ and not the emergence of resistant subpopulations

[13]; these persisters may play an additional role in the evol-

ution of resistance [14]. In contrast with these findings,

hollow-fibre studies suggested that the cessation of the bacteri-

cidal activity of INH was as a result of a rapid emergence of

antibiotic resistance and not the depletion of the exponential

phase growth [15]. However, this requires further investigation

as clinical data on the levels of antibiotic resistance in patients

during early bactericidal activity studies revealed that anti-

biotic resistance was never encountered in INH monotherapy

trials [16]. It remains unclear how the slow growth of M. tuber-
culosis contributes to INH tolerance. It is possible that slow-

growing, metabolically inactive bacilli predominate in

sputum after initial INH-mediated sterilization of the exponen-

tially growing bacilli. One approach to answering these

questions is to study the response of TB to different growth con-

ditions in culture.

Bacilli in pulmonary cavities are thought to be growing in

an aerobic environment and, therefore, behave in a way that

can be imitated by in vitro systems like the chemostat [17].

The chemostat has been used to study and capture the

response of MBT cells to specific challenges such as carbon

limitation [18,19], oxygen limitation [20] and nutrient limit-

ation [21]. Chemostat models of M. tuberculosis growing

under fast and slow dilution are thought to be good models

for the different phases of tuberculosis, an acute phase and

an asymptomatic/persistent phase, respectively [19,22,23],

although it is clear that an in vitro system cannot truly capture

the bacteria’s environment within a host. However, TB is chal-

lenging to work with, there are limited animal models, and the

ability to control the conditions and intervene in a controlled

way presents good opportunities to directly observe the evol-

ution of TB under known selective pressures. Briefly, a

chemostat consists of three compartments: the nutrient reser-

voir, the vessel containing the bacterial culture (growth

chamber) and a tank to collect waste. Via an inflow from the

nutrient reservoir, fresh nutrition is added to the culture

vessel which usually contains a single or mixed bacterial

population. Via an outflow to the tank, bacteria are harvested.

Bacteria (B) grow in a chemostat feeding on a limiting resource

R. The net growth rate of the bacteria is controlled by a con-

stant dilution rate D. This is the rate of inflow and outflow

from the chemostat. It represents the fraction of the volume

in the chemostat being replaced per unit time.

Recently, Jeeves et al. [24] interrogated populations of

M. tuberculosis cells cultured under fast dilution rates

(0.03 h21) or slow dilution rates (0.01 h21) in continuous cul-

tures (to achieve pre-drug exposure mean generation times of

23.1 h and 69.3 h, respectively) in order to understand how

the slow growth of M. tuberculosis contributes to INH toler-

ance. Genotypic analyses were performed to determine the

effect of different growth rates on the mutant frequency

and the development of katG mutations. Phenotypic adap-

tation to INH under different growth rates was also

explored using RNA tiling arrays. They found that bacterial

numbers recover at both dilution rates after an initial rapid

decline in population size. Under a fast dilution rate

(0.03 h21), numbers stabilized well below the original cell

density prior to INH exposure, but under the slow dilution
rate (0.01 h21), the cultures were able to completely regain

their original population size. The mechanisms permitting

this complete recovery under the slow dilution rate but not

under the fast dilution rate are not known. In addition,

sequencing of the katG Ser315 locus of INH-resistant colonies

isolated from the chemostat cultures (by plating on to 2�
MIC INH) revealed distinct differences in the mutation pro-

files: under the slow dilution rate there were high

frequencies of the katG codon Ser315 mutation (up to 37%

of mutant colonies), whereas under fast dilution less than

14% of mutant colonies had a mutation at this locus.

Rather, the colonies isolated from fast-dilution rates had a

more diverse range of mutations elsewhere in the katG gene.

Here we use a simple mathematical model to explain the

differences in the responses to INH of bacilli cultured at two

different growth rates. We use a Markov chain Monte Carlo

(MCMC) method to obtain posterior distributions of model

parameters consistent with data. The results explain how the

dilution rate affects the population dynamics. We use these

posterior parameter distributions to define diverse collections

of resistant subpopulations consistent with the observed

growth curves, and place these resistant populations in a

multi-population model to study diversity through time. We

can account for the observed differences in population

dynamics and diversity in a very simple way that does not

require populations of slow-growing persisters, hypermutabil-

ity or emergence of compensatory mutations (though these

may be present nonetheless). We present testable predictions

about how diversity is maintained in such cultures.
2. Material and methods
2.1. Experimental methods
The methods used to culture M. tuberculosis at different growth

rates have been described previously (Jeeves et al. [24]). However,

for ease of interpretation of the current study, the method is briefly

described here. Mycobacterium tuberculosis (strain H37Rv) was

grown in chemostats under controlled conditions as described pre-

viously [25]. We cultured M. tuberculosis on glycerol as the limiting

nutrient. Three replicate cultures were performed at two different

dilution rates to steady state [20,22]. The cultures achieved a mean

generation time (MGT) of 23.1 h (dilution rate of 0.03 h21; fast

growth) or an MGT of 69.3 h (dilution rate 0.01 h21; slow

growth). The antibiotic was then added during steady state at a

minimum inhibitory concentration (MIC) of 0.5 mg l21 and main-

tained at this level in culture throughout each time-course. Viable

count analyses were performed throughout the culture time-

courses. In the main text, we present model analysis based on

pooled replicates and in the electronic supplementary material

we analyse replicate cultures separately.
2.2. Mathematical model
We developed a mathematical model for the continuous culture

of M. tuberculosis cells exposed to MIC levels of INH. In the basic

model, we include two bacterial subpopulations: B1, sensitive to

INH and B2, resistant to INH. Resistant bacilli arise from the sen-

sitive population by mutation at rate m (we do not consider

reverse mutation). Both subpopulations grow by consumption

of the resources and are washed out at the (constant) dilution

rate. The resources are consumed by the bacteria at a rate pro-

portional to their resource-dependent growth rate and a

conversion efficiency parameter e, which is the amount of

resource required to produce a single new cell [26].



Table 1. Definitions of all states and parameters.

symbol definition

states

B1 susceptible bacterial subpopulation (CFU ml21)

B2 resistant subpopulation (CFU ml21)

R resource concentration (mg ml21)

variables priors � U(a, b)

a b

m mutation rate (h21) 2.56 � 1028 2 � 1026

Â bacteriostatic action of INH 0.01 0.99

P antibiotic bactericidal rate (h21) 0 4

e1 conversion efficiency parameter of B1 (mg CFU21) 5 � 10210 2 � 1028

e2 conversion efficiency parameter of B2 (mg CFU21) 5 � 1029 2 � 1027

D dilution rate (h21) — —

C resource input concentration (mg l21) — —

l1 maximum growth rate of susceptible subpopulation (h21) 0.03 0.05

l2 maximum growth rate of resistant subpopulation (h21) 0.02 0.04

k1 half saturation constant of susceptible subpopulation (mg l21) 0.01 0.03

k2 half saturation constant of resistant subpopulation (mg l21) 0.02 0.06
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The sensitive and resistant subpopulations have different

maximum growth rates (li), different yield constants (e i) and

different half saturation constants (ki; the concentration of

resource at which a population reaches half its maximum

growth rate), so resistance can confer a fitness cost. The

resource-dependent growth rate, fi(R) for the two populations,

is given by fiðRÞ ¼ liR=ðki þ RÞ. Models of continuous culture

are well established and typically follow this pattern [27–29].

We model the effect of INH using two parameters, Â and P, to

represent reduction in growth (by a factor 1�Â) and bactericidal

effect (at rate P), respectively. We also consider a situation where

drug efficacy depends on growth rate and where bacteria whose

growth is suppressed by the drug consume less of the resource

rather than simply producing less growth for a given resource con-

sumption (see the electronic supplementary material); results are

unchanged by these modifications.

The model equations are

dB1

dt
¼ B1ðð1�ÂÞf1ðRÞ � m� P�DÞ,

dB2

dt
¼ B2ðf2ðRÞ �DÞ þ mB1

and
dR
dt
¼ DðC� RÞ � e1f1ðRÞB1 � e2f2ðRÞB2:

9>>>>>>>=
>>>>>>>;

For a full description of the parameters, see table 1.

2.3. Model parameters and Bayesian Markov Chain
Monte Carlo approach

We used a Bayesian MCMC approach to find posterior sets of

parameters related to antibiotic activity (Â, P), half saturation

constant (k), conversion efficiency parameter (e) and mutation

rate (m). We fit to all data points (replicate cultures) pooled

together; fits to individual cultures are provided in the electronic

supplementary material. Mycobacterium tuberculosis cells are gen-

erally characterized as being slow growers with a maximum

growth rate not exceeding 1/16 divisions per hour in optimum

conditions [19]. We choose values of lm within the range
(1/2321/20) h21 [30]. For the fitting procedure, the smallest

mutation rate of M. tuberculosis cells during exposure to INH is

chosen to be 2.56 � 1028 per cell per generation [31]. We do

not include the dilution rate D and nutrient concentration C in

the MCMC procedure as these are known and fixed.

Prior to the addition of INH to the chemostat cultures, the

M. tuberculosis cells were grown to steady state at densities of

approximately 108 CFU ml21. During this period of growth,

mutation can occur, and it can be expected that small numbers

of different subpopulations will arise from these large popu-

lations undergoing continuous turnover [32]. Accordingly, it is

very unlikely that there would be absolutely no cells of minority

subpopulations in a system with 108 CFU ml21. Despite this, we

avoid directly introducing resistant subpopulations, and instead

initialize the model with sensitive cells only, at their steady-state

values prior to addition of INH. We allow the resistant subpopu-

lation to arise through mutation and persist (or not, depending

on its fitness in the system without INH) to reach its steady

state before we add INH. We also set the initial value of R to

be the pre-drug steady-state value.

We used MCMC to fit model parameters by maximizing the

likelihood derived from the assumption of Gaussian scatter

(minimizing the sum of squared differences), using the Matlab

MCMC package by Haario et al. [33]. We based our likelihood

on the weighted squared error function x2(u) in the usual

way, with

x2ðuÞ ¼
Xm

i¼1

Xn

j¼1

Bd
ij � Biðu, tjÞ

sd
ij

 !
,

where Bd
ij are the n data points for each observable m, B(u, ti) is

the solution of the m-dimensional dynamical system at time

point i, and sd
ij are the corresponding measurement errors [34].

This is equivalent to using the likelihood L(u) [35], where

x2ðuÞ ¼ �2 logðLðuÞÞ, ð2:1Þ

under the assumption of Gaussian noise. The MCMC procedure

produces a posterior collection of parameter sets corresponding

to model trajectories that fit the data.
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Figure 1. Grey lines (a) show the fits from 500 parameter sets randomly drawn from the posterior distribution of viable bacterial numbers for slow and fast dilution
rates, the red lines (b) are the B1 population (INH sensitive), the blue lines are the B2 population (INH resistant) and the cyan (c) lines are plots of the resource
concentration. (Bacterial counts are in log base 10). Right panels: long transient dynamics have been suppressed.
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2.4. Multi-population model
The posterior collections of parameters represent alternative

parameters under which the model can match the observed

data. As is often the case with dynamical models of biological sys-

tems, parameters are not uniquely determined by observations,

due to complex nonlinear dependencies and trade-offs. We take

the posterior to represent diverse ways that we can define a

model subpopulation that is tolerant of INH and whose popu-

lation dynamics follow the observed data. Accordingly, we use

the posterior to extend the model to represent multiple, different

subpopulations. We model m distinct mutations that could cause

an M. tuberculosis bacillus to evade the action of INH. The suscep-

tible subpopulation B1 mutates to create each of these m resistant

subpopulations at different rates. Each subpopulation takes its

parameter combination (l2, e2, k2) from the estimated posterior,

so that each subpopulation exhibits different maximum growth

rates li(R), different yield constants ei and different half saturation

constants, ki, as we assume that some mutations are more expens-

ive than others. This allows us to use the posterior parameter

distributions for resistant subpopulation to explore the relation-

ship between mutation and selection (which has multiple

flavours: drug resistance/tolerance, growth before dilution and

efficient use of resources) in this system.

The differential equations are

dB1

dt
¼ B1ðð1� ÂÞf1ðRÞ � m� P�DÞ,

dB1

dt
¼ BiðfiðRÞ �DÞ þ miB1, i ¼ 2, . . . ,m

and
dR
dt
¼ DðC� RÞ �

Xn

i¼1

eifiðRÞBi,

9>>>>>>>>=
>>>>>>>>;

ð2:2Þ

where

m ¼
Xn

i¼2

mi:

We assume that mutations giving rise to the different sub-

populations occur at different rates, i.e. we use different values
of mi. If the subpopulation with the least fitness costs are assumed

to appear faster than other subpopulations, then this gives them an

advantage. Therefore, in our model simulation, we assume that

mutations that confer higher net growth occur at a lower rate

than mutations with lower net growth. Removing this assumption

does not change the population dynamics, likely because the ulti-

mate fate of each subpopulation depends more on its fitness cost

than on the rate at which it appears in the system.

2.5. Diversity measure
A range of diversity indices have been used with bacterial commu-

nities [36–38]. Here we analyse diversity using Shannon’s index H0

[39], which is defined as H0 ¼ �
Pn

i¼1 Pi ln Pi, where Pi is the

proportion of the total population occupied by subpopulation i.
3. Results
The model captures the qualitative behaviour of the cultures

in [24] under fast- and slow dilution rates. No fine tuning of

parameters is necessary: the model is robust in the sense that

a range of parameters fits the data as shown in figure 1. For

baseline values of parameter fits for slow and fast dilution

rates, see tables 2 and 3, respectively. Matching the observed

data does not require modelling slow-growing persisters or

an explicit lag phase. However, the mutation rates and

large population sizes result in a sizable minority population

(of order 105) of resistant bacteria at the time that INH is

added; this is a combination of inferred mutation rates and

growth and turnover of the steady-state population of order

108 or higher prior to the addition of INH. We also note

that in order to fit the steady-state bacterial numbers before

the addition of INH, we require differences in the yield coef-

ficient e i between the two dilution rates. While this appears

counterintuitive, it has been predicted previously [19,40,41],

and may also be related to the higher expression of genes



Table 2. Baseline values of parameter fits (slow dilution).

parameter mean
2.5th
percentile

97.5th
percentile

m 3.01 � 1026 2.32 � 1026 6.68 � 1026

Â 0.04 0.027 0.95

P 0.06 0.03 0.10

e1 5.46 � 1028 2.61 � 1029 1.07 � 1028

e2 8.46 � 1028 2.69 � 1028 1.77 � 1027

l1 0.041 0.031 0.049

l2 0.027 0.021 0.037

k1 0.019 0.01 0.03

k2 0.04 0.02 0.05

Table 3. Baseline values of parameter fits (fast dilution).

parameter mean
2.5th
percentile

97.5th
percentile

m 5.33 � 1026 2.14 � 1026 6.94 � 1026

Â 0.50 0.03 0.96

P 0.06 0.03 0.09

e1 7.29 � 1029 5.06 � 1029 1.26 � 1028

e2 4.83 � 1027 1.07 � 1027 1.08 � 1026

l1 0.03 0.04 0.05

l2 0.03 0.036 0.04

k1 0.02 0.01 0.03

k2 0.03 0.02 0.04
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involved in lipid metabolism and ATP synthesis under fast

dilution post-INH addition [24]. Pressure to use the carbon

source most efficiently may be weaker under fast dilution

than slow dilution, consistent with the model’s prediction

of excess glycerol in the medium.

Figure 1a shows the model’s growth curves alongside

observed data. The susceptible population B1 dies off rapidly

upon addition of INH, leading to a temporary excess of gly-

cerol. Figure 1b shows that the resistant subpopulation begins

to grow immediately—the apparent lag phase in the rise of

this resistant population is due to the initial decline in the

total viable count because the vast majority of bacteria are

sensitive to INH (type B1 in the model) when the antibiotic

is first added. While the population size begins to expand

again in both the fast- and slow dilution rates, under slow

dilution the bacteria have time to maximize use of the

excess nutrient with an apparent increase in growth rate,

which in turn enables the population to re-establish the orig-

inal population size. By contrast, a lower but fairly constant

population size of resistant bacteria is eventually maintained

under the fast dilution rate (as observed by Jeeves et al. [24]).

To aid interpretation of this, at the time that INH was added

to the cultures, the bacteria under fast dilution were dividing

at a rate very close to the maximum physiologically achiev-

able growth rate for M. tuberculosis, as it has been

determined previously that increasing the dilution rate to

higher than a MGT of 23.1 h MGT resulted in wash-out of

the cultures. If this is the maximum physiologically achiev-

able growth rate, then an increase in the growth rate (and,

therefore, an increase in biomass) is not possible even in the

presence of excess glycerol. This may account for why fast

dilution cultures could not recover their original population

size. We note, however, that if left to run for a longer time

period, the cultures under fast dilution may very slowly

increase, possibly up to similar levels to those attained by

the cultures under slow dilution.

Under steady-state conditions, the imposed slow and fast

dilution rates (0.01 h21 and 0.03 h21, respectively) in the che-

mostat correspond to slow and fast bacterial growth, and this

is a motivation for the use of continuous cultures as models

for chronic disease (slow dilution rates) and acute disease

(fast dilution rates) M. tuberculosis infection [22,42] (tables 2

and 3). The comparison of two distinctly different growth

rates in a controlled and defined system enabled us to

measure the direct effect of growth rate on the response of

M. tuberculosis to INH exposure. However, once the system

departs from steady state (in this case when INH was

added), growth rates and dilution rates are not necessarily

the same. At times, the growth rate under slow dilution

reached the growth rates imposed by fast dilution (figure 2).

There are wide ranges of posterior parameters that allow

the model the match the data, and most posterior parameters

are similar under fast and slow dilution (figure 3). A few

show marked differences: l2, k1, P, m and e2 are higher

under fast dilution and there are some correlations (electronic

supplementary material, figures S4, S5). The kill rate P and

mutation rate m have a difference of about an order of mag-

nitude between the two dilution rates, consistent with

Jeeves et al.’s measurement of mutation rates of 1027 and

1026 per cell per generation in slow- and fast dilution,

respectively. We recognize that the model has parameters

whose roles overlap: for example, both Â and P reflect anti-

biotic action, and both li and ki determine how growth
depends on the resource. As such, parameters are not statisti-

cally identifiable from the data we have, and instead of

attempting to find maximum-likelihood estimates of each

parameter we have taken a Bayesian approach to find pos-

terior collections of parameters sets where the model

matches the data. We draw conclusions not about the

values of specific parameters, but about dynamics we find

using all posterior sets of parameters. We explore further

identifiability and correlation structure in the posteriors in

the electronic supplementary material.

The posterior parameters defining the resistant subpopu-

lation allow us to explore the estimated fitness cost of INH

resistance. An intuitive way to define the relative fitness in

this context is the ratio of growth rates between resistant

and sensitive subpopulations:

f ¼ f2ðRÞ
f1ðrÞ

¼ l2=ðk2 þ RÞ
l1=ðk1 þ RÞ :

This depends on the level of resource R: relative fitness is

specific to an environment. When R� ki, f � l2=l1, and

when R� ki, f � ðl2=k2Þ=ðl1=k1Þ. Figure 4 shows how the

recovery is affected by l2 and k2, under slow- and fast

dilution rates. Under fast dilution, the recovery depends

very sensitively on the fitness costs, whereas under slow

dilution, recovery is much more robust to small changes in

the growth parameters. The lower panels of figure 4 shows
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the posterior relative fitness values f � ðl2=k2Þ=ðl1=k1Þ for the

two dilution rates. While slow dilution allowed more rapid

recovery of the bacterial population, the relative fitness

values of the minority subpopulation that are performing

this recovery are notably lower than the corresponding fast

dilution subpopulation. This is because under slow dilution,

subpopulations can stay in the system long enough to con-

sume the resource; competition for this now-depleted

resource means that the most fit quickly dominates. Under

fast dilution, all remaining subpopulations can grow quickly

enough to outpace the rapid dilution, but they cannot con-

sume all of the resource before being washed out (they do

eventually, but not until quite a bit later than their slow

dilution counterparts).
We explored a model with a diverse resistant subpopu-

lations whose parameters are drawn from the posterior

distribution that matches the data and found that the diver-

sity patterns differ markedly under the two dilution rates

(figure 5), with fast dilution allowing a wider diversity of

subpopulations for a much longer period than slow dilution.

Previously, mutants were isolated from fast and slow dilution

rates by selection on agar containing 2�MIC INH, and resist-

ance was characterized by sequence analysis of katG, which

encodes the catalase-peroxidase activity and is responsible

for activation of INH. In parallel with our observations in

the model, greater diversity in the katG gene was observed

under a fast dilution than slow [24]. This may be surprising

given that fast dilution provides very strong selective
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pressure for rapid division. However, the model predicts that

there is an excess of the growth resource under fast dilution,

with the effect that there is reduced competition for resources

between subpopulations. The effect of dilution rate on

diverse population interactions in chemostat systems has

been noted previously [43,44], without the focus on resistance

and diversity.

In chemostat cultures of multiple competing populations,

it is known that the subpopulation with the smallest break-
even resource concentration wins and competitively excludes

the others [29,45,46]. A population’s break-even concen-

tration is the resource concentration it requires to support

growth that balances death and dilution. It depends on the

dilution rate and two parameters intrinsic to the population,

li and ki, which we draw from posterior parameter values to

reflect different fitness costs. After the susceptible bacteria

have been depleted, the system, therefore, reduces to one

with several competing subpopulations that are unaffected
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by antibiotic action (all are resistant). The fitter a population

is, the lower its break-even concentration. The proportion of

the total population occupied by a subpopulation varies

inversely with its fitness cost. After the susceptible subpopu-

lation dies off, the resistant subpopulation with the least

fitness cost will have the highest proportion of the total popu-

lation (figure 5). Accordingly, in our fast dilution model

system, the model cultures will eventually reach a steady

state with one dominant subpopulation (ignoring onward

generation of diversity by mutation), but our simulations

indicate that it would take very long times to reach this equi-

librium. We did not model the mechanisms of INH resistance

and their dependence on the dilution rate, but it has been

observed that susceptibility to ribosome-targeting antibiotics

can be decreased under slow growth [47] in other organisms.

Here, while growth parallels dilution rate at steady state, it is

not fixed during the experiment. Furthermore, the observed

recovery of the bacterial populations reflects not only the

strength of INH resistance but also the resource availability,

competition and dilution.
5

4. Discussion
We modelled M. tuberculosis growth and diversity in continu-

ous culture under the action of INH. We obtained posterior

parameter distributions for which the model matches observed

data on the recovery of the population during addition of INH,

and explored the dynamics of diverse INH-resistant subpopu-

lations consistent with these data. The model robustly matches

observed growth curves and provides a platform for exploring

the emergence of resistance to INH in continuous culture.

While the posteriors contain numerous sets of model

parameters that allow the model to match observations, all

of these parameter sets give rise to the conclusions we

report. Even though fast dilution provides very strong selective

pressure in favour of rapid cell division, fast dilution resulted

in excess resource compared to slow dilution, and the diversity

of model subpopulations that could be maintained over long

periods was greater under fast dilution. This is consistent

with the observations of Jeeves et al. [24] regarding diversity

in katG mutations. We interpret this result in the context of

fitness and inter-population competition.

Mutation-selection dynamics lead to removal of non-

beneficial mutations in a population. However, in a system

like ours where there are several beneficial mutations which

vary in fitness, the balance between mutation and selection

is complex as selection acts in several distinct ways on this

variation [48]. Fitness is often framed as a one-dimensional

variable capturing an organism’s overall capability for

growth. This depends on the environment as well as on the

organism itself. In our continuous culture system, the ability

to divide before being washed out, the strength of resistance

to INH, and the ability to consume the carbon source before

competitors and to use the carbon efficiently are distinct

elements of the fitness of subpopulations. The relative impor-

tance of these aspects of fitness is different under the

two dilution rates. Fast dilution confers strong selection in

favour of rapid division, and might, on that basis, be

expected to permit less diversity than slow dilution. How-

ever, fast dilution also results in excess glycerol in the

medium, weakening competition for resources. It appears

that the effects of reduced competition are a stronger driver
of diversity in this system than the effects of strong selection

for rapid growth. The fact that the conversion parameter e2

was inferred to be much larger under fast dilution than

under slow dilution supports the notion that selection for

rapid carbon usage is lower under fast dilution.

An increased capacity of cultures to give rise to mutants

(reflected in the mutation rate) increases the adaptability of

these cultures to harsh conditions [49]; this could be reflective

of the adaptation of clinical populations to the host environ-

ment. As the posterior values of the mutation rate are notably

higher under fast dilution than under slow dilution, one

might expect that cultures in fast dilution would be able to

recover more easily. However, the potential advantages con-

ferred by rapid mutation may be outweighed by the pressure

of fast dilution, the occurrence of deleterious mutations and

the fact that the fast dilution rate may reach the physiological

limit of M. tuberculosis’ growth capacity. All these factors

combine to affect the outcome of mutation-selection balance

in this system, resulting in higher long-term diversity under

fast dilution than under slow dilution.

The competitive exclusion principle observed in chemostat

cultures is based on the assumption that the cultures do not

undergo continuous mutations. However, this is not the situ-

ation when a clonal population diversifies into a number of

subpopulations [49–51]. Continuous mutation maintains

long-term diversity with many minority subpopulations, and

would do so under either dilution rate. We do not explicitly

model diversity arising from resistant subpopulation, instead

assuming that each subpopulation’s descendants carry the

subpopulation’s growth parameters. The diversity we model,

therefore, reflects the diversity of phenotypic growth par-

ameters rather than overall genetic diversity, which would

continue to accrue at a low rate consistent with the low

genome-wide mutation rate of M. tuberculosis.
The model raises questions that can be answered in

further chemostat studies: does high resource availability

delay the end course of exploitative competition? What deter-

mines the mutation rate and how does it affect the evolution

and fitness of resistance? Studies combining whole-genome

sequencing with monitoring of the resource concentration

will provide tests of the predictions we have made, as well

as insights as to the continuous generation of diversity after

the drug-sensitive cells have died out.

The emergence of fit DR TB subpopulations is a major

concern for global health. Gagneux et al. [11] report that

mutant subpopulations with the least fitness cost to rifampi-

cin are the most prevalent among rifampicin-resistant

isolates. Many tuberculosis patients are hosts to resistant sub-

populations arising during growth and turnover of drug-

sensitive infections [11,52–54]. Following early studies that

found that TB patients given a single drug developed resist-

ance due to minority subpopulations [25,55], standard TB

treatment regimens include four antibiotics taken over

many months. Resistant minority populations have a selec-

tive advantage in patients during drug therapy and may

spread onwards, gaining in fitness over time. It is reasonable

to assume that upon emergence, resistant subpopulations

compete with their drug-susceptible progenitors for

resources. If continuous culture systems are a model for in-

host infection, our results suggest that drug selection occurs

when host resources are likely to be plentiful—during slow

growth periods of the infection or when bacterial numbers

have declined after early bactericidal action—giving rise to
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diverse resistant subpopulations. Our model does not require

slow-growing persisters or hypermutability in response to

antibiotic action or other advantages beyond simple mutation

in order to match observed complete recovery of bacterial

populations. Even in the very simple, constrained and

highly selective environment of nutrient-limited continuous

culture systems, M. tuberculosis can rapidly generate fit DR

mutants that can establish long-term survival.
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