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Neuropeptides acting on specific cell membrane receptors of the G protein-coupled
receptor (GPCR) superfamily regulate a range of important aspects of nervous and neu-
roendocrine function. Gastrin-releasing peptide (GRP) is a mammalian neuropeptide that
binds to the GRP receptor (GRPR, BB2). Increasing evidence indicates that GRPR-mediated
signaling in the central nervous system (CNS) plays an important role in regulating brain
function, including aspects related to emotional responses, social interaction, memory,
and feeding behavior. In addition, some alterations in GRP or GRPR expression or function
have been described in patients with neurodegenerative, neurodevelopmental, and psychi-
atric disorders, as well as in brain tumors. Findings from preclinical models are consistent
with the view that the GRPR might play a role in brain disorders, and raise the possibility
that GRPR agonists might ameliorate cognitive and social deficits associated with neuro-
logical diseases, while antagonists may reduce anxiety and inhibit the growth of some
types of brain cancer. Further preclinical and translational studies evaluating the potential
therapeutic effects of GRPR ligands are warranted.
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INTRODUCTION
Neuropeptide signaling regulates a variety of aspects of nervous
and neuroendocrine function (Hökfelt et al., 2003; Salio et al.,
2006). Neuropeptides act by activating specific cell membrane
receptors that are members of the G protein-coupled recep-
tor (GPCR) superfamily, leading to stimulation of downstream
protein kinase signaling pathways and ultimately altering gene
expression (Oh et al., 2006).

Gastrin-releasing peptide (GRP), a neuropeptide originally
isolated from the porcine stomach, is a 27-amino acid peptide
synthesized as a 148-amino acid precursor (PreproGRP) and sub-
sequently metabolized posttranslationally (Spindel et al., 1984,
1990; Lebacq-Verheyden et al., 1988). GRP is the mammalian
homolog of the amphibian 14-amino acid peptide bombesin, iso-
lated from the skin of the European frog Bombina bombina in 1970
(Erspamer et al., 1970). GRP and bombesin display similar bio-
logical activities and share the same seven C-terminal amino acid
sequence. Early experiments examining the effects of bombesin
when administered in the brain showed that intracerebroven-
tricular (i.c.v.) infusions of bombesin induced hypothermia and
hyperglycemia in rats (Brown et al., 1977a,b). In peripheral tissues,
the physiological functions of GRP include regulating gastrin and
somatostatin release, gastric acid secretion, pancreatic secretion,
gastrointestinal motility, lung development, and chemoattraction
in immune system cells (Ruff et al., 1985; Schubert et al., 1991;
Del Rio and De la Fuente, 1994; Niebergall-Roth and Singer,
2001; Ohki-Hamazaki et al., 2005; Gonzalez et al., 2008; Jensen

et al., 2008b; Czepielewski et al., 2012). Another member of the
bombesin-like peptide (BLP) family found in mammals is neu-
romedin B (NMB), the mammalian equivalent of ranatensin,
which acts on the NMB receptor (NMBR; Minamino et al., 1983).
An additional peptide originally named neuromedin C (NMC) is
in fact a decapeptide of GRP (GRP-10, GRP18−27; Minamino et al.,
1984). Thus, BLPs in mammalian tissues have been increasingly
shown to constitute a class of signaling peptides regulating a large
range of physiological functions.

Gastrin-releasing peptide acts by binding to the GRP receptor
(GRPR, also called BB2), a GPCR that binds preferentially to GRP
and bombesin, with much lower affinity for NMB (Jensen and
Gardner, 1981; Moody et al., 1988, 1992; von Schrenck et al., 1989,
1990; Ladenheim et al., 1990, 1992; Wang et al., 1992). Increasing
evidence indicates that GRPR-mediated signal transduction in the
central nervous system (CNS) plays an important role in regulating
behavior, especially aspects related to emotional responses, social
interaction, memory, and feeding. In addition, we have proposed
that dysfunctions in GRPR expression and signaling might play
a role in CNS disorders including anxiety, autism, memory dys-
function associated with neurodegenerative disorders, and brain
tumors. Here we review the role of GRPRs in regulating brain
function, and its potential as a drug target for CNS disorders.

MOLECULAR ORGANIZATION OF THE GRPR
All mammalian bombesin receptors (GRPR, NMBR, and the
orphan receptor BRS-3 or BB3) exhibit the characteristic seven
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transmembrane domain structure of GPCRs. This review will
focus solely on the GRPR. For a comprehensive review of the
classification, nomenclature, structure, expression, signaling, and
functions of the different types of bombesin receptors, see Jensen
et al. (2008b).

The GRPR,cloned from murine Swiss 3T3 cells in 1990 (Spindel
et al., 1990; Battey et al., 1991), is a 384-amino acid protein in
humans, mice, and rats. The chromosomal location for the GRPR
gene (named GRPR in humans and Grpr in mice and rats) is at
chromosome Xp22.2-p22.13 (human), X F4 (mouse), and Xq21
(rat; Jensen et al., 2008a; Table 1).

GRPR SIGNALING
Experiments using different types of normal and tumor cells from
humans and rodents have provided consistent evidence that the
GRPR is directly coupled to the Gq type of G protein, and GRPR
activation leads to an increase in cellular [Ca2+] and stimulation
of the phospholipase C (PLC)/protein kinase C (PKC) and extra-
cellular signal-regulated protein kinase (ERK)/mitogen-activated
protein kinase (MAPK) pathways (Hellmich et al., 1999; Chen
and Kroog, 2004; Stangelberger et al., 2005). GRPR signaling also
interacts with a range of other enzymes (e.g., phospholipases A2

and D, tyrosine kinases, phosphatidylinositol 3-kinase – PI3K,
and ciclooxigenase-2), growth factor receptor systems (includ-
ing epidermal growth factor receptor, EGFR, and TrkB), and

Table 1 | Molecular structure of the gastrin-releasing peptide receptor

(GRPR).

GRPR (BB2)

Species TM AA Chromosomal location Gene name

Human 7 384 Xp22.2-p22.13 GRPR

Rat 7 384 Xq21 Grpr

Mouse 7 384 X F4 Grpr

Aminoacid sequence (Homo sapiens)

(1–60) MALNDCFLLN LEVDHFMHCN ISSHSADLPV NDDWSHPGIL

YVIPAVYGVI ILIGLIGNIT

(61–120) LIKIFCTVKS MRNVPNLFIS SLALGDLLLL ITCAPVDASR

YLADRWLFGR IGCKLIPFIQ

(121–180) LTSVGVSVFT LTALSADRYK AIVRPMDIQA SHALMKICLK

AAFIWIISML LAIPEAVFSD

(181–240) LHPFHEESTN QTFISCAPYP HSNELHPKIH SMASFLVFYV

IPLSIISVYY YFIAKNLIQS

(241–300) AYNLPVEGNI HVKKQIESRK RLAKTVLVFV GLFAFCWLPN

HVIYLYRSYH YSEVDTSMLH

(301–360) FVTSICARLL AFTNSCVNPF ALYLLSKSFR KQFNTQLLCC

QPGLIIRSHS TGRSTTCMTS

(361–384) LKSTNPSVAT FSLINGNICH ERYV

Structural data are from Spindel et al. (1990), Battey et al. (1991), Wada et al.
(1991), and Jensen et al. (2008a). Modified from Roesler et al. (2012), with
permission).

immediate-early genes (c-fos and c-jun; Szepeshazi et al., 1997;
Chatzistamou et al., 2000; Thomas et al., 2005; Hohla et al., 2007;
Ishola et al., 2007; Liu et al., 2007; Flores et al., 2008; de Farias
et al., 2010; Czepielewski et al., 2012; Petronilho et al., 2012). Data
on signaling mechanisms mediating GRPR actions specifically in
the CNS will be discussed below.

GRPR EXPRESSION IN THE CNS
Early studies investigating the presence of bombesin receptors
binding sites in the mammalian CNS showed that bombesin could
bind with high affinity to rat brain membranes (Moody et al.,
1978). Subsequently, autoradiographic studies indicated that areas
containing high densities of GRPRs include the olfactory bulb,
nucleus accumbens, caudate putamen, central amygdala, dorsal
hippocampus, as well as the paraventricular, central medial, and
paracentral thalamic nuclei (Wolf et al., 1983; Wolf and Moody,
1985; Zarbin et al., 1985). A detailed immunohistochemical char-
acterization of GRPR expression in the mouse brain showed high
GRPR immunoreactivity in the basolateral and central nuclei
of the amygdala (BLA and CeA, respectively), hippocampus,
hypothalamus, brain stem, nucleus tractus solitarius (NTS), and
several cortical areas. Importantly, GRPR expression was restricted
to neuronal cell bodies and dendrites, and was not present in axons
or glial cells (Kamichi et al., 2005). Thus, the pattern of GRPR loca-
tion in the brain suggests that it is specifically involved in regulating
synaptic transmission. In some rat brain areas, GRPR expression
shows marked changes during development – specifically between
postnatal (PN) days 1 and 16 – with its expression increasing in the
dentate gyrus and decreasing in the caudate putamen and lateral
cerebellar nucleus (Wada et al., 1992).

Regarding receptor ligands, the use of radioimmunoassay tech-
niques allowed demonstrating the presence of endogenous BLPs in
the rat brain, with high concentrations in brain areas including the
NTS,amygdala, and hypothalamus (Moody and Pert,1979; Moody
et al., 1981). GRP mRNA has the highest density in forebrain areas
and hypothalamus (Wada et al., 1990; Battey and Wada, 1991; for
reviews, see Moody and Merali, 2004; Roesler et al., 2006a; Jensen
et al., 2008b).

In the rodent spinal cord, GRPR expression is restricted to
lamina I of the dorsal spinal cord, and GRP is expressed in a
subset of dorsal root ganglion neurons including lumbar spinotha-
lamic neurons (Sun and Chen, 2007; Fleming et al., 2012; Kozyrev
et al., 2012). Importantly, the GRP system in the spinal cord is
sexually dimorphic. In male rats, neurons in the L3 and L4 lev-
els of the lumbar spinal cord project to the lower lumbar spinal
cord (L5–L6 level) and release GRP onto somatic and autonomic
centers containing GRPRs, whereas this system is vestigial in
females (Sakamoto et al., 2008; Sakamoto, 2011). This has impor-
tant implications for the control of male sexual reflexes by GRPR
signaling (see below).

GRPR REGULATION OF CNS FUNCTION
Evidence that GRPRs in the brain and spinal cord regulate several
physiological functions has come mostly from in vivo studies using
pharmacological or genetic manipulation of the GRPR in rats or
mice. Below, we summarize relevant findings of selected studies
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focusing on GRPR regulation of memory, stress and anxiety
responses, feeding, itching, and sexual behavior.

SYNAPTIC PLASTICITY AND MEMORY
In the late 1980s, Flood and Morley (1988) demonstrated that
systemic or i.c.v. injections of GRP or bombesin after learning
modulated memory retention for a T-maze footshock avoidance
task in mice. When i.c.v. infusions were used, both peptides
facilitated memory consolidation, whereas systemic injections
produced memory enhancement or impairment depending on the
drug dose and training conditions. Consistently with these find-
ings, bombesin given after training through systemic injections
(Rashidy-Pour and Razvani, 1998) or infusions directly into the
NTS (Williams and McGaugh, 1994) enhanced memory retention
in rats.

Memory modulation by GRPRs seems to be particularly
important for memories involving emotional arousal and fear.
Thus, pretraining injections of the GRPR antagonist [Leu13-(psi-
CH(2)NH)-Leu14]BN impaired memory for inhibitory avoidance
conditioning in mice (Santo-Yamada et al., 2003), and injec-
tion of another selective GRPR antagonist, RC-3095, in rats
impaired memory for inhibitory avoidance but not for a task
with less emotional content, novel object recognition (Roesler
et al., 2004b). Similar impairing effects of RC-3095 on inhibitory
avoidance memory were obtained with systemic posttraining
injections (Roesler et al., 2004c), pre- or posttraining intrahip-
pocampal microinfusions (Roesler et al., 2003; Venturella et al.,
2005; Dantas et al., 2006; Preissler et al., 2007), or posttrain-
ing infusions into the BLA (Roesler et al., 2004c). The effects
of the GRPR antagonist followed a typical inverted U-shaped
dose–response pattern, in which intermediate doses resulted in
memory impairment, whereas higher doses had no effect or pro-
duced memory enhancement (Roesler et al., 2003, 2004b; Dantas
et al., 2006). Conversely, intrahippocampal infusion of bombesin
resulted in enhancement of inhibitory avoidance memory at inter-
mediate doses and impairment at higher doses (Roesler et al.,
2006b). In addition to influencing memory formation, phar-
macological manipulation GRPRs in specific brain areas has
been shown to regulate fear memory expression, extinction, and
reconsolidation-like processes (Luft et al., 2006, 2008; Mountney
et al., 2006, 2008; Merali et al., 2011). For example, infusion of
the GRPR antagonist RC-3095 into the rat dorsal hippocampus
after memory reactivation blocks the extinction and reconsoli-
dation of fear memory (Luft et al., 2006, 2008; for a review, see
Roesler et al., 2012).

The role of GRPRs in regulating fear memory and synap-
tic plasticity has also been revealed by genetic studies using
GRPR knockout mice. Contextual and cued fear conditioning
were enhanced by the genetic deletion of GRPR, whereas spa-
tial in the Morris water maze was unaffected. The enhancement
of fear memory in GRPR knockout mice was accompanied by
enhanced synaptic plasticity measured by long-term potentiation
(LTP) in the amygdala. In wild-type mice, GRPR was preferen-
tially expressed in amygdalar inhibitory interneurons releasing
gamma-aminobutyric acid (GABA), and GRP might be released
as a co-transmitter from glutamatergic neurons to activate prefer-
entially GRPRs located on GABAergic interneurons to stimulate

inhibitory transmission within the amygdala and function as
an inhibitory constraint for the formation of fear-motivated
memories (Shumyatsky et al., 2002).

Additional studies recently found enhanced retention and
impaired extinction of cued fear conditioning, associated with
an increase in c-fos activity in the BLA and reduced c-fos in the
prefrontal cortex, in GRPR knockout mice. However, these mice
showed unaltered contextual fear conditioning, multiple-trial
cued fear conditioning, and conditioned taste aversion (Chaperon
et al., 2012; Martel et al., 2012). Together, these findings indicate
that the GRPR acts as a negative regulator of synaptic plasticity in
the BLA and specific types of fear conditioning. However, the use
of first generation knockout mouse models might confound the
interpretation of the results, given that they do not allow the inves-
tigation of separate phases of memory (encoding, consolidation,
and expression), and knockout mice might have up-regulation
of compensatory pathways and non-specific alterations in CNS
development in response to gene ablation (reviewed in Roesler
et al., 2012).

We have shown that a number of signal transduction mecha-
nisms downstream of receptor activation are involved in mediating
memory regulation by the GRPR. In the CA1 area of the dor-
sal hippocampus, memory enhancement induced by bombesin
was prevented by inhibitors of PKC, MAPK, PKA, and PI3K
(Roesler et al., 2006b,2009,2012), and potentiated by coinfusion of
stimulators of the dopamine D1/D5 receptor (D1R)/cAMP/PKA
pathway, namely the D1R agonist SKF 38393, the adenylyl cyclase
activator forskolin, and the cAMP analog 8-Br-cAMP (Roesler
et al., 2006b). These findings indicate that the PKC, MAPK, PI3K,
and PKA pathways are critical in mediating memory modu-
lation by hippocampal GRPRs, and that GRPR activation can
interact with cAMP/PKA signaling in enhancing hippocampal
memory formation (Figure 1). GRPRs in the rat brain also show
functional interactions with other growth factor systems includ-
ing basic fibroblast growth factor (bFGF/FGF-2), nerve growth
factor (NGF), and brain-derived neurotrophic factor (BDNF;
Kauer-Sant’Anna et al., 2007; Preissler et al., 2007).

EMOTIONAL BEHAVIOR
Gastrin-releasing peptide and GRPR are highly expressed in brain
regions, such as the amygdala, activated by stressful stimuli, and,
as discussed above, GRPR signaling is likely to be a major regulator
of memory associated with fear and emotional arousal. Merali and
colleagues have shown that chronic stressor exposure leads to an
elevation of GRP levels in the anterior pituitary in rats, and GRP
release in the rat amygdala is increased in response to exposure
to a shock. GRP may stimulate the release of adrenocorticotropic
hormone (ACTH), playing a role in mediating the corticotropin-
releasing hormone (CRH) stress response, and increasing the
activity of the hypothalamic–pituitary–adrenal (HPA) axis. In
addition, bombesin administration induces endocrine, auto-
nomic, and behavioral effects associated with stress, and bombesin
receptor antagonists attenuate the behavioral and neurochem-
ical effects of stressors (Merali et al., 2002, 2009; Moody and
Merali, 2004; Mountney et al., 2011). Moreover, we have shown
that systemic administration of a GRPR antagonist can induce
an anxiogenic-like effect in the elevated plus maze test in rats
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FIGURE 1 | Proposed molecular mechanisms mediating GRPR regulation

of brain function. The stimulation of hippocampal memory consolidation by
GRPR activation depends on PKC, MAPK, PKA, and PI3K, and is potentiated
by activation of the D1R/cAMP/PKA pathway (Roesler et al., 2006a, 2009,
2012). GRPR activation at the postsynaptic membrane is coupled to Gq
protein activity and increases in [Ca2+], leading to stimulation of the PLC/PKC

and ERK/MAPK pathways. D1R is coupled to the Gs protein and adenylyl
cyclase (AC) activation. The D1R-induced cAMP signal might be potentiated
by [Ca2+]-induced stimulation of [Ca2+]-responsive types of AC (Wong et al.,
1999; Chan and Wong, 2005; Roesler et al., 2006b, 2012), providing a possible
mechanism for the requirement of cAMP/PKA signaling for GRPR influences
on memory. Modified from Roesler et al. (2006b, 2012), with permission.

(Martins et al., 2005). Together, these data suggest that brain
GRPRs might regulate emotional behavioral and responses to
stress.

FEEDING BEHAVIOR
It has been known for over 30 years that systemic or i.c.v. admin-
istration of bombesin or GRP in rats reduces the intake of liquid
and solid food in rats (Gibbs et al., 1981). Similar effects on
meal size are observed after systemic bombesin injections in mice
and intravenous (i.v.) injections in baboons and humans (Gibbs,
1985). In addition, brief vena caval infusions of GRP and NMB
in rats, given alone or together at the onset of the first noctur-
nal meal, significantly reduced meal size and duration (Rushing
et al., 1996), and bombesin or GRP given systemically extended
the duration of the intermeal interval (Thaw et al., 1998). The
suppression of glucose intake induced by systemic administration
of GRP or bombesin was blocked by infusion of a GRPR antago-
nist into the fourth ventricle in rats (Ladenheim et al., 1996), and
was absent in GRPR knockout mice (Hampton et al., 1998; Laden-
heim et al., 2002), indicating that central GRPRs are critical in
mediating the effects of peripheral bombesin and GRP on feeding.
In addition, GRPR knockout mice ate significantly more at each
meal than wild-type controls (although total 24 h food consump-
tion was equivalent), and showed elevated body weight compared

with wild-type littermates beginning at 45 weeks of age (Laden-
heim et al., 2002). The finding that systemic GRP potently reduced
independent intake of both sucrose and milk from a bottle but did
not affect intraoral intake of either solution indicated that the
GRPR regulates the appetitive-related aspects of the feeding pro-
cess (Rushing and Houpt, 1999). The amygdala is likely a key brain
area involved in mediating the regulatory action of GRPRs on feed-
ing: bilateral infusion of GRP into the central amygdala produced
a transient inhibition of food intake, an effect that was prevented
by the GRPR antagonist [Leu(13)-psi(CH(2)NH)-Leu(14)]BN
(Fekete et al., 2002).

These findings provide strong support for a role of GRP/GRPR
signaling in regulating feeding. It has been proposed that BLPs
may also be released from the gastrointestinal tract in response to
food ingestion, acting to bridge the gut and brain to inhibit further
food intake. Conversely, the suppression of release of BLPs in the
brain may trigger the initiation of a feeding episode (reviewed in
Merali et al., 1999).

SEXUAL BEHAVIOR
One of the most exciting recent developments in GRPR research
was the identification by Sakamoto et al. (2008) of a sexu-
ally dimorphic GRPR system in the spinal cord that is crucial
in regulating male sexual function. In male rats, but not in
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females or males with a dysfunctional androgen receptor gene,
GRP-containing neurons in the upper lumbar spinal cord inner-
vate lower lumbar regions controlling erection and ejaculation.
Pharmacological stimulation of spinal GRP receptors restores
penile reflexes and ejaculation after castration, whereas intrathecal
administration of the GRPR antagonist RC-3095 inhibits penile
reflexes and ejaculations. The inhibitory effect of castration on
GRP expression in this spinal center suggests that androgen sig-
naling plays a major role in regulating GRP expression in the
male spinal cord (Sakamoto et al., 2009b). Moreover, exposure
to traumatic stress decreases the local GRP content and reduces
penile reflexes in male rats (Sakamoto et al., 2009a; Sakamoto,
2010). Thus, GRP/GRPR signaling has emerged as a new tar-
get for the understanding of psychogenic erectile dysfunction
and the development of potential therapeutic approaches to mas-
culine reproductive dysfunction (Sakamoto et al., 2008, 2009a,b;
Sakamoto and Kawata, 2009; Sakamoto, 2010, 2011).

ITCHING
Another function in which GRPRs in the spinal cord have been
shown to play a major role is itching. GRPR knockout mice show
normal thermal, mechanical, inflammatory, and pain responses,
but reduced responses to pruritogenic stimuli, and GRP-induced
pruritus in wild-type mice is blocked by intrathecal administration
of a GRPR antagonist (Sun and Chen, 2007). The selective ablation
of GRPR-expressing lamina I neurons in the mouse spinal cord of
mice results in scratching deficits in response to itching stimuli,
but does not affect pain behaviors (Sun et al., 2009). These findings
allowed the identification of GRPR as a central molecular mediator
of the itch sensation in the spinal cord (Sun and Chen, 2007; Sun
et al., 2009).

A recent seminal study showed that the μ-opioid receptor
(MOR) isoform MOR1D heterodimerizes with GRPR in the spinal
cord to relay itch information. Blocking the association between
MOR1D and GRPR attenuates morphine-induced scratching.
Morphine triggers internalization of both GRPR and MOR1D,
whereas GRP specifically triggers both GRPR internalization

and morphine-independent scratching. These data suggest that
opioid-induced itch is independent of opioid analgesia and occurs
via cross-activation of GRPR signaling by MOR1D heterodimer-
ization (Liu et al., 2011).

POSSIBLE ROLE OF ALTERATIONS IN GRPR EXPRESSION
AND SIGNALING IN THE PATHOGENESIS OF BRAIN
DISORDERS
Since GRPRs are highly expressed in neurons in brain areas includ-
ing the hippocampus and BLA, and regulate crucial aspects of
behavior that can be altered in patients with CNS disorders, it
is possible that deregulated GRPR signaling contribute to the
pathogenesis of neurological and psychiatric diseases. Although
a causative role of GRPR dysfunction in CNS disorders has not
been directly established, some alterations in the levels of BLPs
peptides or GRPR density or function have been observed in
patients with psychiatric, neurodegenerative, and neurodevelop-
mental disorders. In addition, the use of preclinical models has
provided further evidence indicating a role for the GRPR in some
CNS pathologies. Based on these findings, we have put forward
that the GRPR may be a novel molecular target for the develop-
ment of therapeutic strategies for patients with neurological and
psychiatric disorders (Roesler et al., 2004a, 2006a). Table 2 sum-
marizes the findings from studies examining possible alterations
in GRP and GRPR content or signaling found in patients with
brain disorders.

NEURODEGENERATIVE DISORDERS
The concentration of BLPs was found to be significantly reduced in
the caudate nucleus and globus pallidus of patients with Parkin-
son’s disease (PD; Bissette et al., 1985). However, Stoddard et al.
(1991) found no alterations in bombesin-like immunoreactivity in
the adrenal medullary tissue of patients with PD, although the con-
centration of several other neuropeptides was reduced. A reduc-
tion in bombesin receptor density and altered bombesin-induced
calcium signaling have been reported in fibroblasts from patients
with Alzheimer’s disease (AD; Ito et al., 1994; Gibson et al., 1997).

Table 2 | Findings from selected studies examining possible alterations in the GRPR system in patients with CNS disorders. Modified from

Roesler et al. (2006a), with permission.

CNS disorder Main findings Reference

Parkinson’s disease Reduced levels of BLPs peptides in caudate nucleus and globus pallidus Bissette et al. (1985)

Parkinson’s disease Normal bombesin-like immunoreactivity in adrenal medullary tissue Stoddard et al. (1991)

Alzheimer’s disease Reduced bombesin receptor density and enhanced bombesin-induced calcium release in fibroblasts Ito et al. (1994)

Alzheimer’s disease Reduced bombesin-induced calcium mobilization in fibrobasts Gibson et al. (1997)

Autism X;8 translocation in the GRPR gene Ishikawa-Brush et al. (1997)

Autism No association with two polymorphic sites in the second exon of the GRPR gene Marui et al. (2004)

Autism C6S and L181F mutations in the GRPR gene Seidita et al. (2008)

Schizophrenia Reduced radioimmunoassay-detectable bombesin in the CSF Gerner et al. (1985)

Schizophrenia Reduced urinary levels of BLPs Olincy et al. (1999)

Anxiety disorders No association between GRP and GRPR genes and panic disorders Hodges et al. (2009)

Eating disorders Reduced GRP levels in the CSF of women who were recovered from bulimia nervosa Frank et al. (2001)

Brain tumors GRPR overexpression in glioma Flores et al. (2010)
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FIGURE 2 |The GRPR agonist bombesin prevents memory impairment

induced by beta-amyloid peptide in the rat hippocampus. Data are
mean ± SEM retention test step-down latencies (s), in an inhibitory
avoidance conditioning, of rats given a bilateral infusion of the GRPR agonist
bombesin (BB; 0.002 μg) or saline (SAL; control group) 10 min before being
trained in IA, and beta-amyloid peptide (Abeta; 25–35) or distilled water
(DW; controls) immediately after IA training. The number of animals was
8–14 per group. **P < 0.01 compared to the control group treated with
SAL and DW. Reproduced from Roesler et al. (2006b), with permission.

For example, in fibroblasts from patients with familial AD pre-
senting the Swedish APP670/671 mutation, elevations in calcium
induced by bombesin were reduced by 40% (Gibson et al., 1997).

Using the memory impairment produced by a microinfusion of
a low dose of beta-amyloid peptide (25–35; Abeta) into the rat CA1
area of the dorsal hippocampus as a model of memory dysfunction
associated with AD, we showed that an intrahippocampal infusion
of bombesin completely prevented the Abeta-induced impairment
in inhibitory avoidance memory (Roesler et al., 2006b; Figure 2).
This finding provided preliminary preclinical evidence suggest-
ing that pharmacological stimulation of the GRPR might rescue
memory deficits associated with AD.

NEURODEVELOPMENTAL DISORDERS
The first evidence suggesting that the GRPR might be a candidate
gene in autism spectrum disorders (ASD) was the finding of a
translocation breakpoint on the X chromosome in the first intron
of the GRPR gene in a patient with autism accompanied by mental
retardation and epilepsy (Ishikawa-Brush et al., 1997). Although a
subsequent study investigating two polymorphic sites in the sec-
ond exon of the GRPR gene in patients did not support the GRPR
as a candidate locus for autism (Marui et al., 2004), more recently
a possible role of C6S and L181F mutations of the GRPR gene
in GRPR function and ASD was found in two patients (Seidita
et al., 2008).

In order to examine the role of GRPR in CNS development
and its possible involvement in ASD, we submitted rat pups to
pharmacological GRPR blockade by systemic administration of
RC-3095 from PN days 1–10, and examined long-lasting behav-
ioral and molecular alterations produced by this treatment. Rats
given neonatal RC-3095 showed pronounced deficits in social
interaction (a hallmark of rodent models of ASD) when tested
at PN days 30–35 (Presti-Torres et al., 2007; Figure 3) or PN day
60 (Presti-Torres et al., 2012). In addition, RC-3095-treated rats

showed impaired 24-h retention of memory for inhibitory avoid-
ance and novel object recognition, whereas body weight during
development, open field behavior, and short-term memory were
not affected (Presti-Torres et al., 2007, 2012). Neonatal GRPR
blockade also reduced maternal odor preference, a behavioral mea-
sure of attachment behavior (Garcia et al., 2010). The impairment
in social behavior induced by GRPR blockade was rescued by treat-
ment with the atypical antipsychotic clozapine (Presti-Torres et al.,
2012). Together, these findings suggest that GRPR blockade during
CNS development can lead to specific behavioral alterations that
are consistent with ASD, and support the possibility that abnor-
mal GRPR expression or function during development might play
a role in disease pathogenesis. Also, we have proposed that neona-
tal GRPR blockade in rats may serve as a novel animal model of
ASD (Presti-Torres et al., 2007, 2012).

OTHER NEUROPSYCHIATRIC DISORDERS
The findings from rodent studies discussed above, indicating that
normal GRPR function during development might be impor-
tant for behaviors related to social interaction, attachment, and
cognition, and that clozapine rescues social behavior deficits
produced by GRPR blockade, are also consistent with the pos-
sibility that GRPR signaling is altered in schizophrenia. In
addition, we found that GRPR blockade by systemic injections
of RC-3095 prevent apomorphine-induced stereotypy in mice and
amphetamine-induced hyperlocomotion in rats, which are models
of schizophrenic psychosis and mania (Meller et al., 2004; Kauer-
Sant’Anna et al., 2007). In patients with schizophrenia, a reduction
in the levels of radioimmunoassay-detectable bombesin in the
cerebrospinal fluid (CSF; Gerner et al., 1985), and reduced urinary
levels of BLPs (Olincy et al., 1999) have been found. Further stud-
ies using samples from patients and animal models are required to
examine whether GRPR signaling is involved in schizophrenia.

As reviewed above, data from animal studies also consistently
show that GRPRs in brain areas including the amygdala regulate
memory related to fear and anxiety responses, raising the possibil-
ity that GRPR signaling plays a role in anxiety disorders (Moody
and Merali, 2004; Roesler et al., 2012). For example, pharmaco-
logical manipulation of the GRPR in the hippocampus can affect
extinction and reconsolidation of fear memory, which are preclin-
ical models used in the investigation and screening of potential
therapeutic strategies for post-traumatic stress disorder (PTSD)
and other fear-related disorders (Luft et al., 2006, 2008). In post-
mortem analyses of brains from suicides compared to control
subjects, Merali et al. (2006) reported discrete alterations in the
levels of GRP and NMB. More recently, however, the possibil-
ity that GRP and GRPR are candidate genes in panic disorders
was not confirmed in an association and linkage analysis (Hodges
et al., 2009).

Anxiety disorders may show comorbidity with eating disorders,
anorexia and bulimia nervosa. Given the important role of GRPR
in regulating feeding behavior (see above), it is possible that it con-
tributes to eating disorders. One study found significantly reduced
GRP levels in the CSF of women who were recovered from bulimia
nervosa, compared to women recovered from anorexia or healthy
control women. The authors suggested that persistent alterations
in GRP levels after recovery indicate that this alteration might be
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FIGURE 3 | GRPR blockade during CNS development in rats

results in long-lasting behavioral alterations associated with

experimental models of autistic spectrum disorders (ASDs). Rats were
given intraperitoneal injections of saline (SAL; control group) or the GRPR
antagonist RC-3095 (1 or 10 mg/kg) twice daily from postnatal days (PN)
1 to 10. A social behavior test was carried out at PN 30. (A) Representative

photographs of rats given SAL or RC-3095 (1 or 10 mg/kg) during
the social interaction test. (B) Mean ± SEM number of social
contacts. (C) Mean ± SEM time spent engaged in social interaction (in
seconds). The number of animals was 6–7 per group; **P < 0.01 compared
to the control group. Reproduced from Presti-Torres et al. (2007), with
permission.
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trait-related and contribute to episodic hyperphagia in patients
with bulimia nervosa (Frank et al., 2001).

BRAIN TUMORS
Gastrin-releasing peptide receptor overexpression has been
demonstrated in many types of cancer (Cornelio et al., 2007), and
we have recently shown widespread expression and a high con-
tent of GRPR in human glioma, the most common and lethal
type of neurological cancer (Flores et al., 2010; Figure 4). GRPR
activation by GRP or bombesin stimulates the growth of glioma
cell lines (Moody et al., 1989; Pinski et al., 1994; Sharif et al., 1997;
de Farias et al., 2008; Flores et al., 2008). We have recently shown
that the stimulatory effect of GRPR activation on proliferation of
glioma cells depends on PI3K signaling (Flores et al., 2008) and is
potentiated by co-activation of the cAMP/PKA pathway (de Farias
et al., 2008; reviewed in Roesler et al., 2010).

Gastrin-releasing peptide receptor antagonists inhibit the
growth of human U-87MG and U-373MG gliomas xenografted
into nude mice (Pinski et al., 1994; Kiaris et al., 1999). In addition,
GRPR antagonism by RC-3095, alone or combined with temo-
zolomide, significantly reduced the growth of C6 gliomas both in
vitro and in vivo, with the combined administration of TMZ and
RC-3095 being the most effective treatment (Figure 5; de Oliveira
et al., 2009). These findings strongly suggest that targeting GRPR
may be a promising strategy for the development of novel therapies

FIGURE 4 | GRPR content in human normal brain tissue and brain

tumors. Representative sections of (A) normal brain and (B) astrocytoma
grade IV from an immunohistochemical study of GRPR content from
samples of patients with gliomas and normal brain samples. GRPR staining
is shown in the right column (brown, ×400) and hematoxylin–eosin (HE) in
the left column (×400). GRPR staining in the normal brain tissue is
restricted to neuronal bodies and dendrites, whereas its presence in
astrocytoma samples is widespread. Sections were incubated with
anti-GRPR antibody, sequentially treated with biotinylated anti-rabbit IgG
and streptavidin-biotin peroxidase solution, and then developed with
diaminobenzidine as chromogen. Modified from Flores et al. (2010), with
permission.

FIGURE 5 | A GRPR antagonist inhibits the growth of experimental

brain tumors. Rats implanted with C6 experimental gliomas in the
striatum were treated for seven consecutive days with intraperitoneal
injections of the GRPR antagonist RC-3095 alone (0.1, 0.3, and 1.0 mg/kg
twice a day), temozolomide (TMZ) alone (5 mg/kg once a day), or RC-3095
combined with TMZ. Control animals were injected with vehicle.
Pharmacological treatments were initiated 10 days after tumor
implantation. The number of animals was 6 rats per group. Tumor size was
measured 20 days after tumor implantation. Data are shown as median
(interquartile ranges) tumor volume (mm3). Values for individual animals are
shown by dots; *P < 0.002 compared to control animals. Reproduced from
de Oliveira et al. (2009), with permission.

against glioma. The GRPR might also regulate the growth of neu-
roblastoma (Kim et al., 2002; Qiao et al., 2008; Abujamra et al.,
2009), although, in contrast, we could not find a role for GRPR
in regulating the in vitro growth of medulloblastoma, the most
common brain cancer of childhood (Schmidt et al., 2009).

GRPR LIGANDS AS CANDIDATE THERAPEUTIC DRUGS IN
BRAIN DISORDERS
The evidence reviewed above indicates that the GRPR might be
considered a novel molecular target in different types of CNS
disorders, and raise the possibility that GRPR agonists might ame-
liorate cognitive and social deficits associated with neurological
diseases, while antagonists may, for example, reduce anxiety and
inhibit the growth of some types of brain cancer. Studies exam-
ining the effects of GRP administration on satiety and eating
behavior in humans (Gutzwiller et al., 1994), as well as a phase
I trial of the GRPR antagonist RC-3095 in patients with solid
tumors (Schwartsmann et al., 2006) have suggested that GRP and
peptidergic GRPR antagonists can be safely administered intra-
venously in human subjects. Thus, the potential therapeutic effect
of GRPR ligands in preclinical models as well as in patients with
CNS disorders warrants further investigation.

ACKNOWLEDGMENTS
This work was supported by the National Council for Sci-
entific and Technological Development (CNPq; grant number
303703/2009-1 to Rafael Roesler); the National Institute for Trans-
lational Medicine (INCT-TM); and the South American Office for
Anticancer Drug Development.

Frontiers in Endocrinology | Neuroendocrine Science December 2012 | Volume 3 | Article 159 | 8

http://www.frontiersin.org/Neuroendocrine_Science/
http://www.frontiersin.org/Neuroendocrine_Science/archive


“fendo-03-00159” — 2012/12/13 — 20:10 — page 9 — #9

Roesler and Schwartsmann GRPR function in the central nervous system

REFERENCES
Abujamra, A. L., Almeida, V. R.,

Brunetto, A. L., Schwartsmann, G.,
and Roesler, R. (2009). A gastrin-
releasing peptide receptor antagonist
stimulates Neuro2a neuroblastoma
cell growth: prevention by a histone
deacetylase inhibitor. Cell Biol. Int.
33, 899–903.

Battey, J., and Wada, E. (1991).
Two distinct receptor subtypes for
mammalian bombesin-like peptides.
Trends Neurosci. 14, 524–528.

Battey, J. F., Way, J. M., Corjay, M. H.,
Shapira, H., Kusano, K., Harkins, R.,
et al. (1991). Molecular cloning of
the bombesin/gastrin-releasing pep-
tide receptor from Swiss 3T3 cells.
Proc. Natl. Acad. Sci. U.S.A. 88,
395–399.

Bissette, G., Nemeroff, C. B., Decker,
M. W., Kizer, J. S., Agid, Y., and
Javoy-Agid, F. (1985). Alterations in
regional brain concentrations of neu-
rotensin and bombesin in Parkinson’s
disease. Ann. Neurol. 17, 324–328.

Brown, M., Rivier, J., and Vale, W.
(1977a). Bombesin: potent effects on
thermoregulation in the rat. Science
196, 998–1000.

Brown, M. R., Rivier, J., and Vale,
W. W. (1977b). Bombesin affects the
central nervous system to produce
hyperglycemia in rats. Life Sci. 21,
1729–1734.

Chaperon, F., Fendt, M., Kelly, P. H.,
Lingenhoehl, K., Mosbacher, J., Olpe,
H. R., et al. (2012). Gastrin-releasing
peptide signaling plays a limited
and subtle role in amygdala phys-
iology and aversive memory. PLoS
ONE 7:e34963. doi: 10.1371/jour-
nal.pone.0034963

Chan, A. S., and Wong, Y. H.
(2005). Gq-mediated activation of
c-Jun N-terminal kinase by the
gastrin-releasing peptide-preferring
bombesin receptor is inhibited upon
costimulation of the Gs-coupled
dopamine D1 receptor in COS-7
cells. Mol. Pharmacol. 68, 1354–1364.

Chatzistamou, I., Schally, A. V., Sun,
B., Armatis, P., and Szepeshazi, K.
(2000). Inhibition of growth of OV-
1063 human epithelial ovarian can-
cers and c- jun and c- fos oncogene
expression by bombesin antagonists.
Br. J. Cancer 83, 906–913.

Chen, P. W., and Kroog, G. S. (2004).
Alterations in receptor expression
or agonist concentration change the
pathways gastrin-releasing peptide
receptor uses to regulate extracellular
signal-regulated kinase. Mol. Phar-
macol. 66, 1625–1634.

Cornelio, D., Roesler, R., and Schwarts-
mann, G. (2007). Gastrin-releasing
peptide receptor as a molecular target

in experimental anticancer therapy.
Ann. Oncol. 18, 1457–1466.

Czepielewski, R. S., Porto, B. N., Rizzo,
L. B., Roesler, R., Abujamra, A. L.,
Pinto, L. G., et al. (2012). Gastrin-
releasing peptide receptor (GRPR)
mediates chemotaxis in neutrophils.
Proc. Natl. Acad. Sci. U.S.A. 109,
547–552.

Dantas, A. S., Luft, T., Henriques, J. A.,
Schwartsmann, G., and Roesler, R.
(2006). Opposite effects of low and
high doses of the gastrin-releasing
peptide receptor antagonist RC-3095
on memory consolidation in the hip-
pocampus: possible involvement of
the GABAergic system. Peptides 27,
2307–2312.

de Farias, C. B., Lima, R. C., Lima, L. O.,
Flores, D. G., Meurer, L., Brunetto,
A. L., et al. (2008). Stimulation of
proliferation of U138-MG glioblas-
toma cells by gastrin-releasing pep-
tide in combination with agents that
enhance cAMP signaling. Oncology
75, 27–31.

de Farias, C. B., Rosemberg, D.
B., Heinen, T. E., Koehler-Santos,
P., Abujamra, A. L., Kapczinski,
F., et al. (2010). BDNF/TrkB con-
tent and interaction with gastrin-
releasing peptide receptor blockade
in colorectal cancer. Oncology 79,
430–439.

de Oliveira, M. S., Cechim, G., Bra-
ganhol, E., Santos, D. G., Meurer,
L., de Castro, C.G. Jr., et al.
(2009). Anti-proliferative effect of
the gastrin-release peptide recep-
tor antagonist RC-3095 plus temo-
zolomide in experimental glioblas-
toma models. J. Neurooncol. 93,
191–201.

Del Rio, M., and De la Fuente, M.
(1994). Chemoattractant capacity
of bombesin, gastrin-releasing pep-
tide and neuromedin C is mediated
through PKC activation in murine
peritoneal leukocytes. Regul. Pept. 49,
185–193.

Erspamer, V., Erpamer, G. F., and
Inselvini, M. (1970). Some phar-
macological actions of alytesin and
bombesin. J. Pharm. Pharmacol. 22,
875–876.

Fekete, E., Vígh, J., Bagi, E. E., and
Lénárd, L. (2002). Gastrin-releasing
peptide microinjected into the amyg-
dala inhibits feeding. Brain Res. 955,
55–63.

Fleming, M. S., Ramos, D., Han, S. B.,
Zhao, J., Son,Y. J., and Luo, W. (2012).
The majority of dorsal spinal cord
gastrin releasing peptide is synthe-
sized locally whereas neuromedin B
is highly expressed in pain- and itch-
sensing somatosensory neurons. Mol.
Pain 8, 52.

Flood, J. F., and Morley, J. E. (1988).
Effects of bombesin and gastrin-
releasing peptide on memory pro-
cessing. Brain Res. 460, 314–322.

Flores, D. G., de Farias, C. B., Leites,
J., de Oliveira, M. S., Lima, R.
C., Tamajusuku, A. S., et al. (2008).
Gastrin-releasing peptide receptors
regulate proliferation of C6 Glioma
cells through a phosphatidylinosi-
tol 3-kinase-dependent mechanism.
Curr. Neurovasc. Res. 5, 99–105.

Flores, D. G., Meurer, L., Uberti, A. F.,
Macedo, B. R., Lenz, G., Brunetto,
A. L., et al. (2010). Gastrin-releasing
peptide receptor content in human
glioma and normal brain. Brain Res.
Bull. 82, 95–98.

Frank, G. K., Kaye, W. H., Ladenheim,
E. E., and McConaha, C. (2001).
Reduced gastrin releasing peptide
in cerebrospinal fluid after recovery
from bulimia nervosa. Appetite 37,
9–14.

Garcia, V. A., Dornelles, A. S., Presti-
Torres, J., Alcalde, L. A., Hal-
menschlager, L. H., Schwartsmann,
G., et al. (2010). Neonatal gastrin-
releasing peptide receptor blockade
reduces maternal odor preference
in rats. Behav. Brain Res. 214,
456–459.

Gerner, R. H., van Kammen, D. P., and
Ninan, P. T. (1985). Cerebrospinal
fluid cholecystokinin, bombesin and
somatostatin in schizophrenia and
normals. Prog. Neuropsychopharma-
col. Biol. Psychiatry 9, 73–82.

Gibbs, J. (1985). Effect of bombesin
on feeding behavior. Life Sci. 37,
147–153.

Gibbs, J., Kulkosky, P. J., and Smith, G. P.
(1981). Effects of peripheral and cen-
tral bombesin on feeding behavior of
rats. Peptides 2(Suppl. 2), 179–183.

Gibson, G. E., Vestling, M., Zhang,
H., Szolosi, S., Alkon, D., Lann-
felt, L., et al. (1997). Abnormali-
ties in Alzheimer’s disease fibroblasts
bearing the APP670/671 mutation.
Neurobiol. Aging 18, 573–580.

Gonzalez, N., Moody, T. W., Igarashi,
H., Ito, T., and Jensen, R. T. (2008).
Bombesin-related peptides and their
receptors: recent advances in their
role in physiology and disease states.
Curr. Opin. Endocrinol. Diabetes
Obes. 15, 58–64.

Gutzwiller, J. P., Drewe, J., Hilde-
brand, P., Rossi, L., Lauper, J. Z.,
and Beglinger, C. (1994). Effect of
intravenous human gastrin-releasing
peptide on food intake in humans.
Gastroenterology 106, 1168–1173.

Hampton, L. L., Ladenheim, E. E.,
Akeson, M., Way, J. M., Weber,
H. C., Sutliff, V. E., et al. (1998).
Loss of bombesin-induced feeding

suppression in gastrin-releasing pep-
tide receptor-deficient mice. Proc.
Natl. Acad. Sci. U.S.A. 95, 3188–
3192.

Hellmich, M. R., Ives, K. L., Udupi, V.,
Soloff, M. S., Greeley, G.H. Jr., Chris-
tensen, B. N., et al. (1999). Multiple
protein kinase pathways are involved
in gastrin-releasing peptide receptor-
regulated secretion. J. Biol. Chem.
274, 23901–23909.

Hodges, L. M., Weissman, M. M.,
Haghighi, F., Costa, R., Bravo, O.,
Evgrafov, O., et al. (2009). Associ-
ation and linkage analysis of candi-
date genes GRP, GRPR, CRHR1, and
TACR1 in panic disorder. Am. J. Med.
Genet. B Neuropsychiatr. Genet. 150B,
65–73.

Hökfelt, T., Bartfai, T., and Bloom, F.
(2003). Neuropeptides: opportuni-
ties for drug discovery. Lancet Neurol.
2, 463–472.

Hohla, F., Schally, A. V., Kanashiro, C.
A., Buchholz, S., Baker, B., Kannadka,
C., et al. (2007). Growth inhibition
of non-small-cell lung carcinoma by
BN/GRP antagonist is linked with
suppression of K-Ras, COX-2, and
pAkt. Proc. Natl. Acad. Sci. U.S.A.
104, 18671–18676.

Ishikawa-Brush, Y., Powell. J. F., Bolton.
P., Miller. A. P., Francis, F., Willard,
H. F., et al. (1997). Autism and multi-
ple exostoses associated with an X;8
translocation occurring within the
GRPR gene and 3′ to the SDC2 gene.
Hum. Mol. Genet. 6, 1241–1250.

Ishola, T. A., Kang, J., Qiao, J., Evers, B.
M., and Chung, D. H. (2007). Phos-
phatidylinositol 3-kinase regulation
of gastrin-releasing peptide-induced
cell cycle progression in neuroblas-
toma cells. Biochim. Biophys. Acta
1770, 927–932.

Ito, E., Oka, K., Etcheberrigaray, R., Nel-
son, T. J., McPhie, D. L., Tofel-Grehl,
B., et al. (1994). Internal Ca2+ mobi-
lization is altered in fibroblasts from
patients with Alzheimer disease. Proc.
Natl. Acad. Sci. U.S.A. 91, 534–538.

Jensen, R. T., Battey, J. F., Benya, R. V.,
and Spindel, E. R. (2008a). Bombesin
Receptors. IUPHAR Database (IUP-
HAR-DB). Available at: http://www.
iuphar-db.org/DATABASE/Family
MenuForward?familyId=9 [accessed
on October 1, 2012].

Jensen, R. T., Battey, J. F., Spindel,
E. R., and Benya, R. V. (2008b).
International Union of Pharmacol-
ogy. LXVIII. Mammalian bombesin
receptors: nomenclature, distribu-
tion, pharmacology, signaling, and
functions in normal and disease
states. Pharmacol. Rev. 60, 1–42.

Jensen, R. T., and Gardner, J. D. (1981).
Identification and characterization of

www.frontiersin.org December 2012 | Volume 3 | Article 159 | 9

http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=9
http://www.frontiersin.org/
http://www.frontiersin.org/Neuroendocrine_Science/archive


“fendo-03-00159” — 2012/12/13 — 20:10 — page 10 — #10

Roesler and Schwartsmann GRPR function in the central nervous system

receptors for secretagogues on pan-
creatic acinar cells. Fed. Proc. 40,
2486–2496.

Kamichi, S., Wada, E., Aoki, S.,
Sekiguchi, M., Kimura, I., and Wada,
K. (2005). Immunohistochemical
localization of gastrin-releasing pep-
tide receptor in the mouse brain.
Brain Res. 1032, 162–170.

Kauer-Sant’Anna, M., Andreazza, A.
C., Valvassori, S. S., Martins, M.
R., Barbosa, L. M., Schwartsmann,
G., et al. (2007). A gastrin-releasing
peptide receptor antagonist blocks
D-amphetamine-induced hyperloco-
motion and increases hippocampal
NGF and BDNF levels in rats. Pep-
tides 28, 1447–1452.

Kiaris, H., Schally, A. V., Sun, B., Arma-
tis, P., and Groot, K. (1999). Inhibi-
tion of growth of human malignant
glioblastoma in nude mice by antag-
onists of bombesin/gastrin-releasing
peptide. Oncogene 18, 7168–7173.

Kim, S., Hu, W., Kelly, D. R., Hellmich,
M. R., Evers, B. M., and Chung,
D. H. (2002). Gastrin-releasing pep-
tide is a growth factor for human
neuroblastomas. Ann. Surg. 235,
621–629.

Kozyrev, N., Lehman, M. N., and
Coolen, L. M. (2012). Activation
of gastrin-releasing peptide receptors
in the lumbosacral spinal cord is
required for ejaculation in male rats.
J. Sex. Med. 9, 1303–1318.

Ladenheim, E. E., Hampton, L. L., Whit-
ney, A. C., White, W. O., Battey, J.
F., and Moran, T. H. (2002). Dis-
ruptions in feeding and body weight
control in gastrin-releasing peptide
receptor deficient mice. J. Endocrinol.
174, 273–281.

Ladenheim, E. E., Jensen, R. T., Mantey,
S. A., McHugh, P. R., and Moran, T.
H. (1990). Receptor heterogeneity for
bombesin-like peptides in the rat cen-
tral nervous system. Brain Res. 537,
233–240.

Ladenheim, E. E., Jensen, R. T., Mantey,
S. A., McHugh, P. R., and Moran,
T. H. (1992). Distinct distributions
of bombesin receptor subtypes in the
rat central nervous system. Brain Res.
593, 168–178.

Ladenheim, E. E., Taylor, J. E., Coy,
D. H., Moore, K. A., and Moran, T.
H. (1996). Hindbrain GRP receptor
blockade antagonizes feeding sup-
pression by peripherally adminis-
tered GRP. Am. J. Physiol. 271(Pt 2),
R180–R184.

Lebacq-Verheyden, A. M., Krystal, G.,
Sartor, O., Way, J., and Battey, J. F.
(1988). The rat prepro gastrin releas-
ing peptide gene is transcribed from
two initiation sites in the brain. Mol.
Endocrinol. 2, 556–563.

Liu, X., Carlisle, D. L., Swick, M.
C., Gaither-Davis, A., Grandis, J.
R., and Siegfried, J. M. (2007).
Gastrin-releasing peptide activates
Akt through the epidermal growth
factor receptor pathway and abro-
gates the effect of gefitinib. Exp. Cell
Res. 313, 1361–1372.

Liu, X. Y., Liu, Z. C., Sun, Y. G., Ross, M.,
Kim, S., Tsai, F. F., et al. (2011). Uni-
directional cross-activation of GRPR
by MOR1D uncouples itch and anal-
gesia induced by opioids. Cell 147,
447–458.

Luft, T., Amaral, O. B., Schwarts-
mann, G., and Roesler, R. (2008).
Transient disruption of fear-related
memory by post-retrieval inactiva-
tion of gastrin-releasing peptide or
N-methyl-D-aspartate receptors in
the hippocampus. Curr. Neurovasc.
Res. 5, 21–27.

Luft, T., Flores, D. G., Vianna, M.
R., Schwartsmann, G., Roesler, R.,
and Izquierdo, I. (2006). A role
for hippocampal gastrin-releasing
peptide receptors in extinction of
aversive memory. Neuroreport 17,
935–939.

Martel, G., Hevi, C., Wong, A., Zushida,
K., Uchida, S., and Shumyatsky, G.
P. (2012). Murine GRPR and stath-
min control in opposite directions
both cued fear extinction and neural
activities of the amygdala and pre-
frontal cortex. PLoS ONE 7:e30942.
doi: 10.1371/journal.pone.0030942

Martins, M. R., Reinke, A., Valvassori,
S. S., Machado, R. A., Quevedo,
J., Schwartsmann, G., et al. (2005).
Non-associative learning and anxiety
in rats treated with a single systemic
administration of the gastrin-
releasing peptide receptor antagonist
RC-3095. Peptides 26, 2525–2529.

Marui, T., Hashimoto, O., Nanba, E.,
Kato, C., Tochigi, M., Umekage,
T., et al. (2004). Gastrin-releasing
peptide receptor (GRPR) locus in
Japanese subjects with autism. Brain
Dev. 26, 5–7.

Meller, C. A., Henriques, J. A., Schwarts-
mann, G., and Roesler, R. (2004).
The bombesin/gastrin releasing pep-
tide receptor antagonist RC-3095
blocks apomorphine but not MK-
801-induced stereotypy in mice. Pep-
tides 25, 585–588.

Merali, Z., Hayley, S., Kent, P., McIn-
tosh, J., Bédard, T., and Anis-
man, H. (2009). Impact of repeated
stressor exposure on the release
of corticotropin-releasing hormone,
arginine-vasopressin and bombesin-
like peptides at the anterior pituitary.
Behav. Brain Res. 198, 105–112.

Merali, Z., Kent, P., and Anisman,
H. (2002). Role of bombesin-related

peptides in the mediation or integra-
tion of the stress response. Cell. Mol.
Life Sci. 59, 272–287.

Merali, Z., Kent, P., Du, L., Hrdina,
P., Palkovits, M., Faludi, G., et al.
(2006). Corticotropin-releasing hor-
mone, arginine vasopressin, gastrin-
releasing peptide, and neuromedin
B alterations in stress-relevant brain
regions of suicides and control sub-
jects. Biol. Psychiatry 59, 594–602.

Merali, Z., McIntosh, J., and Anisman,
H. (1999). Role of bombesin-related
peptides in the control of food intake.
Neuropeptides 33, 376–386.

Merali, Z., Mountney, C., Kent, P.,
and Anisman, H. (2011). Effects
of intracerebral ventricular admin-
istration of gastrin-releasing pep-
tide and its receptor antagonist
RC-3095 on learned fear responses
in the rat. Behav. Brain Res. 216,
519–524.

Minamino, N., Kangawa, K., and Mat-
suo, H. (1983). Neuromedin B: a
novel bombesin-like peptide identi-
fied in porcine spinal cord. Biochem.
Biophys. Res. Commun. 114, 541–548.

Minamino, N., Kangawa, K., and Mat-
suo, H. (1984). Neuromedin C: a
bombesin-like peptide identified in
porcine spinal cord. Biochem. Bio-
phys. Res. Commun. 119, 14–20.

Moody, T. W., Getz, R., O’Donohue,
T. L., and Rosenstein, J. M.
(1988). Localization of receptors for
bombesin-like peptides in the rat
brain. Ann. N. Y. Acad. Sci. 547,
114–130.

Moody, T. W., and Merali, Z. (2004).
Bombesin-like peptides and asso-
ciated receptors within the brain:
distribution and behavioral implica-
tions. Peptides 25, 511–520.

Moody, T. W., Mahmoud, S., Staley,
J., Naldini, L., Cirillo, D., South, V.,
et al. (1989). Human glioblastoma
cell lines have neuropeptide recep-
tors for bombesin/gastrin-releasing
peptide. J. Mol. Neurosci. 1, 235–242.

Moody, T. W., O’Donohue, T. L., and
Jacobowitz, D. M. (1981). Biochem-
ical localization and characterization
of bombesin-like peptides in discrete
regions of rat brain. Peptides 2, 75–79.

Moody, T. W., and Pert, C. B. (1979).
Bombesin-like peptides in rat brain:
quantitation and biochemical char-
acterization. Biochem. Biophys. Res.
Commun. 90, 7–14.

Moody, T. W., Pert, C. B., Rivier, J.,
and Brown, M. R. (1978). Bombesin:
specific binding to rat brain mem-
branes. Proc. Natl. Acad. Sci. U.S.A.
75, 5372–5376.

Moody, T. W., Staley, J., Zia, F., Coy,
D. H., and Jensen, R. T. (1992). Neu-
romedin B binds with high affinity,

elevates cytosolic calcium and stim-
ulates the growth of small cell lung
cancer cell lines. J. Pharmacol. Exp.
Ther. 263, 311–317.

Mountney, C., Anisman, H., and
Merali, Z. (2008). Effects of gastrin-
releasing peptide agonist and antag-
onist administered to the basolateral
nucleus of the amygdala on condi-
tioned fear in the rat. Psychopharma-
cology (Berl.) 200, 51–58.

Mountney, C., Anisman, H., and
Merali, Z. (2011). In vivo lev-
els of corticotropin-releasing hor-
mone and gastrin-releasing peptide
at the basolateral amygdala and
medial prefrontal cortex in response
to conditioned fear in the rat. Neu-
ropharmacology 60, 410–417.

Mountney, C., Sillberg, V., Kent, P.,
Anisman, H., and Merali, Z. (2006).
The role of gastrin-releasing peptide
on conditioned fear: differential cor-
tical and amygdaloid responses in the
rat. Psychopharmacology (Berl.) 189,
287–296.

Niebergall-Roth, E., and Singer, M. V.
(2001). Central and peripheral neu-
ral control of pancreatic exocrine
secretion. J. Physiol. Pharmacol. 52,
523–538.

Oh, D. Y., Kim, K., Kwon, H. B.,
and Seong, J. Y. (2006). Cellular
and molecular biology of orphan G
protein-coupled receptors. Int. Rev.
Cytol. 252, 163–218.

Ohki-Hamazaki, H., Iwabuchi, M., and
Maekawa, F. (2005). Development
and function of bombesin-like pep-
tides and their receptors. Int. J. Dev.
Biol. 49, 293–300.

Olincy, A., Leonard, S., Young, D.
A., Sullivan, B., and Freedman, R.
(1999). Decreased bombesin pep-
tide response to cigarette smoking in
schizophrenia. Neuropsychopharma-
cology 20, 52–59.

Petronilho, F., Vuolo, F., Galant, L.
S., Constantino, L., Tomasi, C.
D., Giombelli, V. R., et al. (2012).
Gastrin-releasing peptide receptor
antagonism induces protection from
lethal sepsis: involvement of toll-like
receptor 4 signaling. Mol. Med. doi:
10.2119/molmed.2012.00083. [Epub
ahead of print].

Pinski, J., Schally, A. V., Halmos,
G., Szepeshazi, K., and Groot,
K. (1994). Somatostatin analogues
and bombesin/gastrin-releasing pep-
tide antagonist RC-3095 inhibit the
growth of human glioblastomas in
vitro and in vivo. Cancer Res. 54,
5895–5901.

Preissler, T., Luft, T., Kapczinski,
F., Quevedo, J., Schwartsmann,
G., and Roesler, R. (2007). Basic
fibroblast growth factor prevents

Frontiers in Endocrinology | Neuroendocrine Science December 2012 | Volume 3 | Article 159 | 10

http://www.frontiersin.org/Neuroendocrine_Science/
http://www.frontiersin.org/Neuroendocrine_Science/archive


“fendo-03-00159” — 2012/12/13 — 20:10 — page 11 — #11

Roesler and Schwartsmann GRPR function in the central nervous system

the memory impairment induced
by gastrin-releasing peptide receptor
antagonism in area CA1 of the rat
hippocampus. Neurochem. Res. 32,
1381–1386.

Presti-Torres, J., de Lima, M. N.,
Scalco, F. S., Caldana, F., Gar-
cia, V. A., Guimarães, M. R.,
et al. (2007). Impairments of social
behavior and memory after neona-
tal gastrin-releasing peptide receptor
blockade in rats: implications for an
animal model of neurodevelopmen-
tal disorders. Neuropharmacology 52,
724–732.

Presti-Torres, J., Garcia, V. A., Dornelles,
A., Halmenschlager, L. H., Alcalde, L.
A., Vedana, G., et al. (2012). Rescue of
social behavior impairment by cloza-
pine and alterations in the expression
of neuronal receptors in a rat model
of neurodevelopmental impairment
induced by GRPR blockade. J. Neural
Transm. 119, 319–327.

Qiao, J., Kang, J., Ishola, T. A., Rycha-
hou, P. G., Evers, B. M., and Chung,
D. H. (2008). Gastrin-releasing pep-
tide receptor silencing suppresses
the tumorigenesis and metastatic
potential of neuroblastoma. Proc.
Natl. Acad. Sci. U.S.A. 105, 12891–
12896.

Rashidy-Pour, A., and Razvani, M. E.
(1998). Unilateral reversible inactiva-
tions of the nucleus tractus solitarius
and amygdala attenuate the effects of
bombesin on memory storage. Brain
Res. 814, 127–132.

Roesler, R., Brunetto, A. T., Abujamra,
A. L., de Farias, C. B., Brunetto, A.
L., and Schwartsmann, G. (2010).
Current and emerging molecular tar-
gets in glioma. Expert Rev. Anticancer
Ther. 10, 1735–1751.

Roesler, R., Henriques, J. A., and
Schwartsmann, G. (2004a). Neu-
ropeptides and anxiety disorders:
bombesin receptors as novel thera-
peutic targets. Trends Pharmacol. Sci.
25, 241–242.

Roesler, R., Kopschina, M. I., Rosa, R.
M., Henriques, J. A., Souza, D. O.,
and Schwartsmann, G. (2004b). RC-
3095, a bombesin/gastrin-releasing
peptide receptor antagonist, impairs
aversive but not recognition mem-
ory in rats. Eur. J. Pharmacol. 486,
35–41.

Roesler, R., Lessa, D., Venturella, R.,
Vianna, M. R., Luft, T., Henriques, J.
A., et al. (2004c). Bombesin/gastrin-
releasing peptide receptors in the
basolateral amygdala regulate mem-
ory consolidation. Eur. J. Neurosci.
19, 1041–1045.

Roesler, R., Henriques, J. A., and
Schwartsmann, G. (2006a). Gastrin-
releasing peptide receptor as a

molecular target for psychiatric
and neurological disorders. CNS
Neurol. Disord. Drug Targets 5,
197–204.

Roesler, R., Luft, T., Oliveira, S. H.,
Farias, C. B., Almeida, V. R., Quevedo,
J., et al. (2006b). Molecular mech-
anisms mediating gastrin-releasing
peptide receptor modulation of
memory consolidation in the hip-
pocampus. Neuropharmacology 51,
350–357.

Roesler, R., Kent, P., Schröder, N.,
Schwartsmann, G., and Merali, Z.
(2012). Bombesin receptor regula-
tion of emotional memory. Rev. Neu-
rosci. 23, 571–586.

Roesler, R., Meller, C. A., Kop-
schina, M. I., Souza, D. O., Hen-
riques, J. A., and Schwartsmann, G.
(2003). Intrahippocampal infusion
of the bombesin/gastrin-releasing
peptide antagonist RC-3095 impairs
inhibitory avoidance retention. Pep-
tides 24, 1069–1074.

Roesler, R., Valvassori, S. S., Cas-
tro, A. A., Luft, T., Schwartsmann,
G., and Quevedo, J. (2009). Phos-
phoinositide 3-kinase is required for
bombesin-induced enhancement of
fear memory consolidation in the
hippocampus. Peptides 30, 1192–
1196.

Ruff, M., Schiffmann, E., Terranova,
V., and Pert, C. B. (1985). Neu-
ropeptides are chemoattractants for
human tumor cells and monocytes:
a possible mechanism for metastasis.
Clin. Immunol. Immunopathol. 37,
387–396.

Rushing, P. A., Gibbs, J., and Geary, N.
(1996). Brief, meal-contingent infu-
sions of gastrin-releasing peptide1–
27 and neuromedin B-10 inhibit
spontaneous feeding in rats. Physiol.
Behav. 60, 1501–1504.

Rushing, P. A., and Houpt, T. A. (1999).
Gastrin-releasing peptide suppresses
independent but not intraoral intake.
Peptides 20, 737–741.

Sakamoto, H. (2010). The neurobiology
of psychogenic erectile dysfunction
in the spinal cord. J. Androl. 31,
519–526.

Sakamoto, H. (2011). Gastrin-releasing
peptide system in the spinal cord
mediates masculine sexual function.
Anat. Sci. Int. 86, 19–29.

Sakamoto, H., and Kawata, M. (2009).
Gastrin-releasing peptide system in
the spinal cord controls male sex-
ual behaviour. J. Neuroendocrinol. 21,
432–435.

Sakamoto, H., Matsuda, K., Zuloaga,
D. G., Hongu, H., Wada, E., Wada,
K., et al. (2008). Sexually dimor-
phic gastrin releasing peptide sys-
tem in the spinal cord controls male

reproductive functions. Nat. Neu-
rosci. 11, 634–636.

Sakamoto, H., Matsuda, K., Zuloaga,
D. G., Nishiura, N., Takanami, K.,
Jordan, C. L., et al. (2009a). Stress
affects a gastrin-releasing peptide sys-
tem in the spinal cord that mediates
sexual function: implications for psy-
chogenic erectile dysfunction. PLoS
ONE 4:e4276. doi: 10.1371/jour-
nal.pone.0004276

Sakamoto, H., Takanami, K., Zuloaga,
D. G., Matsuda, K., Jordan, C.
L., Breedlove, S. M., et al. (2009b).
Androgen regulates the sexually
dimorphic gastrin-releasing peptide
system in the lumbar spinal cord
that mediates male sexual function.
Endocrinology 150, 3672–3679.

Salio, C., Lossi, L., Ferrini, F., and
Merighi, A. (2006). Neuropeptides as
synaptic transmitters. Cell Tissue Res.
326, 583–598.

Santo-Yamada, Y., Yamada, K., Wada,
E., Goto, Y., and Wada, K. (2003).
Blockade of bombesin-like peptide
receptors impairs inhibitory avoid-
ance learning in mice. Neurosci. Lett.
340, 65–68.

Schmidt, A. L., de Farias, C. B., Abu-
jamra, A. L., Kapczinski, F., Schwarts-
mann, G., Brunetto, A. L., et al.
(2009). BDNF and PDE4, but not the
GRPR, regulate viability of human
medulloblastoma cells. J. Mol. Neu-
rosci. 40, 303–310.

Schubert, M. L., Hightower, J., Coy,
D. H., and Makhlouf, G. M. (1991).
Regulation of acid secretion by
bombesin/GRP neurons of the gas-
tric fundus. Am. J. Physiol. 260,
G156–G160.

Schwartsmann, G., DiLeone, L. P.,
Horowitz, M., Schunemann, D.,
Cancella, A., Pereira, A. S., et al.
(2006). A phase I trial of the
bombesin/gastrin-releasing peptide
(BN/GRP) antagonist RC3095 in
patients with advanced solid malig-
nancies. Invest. New Drugs 24,
403–412.

Seidita, G., Mirisola, M., D’Anna, R. P.,
Gallo, A., Jensen, R. T., Mantey, S. A.,
et al. (2008). Analysis of the gastrin-
releasing peptide receptor gene in
Italian patients with autism spectrum
disorders. Am. J. Med. Genet. B Neu-
ropsychiatr. Genet. 147B, 807–813.

Sharif, T. R., Luo, W., and Sharif,
M. (1997). Functional expression of
bombesin receptor in most adult and
pediatric human glioblastoma cell
lines; role in mitogenesis and in stim-
ulating the mitogen-activated protein
kinase pathway. Mol. Cell. Endocrinol.
130, 119–130.

Shumyatsky, G. P., Tsvetkov, E.,
Malleret, G., Vronskaya, S., Hatton,

M., Hampton, L., et al. (2002). Iden-
tification of a signaling network in
lateral nucleus of amygdala impor-
tant for inhibiting memory specifi-
cally related to learned fear. Cell 111,
905–918.

Spindel, E. R., Chin, W. W., Price,
J., Rees, L. H., Besser, G. M., and
Habener, J. F. (1984). Cloning and
characterization of cDNAs encod-
ing human gastrin-releasing peptide.
Proc. Natl. Acad. Sci. U.S.A. 81,
5699–5703.

Spindel, E. R., Giladi, E., Brehm, P.,
Goodman, R. H., and Segerson, T.
P. (1990). Cloning and functional
characterization of a complementary
DNA encoding the murine fibrob-
last bombesin/gastrin-releasing pep-
tide receptor. Mol. Endocrinol. 4,
1956–1963.

Stangelberger, A., Schally, A. V., Varga,
J. L., Zarandi, M., Cai, R. Z.,
Baker, B., et al. (2005). Inhibition of
human androgen-independent PC-
3 and DU-145 prostate cancers by
antagonists of bombesin and growth
hormone releasing hormone is linked
to PKC, MAPK and c-jun intracel-
lular signalling. Eur. J. Cancer 41,
2735–2344.

Stoddard, S. L., Tyce, G. M., Ahlskog,
J. E., Zinsmeister, A. R., Nel-
son, D. K., and Carmichael, S.
W. (1991). Decreased levels of
[Met]enkephalin, neuropeptide Y,
substance P, and vasoactive intesti-
nal peptide in parkinsonian adrenal
medulla. Exp. Neurol. 114, 23–27.

Sun, Y. G., and Chen, Z. F. (2007).
A gastrin-releasing peptide receptor
mediates the itch sensation in the
spinal cord. Nature 448, 700–703.

Sun, Y. G., Zhao, Z. Q., Meng, X.
L., Yin, J., Liu, X. Y., and Chen,
Z. F. (2009). Cellular basis of itch
sensation. Science 325, 1531–1534.

Szepeshazi, K., Schally, A. V., Hal-
mos, G., Lamharzi, N., Groot, K.,
and Horvath, J. E.(1997). A single
in vivo administration of bombesin
antagonist RC-3095 reduces the lev-
els and mRNA expression of epider-
mal growth factor receptors in MXT
mouse mammary cancers. Proc. Natl.
Acad. Sci. U.S.A. 94, 10913–10918.

Thaw, A. K., Smith, J. C., and Gibbs,
J. (1998). Mammalian bombesin-like
peptides extend the intermeal inter-
val in freely feeding rats. Physiol.
Behav. 64, 425–428.

Thomas, S. M., Grandis, J. R., Wentzel,
A. L., Gooding, W. E., Lui, V. W.,
and Siegfried, J. M. (2005). Gastrin-
releasing peptide receptor mediates
activation of the epidermal growth
factor receptor in lung cancer cells.
Neoplasia 7, 426–431.

www.frontiersin.org December 2012 | Volume 3 | Article 159 | 11

http://www.frontiersin.org/
http://www.frontiersin.org/Neuroendocrine_Science/archive


“fendo-03-00159” — 2012/12/13 — 20:10 — page 12 — #12

Roesler and Schwartsmann GRPR function in the central nervous system

Venturella, R., Lessa, D., Luft, T.,
Roozendaal, B., Schwartsmann,
G., and Roesler, R. (2005). Dex-
amethasone reverses the memory
impairment induced by antagonism
of hippocampal gastrin-releasing
peptide receptors. Peptides 26,
821–825.

von Schrenck, T., Heinz-Erian, P.,
Moran, T., Mantey, S. A., Gardner,
J. D., and Jensen, R. T. (1989). Neu-
romedin B receptor in esophagus:
evidence for subtypes of bombesin
receptors. Am. J. Physiol. 256, G747–
G758.

von Schrenck, T., Wang, L. H., Coy,
D. H., Villanueva, M. L., Mantey,
S., and Jensen, R. T. (1990). Potent
bombesin receptor antagonists dis-
tinguish receptor subtypes. Am. J.
Physiol. 259, G468–G473.

Wada, E., Way, J., Lebacq-Verheyden,
A. M., and Battey, J. F. (1990).
Neuromedin B and gastrin-releasing
peptide mRNAs are differentially dis-
tributed in the rat nervous system. J.
Neurosci. 10, 2917–2930.

Wada, E., Way, J., Shapira, H., Kusano,
K., Lebacq-Verheyden, A. M., Coy, D.,
et al. (1991). cDNA cloning, charac-
terization, and brain region-specific
expression of a neuromedin B-
preferring bombesin receptor. Neu-
ron 6, 421–430.

Wada, E., Wray, S., Key, S., and Battey, J.
(1992). Comparison of gene expres-
sion for two distinct bombesin recep-
tor subtypes in postnatal rat central
nervous system. Mol. Cell. Neurosci.
3, 446–460.

Wang, L. H., Battey, J. F., Wada, E., Lin,
J. T., Mantey, S., Coy, D. H., et al.
(1992). Activation of neuromedin B-
preferring bombesin receptors on rat
glioblastoma c-6 cells increases cel-
lular Ca2+ and phosphoinositides.
Biochem. J. 286, 641–648.

Williams, C. L., and McGaugh, J. L.
(1994). Enhancement of memory
processing in an inhibitory avoid-
ance and radial maze task by post-
training infusion of bombesin into
the nucleus tractus solitarius. Brain
Res. 654, 251–256.

Wolf, S. S., and Moody, T. W. (1985).
Receptors for GRP/bombesin-like
peptides in the rat forebrain. Peptides
6(Suppl. 1), 111–114.

Wolf, S. S., Moody, T. W., O’Donohue,
T. L., Zarbin, M. A., and Kuhar,
M. J. (1983). Autoradiographic visu-
alization of rat brain binding sites
for bombesin-like peptides. Eur. J.
Pharmacol. 87, 163–164.

Wong, S. T., Athos, J., Figueroa, X.
A., Pineda, V. V., Schaefer, M.
L., Chavkin, C. C., et al. (1999).
Calcium-stimulated adenylyl cyclase
activity is critical for hippocampus-
dependent long-term memory and
late phase LTP. Neuron 23, 787–798.

Zarbin, M. A., Kuhar, M. J.,
O’Donohue, T. L., Wolf, S. S.,
and Moody, T. W. (1985). Autora-
diographic localization of (125I-
Tyr4)bombesin-binding sites in rat
brain. J. Neurosci. 5, 429–437.

Conflict of Interest Statement: The
authors declare that the research was

conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 17 October 2012; paper pending
published: 04 November 2012; accepted:
23 November 2012; published online: 17
December 2012.
Citation: Roesler R and Schwartsmann G
(2012) Gastrin-releasing peptide recep-
tors in the central nervous system: role
in brain function and as a drug target.
Front. Endocrin. 3:159. doi: 10.3389/
fendo.2012.00159
This article was submitted to Frontiers
in Neuroendocrine Science, a specialty of
Frontiers in Endocrinology.
Copyright © 2012 Roesler and Schwarts-
mann. This is an open-access article dis-
tributed under the terms of the Creative
Commons Attribution License, which
permits use, distribution and reproduc-
tion in other forums, provided the origi-
nal authors and source are credited and
subject to any copyright notices concern-
ing any third-party graphics etc.

Frontiers in Endocrinology | Neuroendocrine Science December 2012 | Volume 3 | Article 159 | 12

http://dx.doi.org/10.3389/fendo.2012.00159
http://dx.doi.org/10.3389/fendo.2012.00159
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
http://www.frontiersin.org/Neuroendocrine_Science/
http://www.frontiersin.org/Neuroendocrine_Science/archive

	Gastrin-releasing peptide receptors in the central nervous system: role in brain function and as a drug target
	Introduction
	Molecular organization of the GRPR
	GRPR signaling
	GRPR expression in the CNS
	GRPR regulation of CNS function
	Synaptic plasticity and memory
	Emotional behavior
	Feeding behavior
	Sexual behavior
	Itching

	Possible role of alterations in GRPR expression and signaling in the pathogenesis of brain disorders
	Neurodegenerative disorders
	Neurodevelopmental disorders
	Other neuropsychiatric disorders
	Brain tumors

	GRPR ligands as candidate therapeutic drugs in brain disorders
	Acknowledgments
	References


