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Abstract: Viruses with genomes larger than 300 kb and up to 1.2 Mb, which encode 

hundreds of proteins, are being discovered and characterized with increasing frequency. 

Most, but not all, of these large viruses (often referred to as giruses) infect protists that live 

in aqueous environments. Bioinformatic analyses of metagenomes of aqueous samples 

indicate that large DNA viruses are quite common in nature and await discovery. One issue 

that is perhaps not appreciated by the virology community is that large viruses, even those 

classified in the same family, can differ significantly in morphology, lifestyle, and gene 

complement. This brief commentary, which will mention some of these unique properties, 

was stimulated by the characterization of the newest member of this club, virus CroV 

(Fischer, M.G.; Allen, M.J.; Wilson, W.H.; Suttle, C.A. Giant virus with a remarkable 

complement of genes infects marine zooplankton. Proc. Natl. Acad. Sci. USA 2010, 107, 

19508-19513 [1]). CroV has a 730 kb genome (with ~544 protein-encoding genes) and 

infects the marine microzooplankton Cafeteria roenbergensis producing a lytic infection. 
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1. Introduction  

Typically, viruses are considered to be small particles that easily pass through 0.2 m filters and 

have small genomes containing a few protein-encoding genes. However, large viruses with huge 

dsDNA genomes that encode hundreds of proteins are being discovered with increasing frequency. 

These large viruses have also been referred to as giruses in order to emphasize their unique 

properties [2]. Examples of giruses include: i) Mimivirus and its close relative Mamavirus, which 

infect amoebae and have the largest genomes (~1.2 Mb) [3]. Mimivirus has 979 protein-encoding 
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sequences (CDSs), six tRNA genes and 33 non-coding RNA genes [4]. ii) Viruses that infect algae 

(phycodnaviruses) and have genomes up to ~560 kb [5,6]. iii) Viruses, such as bacterophage G, that 

infect bacteria and have genomes up to ~670 kb (~498 kb is unique sequence) [7].  

A recent report describes the newest girus, a lytic virus (named CroV) that infects the marine 

microzooplankton Cafeteria roenbergensis [1]. CroV has a ~730 kb genome and contains 544 CDSs 

and 22 tRNAs encoding genes in the 618 kb central region of its genome. Other dsDNA-containing 

viruses with genomes larger than 300 kb are listed in Table 1. Viruses with genomes ranging from  

100 to 280 kb, such as herpesviruses and baculoviruses, are not discussed in this commentary, and 

poxviruses, asfarviruses, iridoviruses, and ascoviruses are only briefly mentioned because of their 

evolutionary connection to some giruses. Another group of viruses with dsDNA genomes >500 kb are 

the polydnaviruses. However, these viruses are also not discussed because they lack some features 

typically associated with viruses, such as high gene density [8,9]. 

To place the size of these large viruses into perspective, the smallest free-living bacterium, 

Mycoplasma genitalium, encodes ~470 CDSs [10]. Although estimates of the minimum genome size 

required to support life are ~250 CDSs [11,12], some symbiotic bacteria such as Carsonella 

ruddii [13] and Hodgkinia cicadicola [14] have genomes of 160 kb and 144 kb, respectively. Thus, 

many large viruses have more CDSs than some single-celled organisms.  

Except for bacteriophage G [15,16] and the chlorella virus Paramecium bursaria chlorella virus 

(PBCV-1) [17], giruses have only been discovered and characterized in the last few years. There are 

several reasons why large viruses were undetected. i) Classical virus isolation procedures include 

filtration through 0.2 m pore filters to remove microorganisms, which also exclude many large 

viruses. ii) Large bacteriophages were missed by standard plaquing procedures because the high soft 

agar concentrations reduced virus diffusion and hence formation of visible plaques [18]. Although not 

true of the viruses discussed in this commentary, large viruses might also grow slower than smaller 

viruses and have lower burst sizes. Another issue is that many large viruses infect protists, and protists 

are only beginning to be examined for virus infections. Finally, the discovery of some large viruses 

was serendipitous; e.g., Mimivirus was initially believed to be a parasitic bacterium [3]. 

2. Many More Giruses Await Discovery 

Metagenomic studies indicate that giruses are common in nature and wait to be discovered. For 

example, one study used the Sorcerer II Global Ocean metagenome to determine the frequency that 

DNA polymerase fragments could be assigned to virus groups. The results indicated that Mimiviruses 

were second in abundance to bacteriophages [19]. Another recent report identified 19 more giant 

viruses from diverse environments, including soil, that infect amoeba [20]. In yet another study using 

three proteins, other than DNA polymerase, as queries, phycodnaviruses were commonly found in the 

Sargasso Sea and the Global Ocean Survey metagenomes [21]. These results imply that giruses 

constitute a quantitatively important and ubiquitous component of marine DNA viruses. The newly 

characterized CroV virus that infects Cafeteria roenbergensis indicates that giruses infect protists 

besides amoeba and algae.  
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Table 1. Giruses and some of their properties 

Classification Genome Virion Host 

Virus family Type member  Size 

(kb) 

G+C% % 

coding 

Shape Predicted 

CDS 

tRNA 

genes 

Nucleocapsid 

symmetry 

Nucleocapsid 

diameter (nm) 

Lipids Kingdom 

Mimiviridae Acanthamoeba polyphaga mimivirus (APMV)  1181 27 86 circular 911 1 isometric 500 Yes Protozoa 

 Mamavirus  ~1200 28 N/A circular N/A N/A isometric N/A Yes Protozoa 

 Cafeteria roenbergensis virus (CroV)  730 23 90 N/A 544 22 isometric ~300 N/A Chromista 

Myoviridae Pseudomonas chlororaphis phage 201φ2-1  317 45 93 Linear 461 1 isometric 122 None Proteobacteria 

 Bacillus megaterium phage G  670 N/A N/A N/A N/A N/A isometric N/A N/A Firmicutes 

Nimaviridae White spot syndrome virus 1 (WSSV1)  305 41 92 circular 531 0 helical N/A Yes Animalia 

Phycodnaviridae Chlorovirus PBCV-1  331 39 90 linear 366 11 isometric 190 Yes(I) Plantae 

 Chlorovirus NY2A  369 40 92 linear 404 7 isometric N/A Yes(I) Plantae 

 Chlorovirus AR158  345 40 92 linear 360 6 isometric N/A Yes(I) Plantae 

 Chlorovirus FR483  321 44 93 linear 335 9 isometric N/A Yes(I) Plantae 

 Chlorovirus MT325  321 45 N/A Linear 331 10 isometric N/A Yes(I) Plantae 

 Ectocarpus siliculosus virus 1 (EsV-1)  336 51 70 circular 240 0 isometric N/A N/A Plantae 

 Emiliania huxleyi virus 86 (EhV86)  407 40 90 circular 472 6 isometric N/A N/A Chromista 

 *Chrysochromulina ericina virus 1 (CeV01)  ~510 N/A N/A N/A N/A N/A isometric 160 N/A Chromista 

 *Pyramimonas orientalis virus 1 (PoV-01)  ~560 N/A N/A N/A N/A N/A isometric 222x180 N/A Plantae 

 *Phaeocystis globosa virus 1 (PgV group 1)  ~466 40-52 N/A linear N/A N/A isometric 150-190 Yes(I) Chromista 

 *Phaeocystis pouchetii virus 01 (PpV-01)  ~485 N/A N/A N/A N/A N/A isometric 220 Yes(I) Chromista 

 *Heterocapsa circularisquama viru (HcDNAV)  356 N/A N/A N/A N/A N/A isometric 197 N/A Protozoa 

 Ectocarpus fasciculatus virus a (EfasV)  ~340 N/A N/A N/A N/A N/A isometric N/A N/A Chromista 

 Myriotrichia clavaeformis virus a (MclaV)  ~340 N/A N/A N/A N/A N/A isometric N/A N/A Chromista 

Poxviridae Canarypox virus (CNPV)  ~360 30 90 linear 328 0 isometric 160-190 Yes Animalia 

N/A Marseillevirus  368 45 89 circular 457 N/A isometric 250 N/A Protozoa 

The genome sizes with ~ in front of the number have not been completely sequenced and annotated. 
*These viruses are currently listed in the Phycodnaviridae because they infect algae. However, they may be moved into another family (e.g., see reference [29]). 
Yes(I) = Yes, lipids are found with the virion and internal to the nucleocapsid. 
This table is modified, with permission, from Table 1 in the Annual Review of Microbiology, Volume 64, 83-99 [52]. 
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3. Role of Viruses in the Environment 

In addition to the interesting biology associated with giruses that is briefly mentioned below, 

giruses along with smaller viruses play major roles in the ecology of aqueous environments, which is 

only now becoming apparent. Viruses are the most abundant biological entities on earth and are major 

drivers of nutrient and energy cycles on the planet (for detailed discussions see [22–24]). More than 

50% of the CO2 fixed on the planet is by photosynthetic microorganisms, including cyanobacteria and 

microalgae (collectively referred to as phytoplankton). Current estimates are that at any one time 

~20% of phytoplankton cells are infected by viruses, including viruses that qualify as giruses. 

Additional components of this aquatic foodweb are microzooplankton that graze on these 

microorganisms, referred to as protistan grazers. CroV is the first virus to be characterized that infects 

a protistan grazer.  

Two examples illustrate the importance of giruses in the phytoplankton community. The 

coccolithophore alga, Emiliania huxleyi, is one of the most abundant and widely distributed 

photosynthetic unicellular eukaryotes in the oceans. Coccolithophores produce skeletons of minute 

calcite platelets (called coccoliths); consequently, they are major contributors to the oceanic carbon 

cycle and thus to the flux of CO2 between the atmosphere and oceans. E. huxleyi cells periodically 

form huge blooms covering wide coastal and mid-oceanic areas at high latitudes in both the northern 

and southern hemispheres. Large viruses that infect E. huxleyi (named EhV viruses) are largely 

responsible for the termination of these blooms (e.g., [6]). This termination releases massive quantities 

of organic and inorganic matter to the water column, including detached coccoliths that ultimately 

settle to the ocean floor. One outcome of this ecological cycle is the White Cliffs of Dover in England. 

The demise of E. huxleyi blooms also results in the release of dimethylsulfoniopropionate (DMSP) 

from the dying alga, which is cleaved by DMSP lyases; DMSP lyases are common in marine 

microorganisms. The cleavage products are acrylic acid and dimethylsulfide; dimethylsulfide is 

released into the atmosphere inducing cloud formation and rain. Thus, EhV infection of its host plays a 

significant role in climate conditions (e.g., [25]).  

One interesting feature of EhV is that it only infects the diploid phase of the E. huxleyi life cycle. 

The haploid state is resistant to EhV [26]. 

4. Evolution of Giruses 

Viruses classified in virus families Mimiviridae, Phycodnaviridae, Poxviridae, Asfarviridae, 

Iridoviridae, and Ascoviridae probably have a common evolutionary ancestor and are referred to as 

nucleocytoplasmic large DNA viruses (NCLDVs) [27–29]. Recently, another large virus named 

Marseillevirus (368 kb genome), which is distantly related to the iridoviruses and ascoviruses, was 

isolated from an amoeba and it will probably be assigned to a new NCLDV family [30]. The newly 

described CroV has been tentatively assigned to the Mimiviridae family because 32% or the CroVs are 

Mimivirus homologs [1].  

Comparative analysis of 45 NCLDVs identified five common genes in all the viruses and 177 

additional genes that are shared by at least two of these virus families [31]. The five common CDSs 

are the major capsid protein, a primase-helicase, a family B DNA polymerase, a DNA packaging 

ATPase and a transcription factor.  
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Although common ancestry of NCLDVs is generally accepted, there is disagreement on the size and 

morphology of its ancestor and how it evolved into the different virus families. Like cellular 

organisms, gene and genome duplication contributed to the large genome of Mimivirus and maybe 

other giruses [32]. A maximum-likelihood reconstruction of NCLDV evolution using 45 NCLDV 

genomes produced a set of 47 conserved genes, which were considered to be the minimum genome for 

the common ancestor [31]. NCLDVs were then proposed to evolve by losing some of these common 

genes and by acquiring new genes from their hosts and bacterial endosymbionts as well as by gene 

duplications. Another hypothesis proposes that the ancestral NCLDV was a huge virus or even a 

cellular organism that evolved primarily via genome contraction [33]. Finally, Filee et al. [34] 

proposed that NCLDVs evolved from a small DNA virus by acquiring genes from cellular sources.  

There are also disagreements on the origin of the NCLDVs. For example, some researchers have 

suggested that NCLDVs should be considered the fourth kingdom of life [33,35], others have 

suggested that many NCLDV genes arose from the original gene pool that led to prokaryotes and 

eukaryotes [28], and still others have suggested that horizontal gene transfer has driven the evolution 

of their genomes [36]. One problem with this later suggestion is that probably only a small fraction of 

the viral genes came by gene transfer from cells. For example, ~66% of the CDSs in the Mimivirus 

genome have no functional similarity to known proteins, suggesting that Mimivirus arose early in 

evolution. This phenomenon is not exclusive to Mimivirus, ~60% of the ORFs of the large 

bacteriophage sk1 genome and 94% of the ORFs from white spot syndrome virus have no functional 

homologues to known proteins [37]. Also, some genes may have a viral origin and not a cellular 

origin [38]. In these instances, viruses may have contributed genes to the host, rather than the other 

way around. 

Contributing to the discussion about NCLDV evolution is the discovery that the structure of the 

chlorella virus PBCV-1 major capsid protein (MCP) resembles MCPs from some smaller dsDNA 

viruses with hosts in all three domains of life, including human adenoviruses, bacteriophage PRD1, 

and a virus infecting an archaeon, Sulfolobus solfataricus. This structural similarity suggests that these 

three viruses might have an evolutionary connection to NCLDVs, despite the lack of amino acid 

sequence similarity among their MCPs (for a detailed discussion see [39,40]). If so, the formation of 

these viral lineages might have predated the divergence of Archaea, Bacteria and Eukarya.  

Another interesting hypothesis is that a primitive NCLDV gave rise to the eukaryotic nucleus or 

vice versa [41,42]. Taken together, these hypotheses suggest that the NCLDVs, as well as other 

viruses, are ancient and have probably contributed significantly to the emergence and subsequent 

structure of modern cellular life forms [43]. 

Detailed reviews by Forterre [38] and Koonin and Yutin [29] on the evolution of large DNA viruses 

summarize much of the discussion on this subject. 

5. Are Viruses Alive?  

The discovery and characterization of giruses has revived a discussion of whether viruses should be 

considered to be living organisms, e.g., [44]. One perspective is the idea that one should actually 

compare the intracellular stage of viral replication (i.e., the viral factory [45]), which is metabolically 

active, with cells, rather than the virion, which is metabolically inactive. Thus, Claverie has 
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recommended that the "virus factory" be considered the actual organism when referring to a virus (for 

a detailed discussion see [2,46].  

These ideas have stimulated a lively discussion as to whether the tree of life should include viruses 

(e.g., see [2,44,47], and Nat. Rev. Microbiol. (2009) 7, 14-27 [37] for seven commentaries on the 

subject).  

6. Problems Associated with the Taxonomy of Giruses 

The issue of the evolutionary origin of the NCLDVs also contributes to the difficulty of classifying 

some of these viruses into distinct families. Phylogenetic analysis of the DNA polymerase from four 

putative phycodnaviruses illustrates the problem. i) The DNA polymerase from three putative 

phycodnaviruses, CdV01, PpV01, and PoV01 (Table 1), is more similar to Mimivirus than to the other 

phycodnaviruses [19]. In fact, these authors suggest that Mimivirus relatives are probably large algal 

viruses. ii) The closest relative of the DNA polymerase from the fourth putative phycodnavirus, 

HcDNAV, is African swine fever virus [48]. However, if one conducts a similar analysis with the 

MCPs, the phylogenetic trees change [49]. Therefore, it is clear that these viruses, like the DNA 

bacteriophages [50], have been exchanging genes for eons. One potential venue for gene mixing is 

amoeba, which harbor many diverse microorganisms, including viruses; thus amoeba could serve as a 

"melting pot" for gene mixing, leading to new viruses, including large viruses with complex gene 

repertories of various origins [30,51]. 

Adding to the classification issue is the proposal that the taxonomic status of viruses should be 

elevated to the same level as cells by dividing the biological world into two classes of organisms, those 

encoding capsids, and those encoding ribosomes [44]. 

7. Diversity of Girus Lifestyles 

One issue that is perhaps not appreciated by the virology community is that these large viruses, 

even members within the same family, can differ in morphology (see Figure 1) and lifestyle [52]. 

Examples of some lifestyle differences among the NCLDVs include: i) The infection process differs 

among the phycodnaviruses. Chlorella virus infection is bacteriophage-like. The viruses attach to a 

specific receptor on the chlorella wall at a unique vertex (Figure 1c) and digest the wall at the point of 

attachment. The internal virus membrane then presumably fuses with the host plasma membrane 

allowing the DNA and virion-associated proteins to be released to the inside of the cell. An empty 

capsid remains outside the cell [53,54].  

In contrast, the entire particle of another phycodnavirus, EhV, which has an external membrane, 

enters the host intact via either endocytosis or an envelope fusion mechanism with the host plasma 

membrane and then rapidly disassembles [55]. In the case of Mimivirus, the entire particle is engulfed 

by the amoeba by phagocytosis. Once inside the phagosome, Mimivirus fuses with the lysosome. This 

lysosomal activity helps to open the viral capsid at a special vertex, called stargate (Figure 1b). The 

fusion of the particle's internal membrane with the endocytic vacuole membrane forms a large 

membrane conduit through which the genome-containing Mimivirus core enters the cytoplasm.  
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Figure 1: (a) Transmission electron micrograph of Mimivirus. (b) Atomic force 

microscopy of defibered Mimivirus. The unique star-faced vertex is clearly visible.  

(c) Five-fold averaged cryo-electron micrographs of virus PBCV-1 reveal a long, thin, 

cylindrical spike structure at one vertex and protrusions (fibers) extending from one unique 

capsomer per trisymmetron. (d) PBCV-1 attached to the cell wall as viewed by the quick-

freeze, deep-etch procedure. Note fibers attach the virus to the wall. (e, f) Morphology of 

the White spot shrimp virus (WSSV) virion. (e) Negative contrast electron micrograph of 

intact WSSV virion with its tail-like extension. (f) Schematic based on panel e showing the 

layered structures of a WSSV virion, i.e., envelope, tegument, and nucleocapsid.  

(g) Electron micrograph of bacteriophage G. The insert shows coliphage lambda to the 

same scale. Panel (a) is from [77], (b) is from [58], (c) is from [78], (d) is from [79],  

(e) and (f) are from [80], and (g) is from [50]. The figure is modified, with permission, 

from Figure 1 in the Annual Review of Microbiology, Volume 64, 83-99 [52]. 

 
 

ii) All NCLDVs are assembled in "virus factories" located in the cytoplasm. However, the role of 

the nucleus in the replication of NCLDVs varies. For example, Mimivirus, like the poxviruses, appears 

to carry out its entire life cycle in the cytoplasm [56]. The intracellular transcription site for the newly 

characterized CroV is unknown; however, CroV encodes eight putative DNA-dependent RNA 

polymerase II subunits and at least six transcription factors, suggesting that its replication may also be 

independent of the nucleus. In contrast, the nucleus probably plays an essential role in the replication 

of most of the phycodnaviruses and other NCLDVs. However, the nuclear role in virus replication may 

differ, even among the phycodnaviruses. For example, the chlorella viruses do not encode any CDSs 

resembling RNA polymerase subunits; in contrast, the algal virus EhV encodes six RNA polymerase 

subunits [57]. 
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Mimivirus has provided another surprise for virologists; all known icosahedral viruses with a 

unique vertex package their DNA at the same vertex that releases DNA, e.g., tailed bacteriophage. 

However, Mimivirus is reported to package its DNA through a face-centered aperture rather than the 

vertex-centered stargate structure that is involved in DNA release [58]. If this result is verified, 

Mimivirus differs from other viruses with a unique vertex in which DNA exits and packages at  

the same portal. 

iii) Exit of newly formed viruses from the cell can also differ among giruses. The phycodnavirus 

EhV buds from its host [55], whereas, intact and infectious PBCV-1 virions form inside the cell and 

nascent virions exit by lysis of the cell plasma membrane and cell wall [59].  

Finally, it should be noted that most girus genomes do not integrate into their host genomes. The 

one exception is the phycodnavirus EsV, which infects the filamentous marine brown alga Ectocapus 

siliculosus; EsV has a lysogenic life cycle [60]. 

8. Girus Encoded Genes and Metabolic Pathways 

Not surprisingly, giruses encode an amazing array of proteins and even metabolic pathways, as well 

as properties that are typically the function of the host. Of course, the function of more than 50% of  

girus CDSs are unknown. Because of space limitations, only a few unusual virus-encoded properties 

are mentioned to illustrate their diversity. i) Both CroV and Mimivirus, as well as other giruses, 

contain several CDSs involved in protein translation, including amino acyl tRNA synthases and 

translation initiation factors, as well as tRNAs [3,1]. ii) In contrast to other viruses that use the host 

machinery located in the endoplasmic reticulum and Golgi to glycosylate their glycoproteins, the 

chlorella viruses encode most, if not all, of the components to glycosylate their major capsid proteins. 

Furthermore, all experimental results indicate that chlorella virus glycosylation is independent of the 

endoplasmic reticulum and Golgi [61]. This property may also exist in other giruses because some of 

their CDSs are predicted to be glycosyltransferases.  

Examples of unusual putative pathways encoded by giruses include: i) The newly described CroV 

genome has a 38 kb genomic fragment that encodes an entire biosynthetic pathway for 3-deoxy-D-

manno-octulosonate (referred to as KDO) [1]. In Gram-negative bacteria, KDO is an essential core 

component of the lipopolysaccharide layer, linking lipid A to polysaccharides. The G + C content of 

this 38 kb fragment differs slightly from the remainder of the genome, which suggests it was acquired 

after the lineage split from the Mimivirus lineage. Other giruses encode enzymes involved in the 

synthesis of sugars, e.g., enzymes that synthesize fucose and rhamnose [62]. ii) The phycodnavirus 

EhV has seven CDSs that form a metabolic pathway that synthesizes spingolipids [63]. The EhV host, 

Emiliania huxleyi, also has genes encoding this pathway and obviously horizontal gene transfer 

occurred between EhV and E. huxleyi [63]. However, the direction of the transfer is unknown. The 

viral biosynthetic pathway is expressed during lytic infection and the resulting glycosphingolipids 

(GSLs) induce programmed cell death (PCD); PCD activates a host caspase-like activity that is 

required for EhV-86 replication. Susceptible hosts accumulate both algal and viral derived GSLs that 

may coordinate virus maturation, whereas resistant cells accumulate only algal derived GSLs. The 

viral GSLs accumulate in the viral envelope, and it is hypothesized that this mechanism activates virus 

release into the environment and subsequently induces PCD in surrounding algal cells that aids in 
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termination of algal blooms [64]. This example of cell signaling by the E. huxleyi/EhV interaction 

suggests that aquatic viruses may control their environment in ways virologists and ecologists are only 

just beginning to fathom. iii) Some chlorella viruses encode three enzymes, including hyaluronan 

synthase, involved in the synthesis of the extracellular matrix polysaccharide hyaluronan; hyaluronan 

consists of alternating 1,4-glucuronic acid and 1,3-N-acetylglucosamine residues. Hyaluronan (also 

known as hyaluronic acid) accumulates on the external surface of the infected chlorella cells [65]. 

Previously hyaluronan had only been found in vertebrates and a few pathogenic bacteria. Other 

chlorella virus encoded CDSs are involved in chitin biosynthesis and chitin accumulates on the surface 

of cells infected with these viruses [66]. The function of these extracellular matrix polysaccharides is 

unknown. iv) The chlorella viruses also encode four proteins involved in polyamine biosynthesis [67]. 

Examples of some other unexpected proteins and enzymes encoded by giruses include: i) the 

chlorella viruses encode several ion channel and transporter proteins [68]. ii) The chlorella viruses 

encode many DNA methyltransferases and DNA restriction endonucleases [69]. iii) The newly 

described CroV encodes two photolyases. iv) Enzymes involved in various ubiquination functions are 

also common in many of these large viruses.  

It should be emphasized that many of the virus encoded, unexpected CDSs mentioned above are 

still putative assignments because biochemical evidence is lacking. However, other girus encoded 

CDSs have been expressed and have the expected properties. Some chlorella virus encoded proteins 

are the smallest or among the smallest proteins of their family, e.g., a histone methyltransferase [70], 

an ornithine decarboxylase [71], a type II DNA topoisomerase [72], and a potassium ion channel 

protein [68,73]. Furthermore, phylogenetic analyses suggest some of these minimalist proteins might 

be evolutionarily precursors of more complex contemporary proteins. Despite their small sizes, the 

virus enzymes typically have many of the catalytic properties of larger enzymes. Their small size and 

the fact that they are often "laboratory friendly" have made them important models for mechanistic and 

structural studies (e.g., [74]). 

9. Exploiting Girus Genes 

The amino acid differences between girus orthologs, which probably results from the long 

evolutionary history of these viruses, can be exploited to aid in understanding protein function. The 

following example illustrates this property. Many electrophysiological experiments have been 

conducted in Xenopus oocytes on the 94 amino acid chlorella virus PBCV-1 encoded potassium ion 

channel protein Kcv (reviewed in [68]). Kcv-like genes were cloned and sequenced from 40 additional 

viruses that infect the same host; 16 amino acid substitutions occurred among the 94 amino acids, 

producing six new Kcv-like proteins that formed functional potassium ion selective channels in 

Xenopus oocytes. However, the biophysical properties of some of these Kcv channels differed from 

PBCV-1 Kcv, including altered current kinetics with K+ and Rb+ and altered sensitivity to ion channel 

blockers. The amino acid differences, together with the altered electrophysiological properties, served 

to guide site-directed amino acid substitutions, either singularly or in combinations, to identify key 

residues that conferred specific properties to Kcv. Other chlorella virus encoded gene products await 

similar exploitation. 
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10. Concluding Comments 

Although giruses are probably ancient, they are relatively new to virologists. Even with our limited 

knowledge, research efforts on large viruses are contributing scientific and economic benefits. For 

example, chlorella viruses, which encode as many as 400 CDSs, are sources of new and surprising 

proteins, including commercially important enzymes such as DNA restriction endonucleases [69]. The 

chlorella viruses are also a source of genetic elements for genetically engineering other organisms. 

Examples include i) promoter elements that function well in both monocots and dicots of higher plants, 

as well as bacteria [75]; and ii) a translational enhancer element from a chlorella virus that functions 

well in Arabidopsis [76]. 

The sequence of some girus host genomes have either recently been completed or are in the process. 

Annotation of these host sequences will contribute to studies on giruses. However, a major obstacle to 

studying these viruses is that currently none of them can be genetically modified by molecular 

techniques. The development of successful and reproducible host transformation procedures should 

lead to the molecular genetic analysis of these viruses, which would lead to major advances in the 

understanding of these fascinating viruses. 
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