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Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder characterized
by the progressive degeneration of motor neurons. The causative pathogenic
mechanisms in ALS remain unclear, limiting the development of treatment strategies.
Neuroinflammation and immune dysregulation were involved in the disease onset
and progression of several neurodegenerative disorders, including ALS. In this study,
we carried out a bioinformatic analysis using publicly available datasets from Gene
Expression Omnibus (GEO) to investigate the role of immune cells and genes alterations
in ALS. Single-sample gene set enrichment analysis revealed that the infiltration of
multiple types of immune cells, including macrophages, type-1/17 T helper cells, and
activated CD4 + /CD8 + T cells, was higher in ALS patients than in controls. Weighted
gene correlation network analysis identified immune genes associated with ALS. The
Gene Ontology analysis revealed that receptor and cytokine activities were the most
highly enriched terms. Pathway analysis showed that these genes were enriched
not only in immune-related pathways, such as cytokine-cytokine receptor interaction,
but also in PIBK-AKT and MAPK signaling pathways. Nineteen immune-related genes
(C3AR1, CCR1, CCR5, CD86, CYBB, FCGR2B, FCGR3A, HCK, ITGB2, PTPRC, TLR1,
TLR2, TLR7, TLR8, TYROBP, VCAM1, CD14, CTSS, and FCER1G) were identified as
hub genes based on least absolute shrinkage and selection operator analysis. This gene
signature could differentiate ALS patients from non-neurological controls (o < 0.001) and
predict disease occurrence (AUC = 0.829 in training set; AUC = 0.862 in test set). In
conclusion, our study provides potential biomarkers of ALS for disease diagnosis and
therapeutic monitoring.

Keywords: amyotrophic lateral sclerosis, immune, bioinformatics, ssGSEA, WGCNA, LASSO

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder predominantly affecting
motor neurons. It has a prevalence of 4.42 per 100,000 people worldwide, which increases by
age until the age of 70-79 (Logroscino et al., 2010; Ingre et al., 2015; Xu et al., 2020). As a
devastating disease, ALS most frequently involves spinal and bulbar muscles but even respiratory
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muscles can be affected (Taylor et al, 2016; Brown and Al-
Chalabi, 2017). ALS is essentially a sporadic disorder, with
only ~10% of cases involving a genetic link, and in most
patients the etiology is unclear. The clinical heterogeneity of
ALS makes diagnosis challenging, especially as no diagnostic
tests are yet available (van Es et al., 2017). Moreover, the
intervention strategies are limited; approved medications provide
only modest benefits, and therapeutic approaches are largely
supportive and involve symptom management primarily focused
on the respiratory system (Petrov et al., 2017; Mejzini et al.,
2019). ALS becomes progressively generalized and patients die
about 3-4 years after disease onset (van Es et al., 2017). Detailed
knowledge of ALS development can lead to more effective
management at an early stage of disease.

Immune/inflammatory abnormalities are a common
pathologic feature of many neurodegenerative disorders,
and there is increasing evidence that immune dysregulation
plays a critical role in ALS onset and progression (Morello
et al, 2017). Human postmortem studies have revealed immune
abnormalities at the end stage of ALS. Microglia activation is
also a common pathologic feature of the disease (McGeer and
McGeer, 2002; Shibata et al., 2009; McCauley and Baloh, 2019).
The innate immune response, rather than adaptive immunity,
is thought to mediate neuroinflammation in ALS. Infiltrating
immune cells are also found in the central nervous system (CNS)
in human ALS, including monocytes, macrophages, neutrophils,
and T cells in motor neuron destruction (Graves et al., 2004;
Lawson et al., 2008; Prinz and Priller, 2017; Beers and Appel,
2019). Systemic immune dysregulation has also been reported, as
evidenced by elevated levels of inflammatory markers and altered
circulating lymphocyte and monocyte populations (Zhang et al,,
2005; McCombe and Henderson, 2011; Murdock et al., 2017).
However, whether the immune response in ALS is protective
or harmful is debated; clarifying the mechanisms of immune
dysfunction in ALS may provide a basis for the development of a
novel treatment.

In this study, we carried out a bioinformatic analysis using
publicly available gene expression datasets to investigate the role
of immune cell and expression of immune-related genes (IRGs)
in ALS. We are trying to provide novel insights into the role of
immune-related mechanisms in ALS and identify a signature that
can be used to predict disease occurrence.

MATERIALS AND METHODS

Data Collection and Processing

The Gene Expression Omnibus (GEO)', an international
repository of gene expression, is a free public database
(Barrett et al., 2013). The GSE153960 dataset includes 1,838
samples (non-neurological control, ALS spectrum motor neuron
disease [MND], other neurological disorders, other MND,
and familial ALS) and mRNA expression data derived from
postmortem tissue specimens of the cerebellum, cortex, spinal
cord, and hippocampus (Prudencio et al., 2020). We extracted

Uhttps://www.ncbi.nlm.nih.gov/geo/

the expression matrix of non-neurological control and ALS-
spectrum MND. The datasets consisted of two parts, one part
was referred to as the primary dataset which was based on
the platforms of GPL24676 (Illumina NovaSeq 6000), the other
one was referred to as the secondary dataset and was based
on the platforms of GPL16791 (Illumina HiSeq 2500). Data
for 684 ALS spectrum NMD patients and 190 non-neurological
controls from the primary dataset and 546 ALS spectrum NMD
patients and 90 non-neurological controls from the secondary
dataset were analyzed in our study. The raw count matrices
were normalized and transformed into fragments per kilobase of
sequence per million mapped reads (FPKM) values for further
analysis. A total of 1,713 IRGs were downloaded from the
ImmPort online database’.

Evaluation of Immune Cell Infiltration
Single-sample gene set enrichment analysis (ssGSEA) was
performed using the Gene Set Variation Analysis (GSVA) package
in R (version 4.0.3) software® to examine immune cell infiltration
in ALS patients and non-neurological control subjects (Barbie
et al., 2009; Hinzelmann et al., 2013). We focused on 12 types
of immune cell that were shown to be associated with ALS in
previous studies (Malaspina et al., 2015), including macrophages,
regulatory T cells (Tregs), type-1 T helper cells (Th1), type-2
T helper cells (Th2), type-17 T helper cells (Th17), activated
CD4 + T cells, activated CD8 + T cells, monocytes, activated
dendritic cells, neutrophils, mast cells, and myeloid-derived
suppressor cells. The detailed gene sets of each immune cell
type were obtained from a previous study (Charoentong et al.,
2017). ssGSEA scores representing the relative abundance of
each immune cell type were calculated by ssGSEA analysis and
normalized to unity distribution (with 0 and 1 as the minimum
and maximum values, respectively). The Wilcoxon test was
used to evaluate differences between ALS and non-neurological
control groups. An adjusted p value < 0.05 (after Benjamini-
Hochberg correction) was defined as statistically significant.

Weighted Gene Correlation Network
Analysis (WGCNA)

The expression profiles of all IRGs were extracted from the
primary dataset and could be used for WGCNA analysis
based on previous studies (Huang et al., 2020; Wang et al,
2020). To examine the relationship between immune gene
and phenotype (i.e, ALS or non-neurological control), we
generated unsigned co-expression networks using the WGCNA
package in R (Langfelder and Horvath, 2008). Briefly, the
log2 (FPKM + 1) transformed data were used to calculate
Pearson’s correlation matrices. For module construction, the soft
thresholding power p (1 to 20) was screened with the integrated
pickSoftThreshold function. A suitable power B was selected to
increase co-expression similarity and achieve scale-free topology.
Co-expression modules were constructed with the minimum size
set to 30. IRGs with similar expression patterns were grouped
into modules. We assessed the correlation between phenotype

Zhttps://immport.niaid.nih.gov
3https://www.r-project.org/
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and each module by Pearson’s correlation analysis and identified
ALS-related modules; the genes in these modules were considered
as ALS-related IRGs.

Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes
(KEGG) Pathway Analyses

Gene ontology and Kyoto encyclopedia of genes and genomes
pathway analyses of genes in each identified module were carried
out using clusterProfiler R package (Yu et al., 2012) to determine
the biological functions of the genes and associated pathways. We
adjusted the p value with the Benjamini-Hochberg method for
multiple comparisons, and p.adjust < 0.05 was set as the cutoff.

Protein-Protein Interaction (PPI) Network
Analysis

We screened differentially expressed IRGs in the primary dataset
(raw counts) using DESeq2 R package (Love et al,, 2014). The
cut-off criteria of adjusted p < 0.05 and | logy(fold change)|
> 0.5 were considered as statistically significant. Overlapping
genes between differentially expressed and ALS-related IRGs
identified by WGCNA were selected as candidates. To analyze
their interactions, we constructed a PPI network using the Search
Tool for the Retrieval of Interacting Genes (STRING) online
database® (Szklarczyk et al., 2019). We then visualized the PPI
network with Cytoscape v3.7.2 software and used the Cytohubba
plugin to calculate the maximal clique centrality (MCC) degree
of each node (gene) (Shannon et al., 2003). The top 25 genes with
the highest MCC score were retained for further analysis.

Least Absolute Shrinkage and Selection
Operator (LASSO) Analysis

Least absolute shrinkage and selection operator analysis has
strong predictive value and can prevent model overfitting
(Tibshirani, 1996). To distinguish ALS patients from non-
neurological control subjects, we constructed a LASSO model
with the top 25 genes expression profiles using the glmnet
package in R (binomial Lasso)’. The immune-score of this model
for each sample was calculated with the equation immune-
score = Xexpgenei* Bi, where expgenei is the relative expression
of the gene in the signature for patient i, and pi is the regression
coeflicient of gene i from the LASSO analysis.

Validation of LASSO Model

We randomly divided the primary dataset into the training
(70%, N = 614) and test (30%, N = 260) sets. Patients in
these sets constituted the training and internal validation cohort,
respectively, while those in the secondary dataset (N = 636)
served as the external validation cohort. To evaluate the
performance of the LASSO model for predicting the occurrence
of ALS, we performed receiver operating characteristic (ROC)
curve analyses for the three cohorts using the pPROC package of R
(Robin et al., 2011).

*https://string-db.org/
>https://CRAN.R-project.org/package=glmnet

RESULTS

Immune Cell Infiltration

A flow diagram of the study is shown in Figure 1. The
proportions of each tissue type (cerebellum, cortex, spinal cord,
and hippocampus) were distributed evenly among the two groups
in the primary dataset (ALS vs. controls = 0.09:0.44:0.41:0.06
vs. 0.11:0.49:0.34:0.06; Chi Square-test p > 0.05). To investigate
differences in immune cell infiltration between ALS patients and
non-neurological controls in the primary dataset, we performed
ssGSEA analysis of 12 immune cell types. We calculated the
enrichment score, which represents the level of immune cell
infiltration, and generated a heatmap to visualize the relative
abundance of each cell type (Figure 2A). The enrichment scores
of most immune cell types were higher in the ALS group
than in the control group; 11 immune cell types including
macrophages, Tregs, Thl, Th2, Thl7, activated CD4 + and
CD8 + T cells, monocytes, activated dendritic cells, mast
cells, and myeloid-derived suppressor cells showed significant
differences in abundance between the two groups (adjusted
p < 0.05, Wilcoxon test) (Figure 2B), indicating that immune cell
infiltration was increased in ALS.

WGCNA

Weighted gene correlation network analysis was performed
based on the expression profiles of IRGs in the primary
dataset, and a gene co-expression network was constructed.
We selected B = 5 as the soft thresholding power (scale-free
R? > 0.9) to construct a scale-free network (Figure 3A). We
then calculated the module eigengenes representing the overall
gene expression level of each module; these were clustered based
on their correlation. A total of 11 modules were identified
and labeled with a unique color (Figure 3B). We analyzed the
correlations of each eigengene with phenotype (ALS or non-
neurological control) and found four modules were positively
correlated with ALS-namely, the pink (cor = 0.39, p = le-32),
red (cor = 0.36, p = 5e-28), turquoise (cor = 0.15, p = 6e-06),
and brown (cor = 0.23, p = 9e-12) modules (Figure 3C).
Gene significance was calculated to determine the correlation
between a gene and phenotype. In our study, a strong association
between gene significance and module membership was observed
for all four modules (pink: cor = 0.58, p = 0.00097; red:
cor = 0.55, p = 1.4e-05; turquoise: cor = 0.36, p = 6.9e-20; brown:
cor = 0.4, p = 5.4e-05) (Figure 3D). The 783 IRGs in these
modules-which are potentially associated with ALS-were retained
for further analysis.

GO and KEGG Pathway Analyses

We performed a GO enrichment analysis of ALS-related modules
(i.e., pink, red, brown, and turquoise modules). In the molecular
function category, genes in each module were enriched in
signaling receptor activator and receptor-ligand activities. The
turquoise and pink modules were also related to cytokine
activity (Figures 4A-D). The modules were involved in several
biological processes including positive regulation of cytokine
production (turquoise), antigen processing and presentation
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FIGURE 1 | The workflow of this study.

(red), positive regulation of T cell activation (pink), and
Fc-epsilon receptor signaling (brown) (Figures 4A-D). The
KEGG pathway analysis revealed that genes in these modules
were mainly enriched in cytokine-cytokine receptor interaction
(turquoise), axon guidance (brown), Ras/MAPK/PI3K-AKT
signaling pathway (pink), and neurodegeneration including
ALS (red) (Figures 4A-D).

PPI Network Analysis

Differentially expressed IRGs between ALS patients and non-
neurological controls in the primary dataset were evaluated.
A total of 189 differentially expressed IRGs were identified
with a | loga(fold change)] > 0.5 and adjusted p < 0.05
(Figure 5A). We overlapped these genes with ALS-related
IRGs derived from WGCNA and selected 140 candidate genes

(Figure 5B) to construct a PPI network using the STRING
online database. Cytoscape software was used to visualize the
network, which had 130 nodes and 1066 edges (Figure 5C).
To identify the core genes in the network, we used Cytohubba
to calculate the MCC of each gene; a high score indicated
that the corresponding protein was central to the network. We
selected the top 25 genes representing the core genes in the PPI
network (Figure 5D).

Construction and Validation of the

LASSO Model

We extracted the expression profile (FPKM) of the 25 core
genes in the PPI network from the primary dataset and
performed LASSO regression analysis to identify the optimal
linear combination of core genes for predicting the occurrence
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FIGURE 2 | The landscape of immune cell infiltration between ALS patients and non-neurological control subjects. (A) A heatmap of 12 immune cell infiltration based
on single-sample gene set enrichment analysis. (B) Boxplot of comparisons of 12 immune-cell enrichment scores. The enrichment score of macrophages, Tregs,
Th1, Th2, Th17, activated CD4 + T cells, activated CD8 + T cells, monocytes, activated dendritic cells, and mast cells myeloid-derived suppressor cells were higher
in ALS patients than non-neurological control. *p < 0.05, *p < 0.01, **p < 0.001.

of ALS (Figure 6A). A total of 19 genes with non-zero
coeflicients were selected for model construction. The immune-
score was calculated as follows: C3ARI expression*(—0.01198)
+ CCRI expression*0.63016 + CCR5 expression*(—1.54909)
+ CD86 expression®(—0.30306) + CYBB expression®0.01475 +
FCGR2B expression*0.10849 + FCGR3A expression*(—0.09341)
+ HCK expression™(—0.24098) + ITGB2 expression*(—0.12903)

+ PTPRC expression®(—0.34727) + TLRI expression*0.81489
+ TLR2 expression®0.07799 + TLR7 expression*0.10668 +
TLR8 expression*0.66320 + TYROBP expression*0.08415 +
VCAMI expression™(—0.34966) + CDI14 expression™(—0.01760)
+ CTSS expression *0.06362 + FCERIG expression®0.22061.
The prediction score based on LASSO analysis could efficiently
distinguish the ALS patients from non-neurological control
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subjects (p < 2.2e-16, Wilcoxon test) (Figure 6B). In
the ROC curve analysis, the area under the ROC curve
(AUC) of the model based on the 19 IRGs was 0.829
in the training set (Figure 6C) and 0.862 in the test set

(Figure 6D). The predictive value of the model was validated
in the secondary dataset, with AUC = 0.701 (Figure 6E).
These results indicate that the 19-IRG signature may have

diagnostic value for ALS.
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DISCUSSION

Amyotrophic lateral sclerosis remains a fatal neurodegenerative
disease with no effective treatments. Significant advances
have provided notable insights into the disease mechanisms
of ALS, including RNA/DNA dysregulation, metabolism
dysregulation, mitochondrial dysfunction and oxidative stress,

impaired axonal transport, impaired proteostasis, apoptosis,
and immune dysregulation (Robberecht and Philips, 2013;
Butti and Patten, 2018; Beers and Appel, 2019; Mejzini et al,,
2019). However, it is difficult to translate achievements to
human clinical trials due to the great genetic and phenotypic
heterogeneity between patients and the complex nature of the
disease (Mejzini et al., 2019).
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Neuroinflammation and immune dysregulation play critical
roles in the disease onset and progression of ALS. Activation
of astrocytes and microglia, which release inflammatory and
potentially neuroprotective factors, is the most prominent
pathologic feature of ALS (Lee et al., 2016). Macrophages, T
cells, dendritic cells, and mast cells are known to be involved in
ALS pathology but the role of other immune cell types is not
well understood (McCauley and Baloh, 2019). In our study, the
results of the ssGSEA showed that the infiltration of multiple
types of immune cell, including macrophages, Thl, Th17, and
Tregs, was greater in ALS patients than in controls. Peripherally
derived macrophages can replace depleted microglia, which are
the primary innate immune cells of the CNS and are implicated
in the progression of neurodegenerative diseases (Butovsky and
Weiner, 2018). Macrophages participate in the inflammatory
cascade and may contribute to neuroinflammation by entering
the CNS parenchyma in ALS patients (Beers and Appel, 2019).
In a mouse model of ALS, modifying peripheral macrophage
populations slowed disease progression and prolonged survival
(Chiot et al., 2020). However, the CNS infiltration of peripheral
myeloid cells remains low in ALS mice (Chiot et al., 2020). Th1
and Th17 cells have proinflammatory functions; their activation
dominates the immunologic milieu of ALS and may be linked
to disease severity (Saresella et al., 2013; Jin et al., 2020). The
relative sizes of these cell populations contribute to the speed of

disease progression. Tregs have a protective effect against motor
neuron death and suppress both proinflammatory Th1/Th17
cells and activated macrophages in ALS (Beers and Appel, 2019;
Jin et al., 2020). Stimulation of Tregs populations was shown
to have a beneficial effect in ALS patients (Kwon et al., 2014).
Autologous administration of the expanded Tregs may slow the
disease progression (Fournier et al., 2018). Here, the elevation of
Tregs may be explained by responding to increased inflammatory
stimulation. The elevated infiltration level in activated CD4
T cell, activated CD8 T cell, Monocyte, and Mast cells were
also observed in our research, consistent with previous reports
(Rentzos et al., 2012; Murdock et al., 2017; Trias et al., 2018).
Taken together, these data suggests that immune activation is
a feature of ALS and that therapeutic strategies targeting this
process may be an effective treatment.

We performed WGCNA to identify IRGs that contribute
to ALS onset or progression. Four modules were positively
associated with ALS. The GO analysis revealed that molecular
function of receptors and cytokine were the most influenced.
Receptors or ligands located on the cell surface influence
the activity of the receptor and are involved in signal
transduction, both of which participate in immune response
(Zhu et al., 2011). Cytokines mediate nuclear signal transduction
neurogenesis, neurotransmission, inflammatory responses, and
synaptic plasticity (Watkins et al., 1995; Xu et al, 2016).
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Inflammatory cytokines, released by immune cells such as
astrocytes and microglia, can modulate a broad spectrum
of cellular responses that are implicated in ALS and other
neurodegenerative diseases (Colonna and Butovsky, 2017;
Beers and Appel, 2019). Changes in the balance of pro-
and anti-inflammatory cytokines have been reported in ALS
patients (McCauley and Baloh, 2019). Concerning biological
processes, ALS-associated genes were found to be involved in
cytokine production, T cell activation, antigen processing and
presentation, and Fc-epsilon receptor signaling, indicating the
inflammatory cytokines, pathogen recognition, and immune
activation are implicated in the pathology of ALS. The most
highly enriched pathway in the turquoise module was cytokine-
cytokine receptor interaction, which regulates cytokine binding.
This pathway is regarded as a crucial aspect of inflammation and
is enriched in neurodegenerative diseases such as Alzheimer’s
disease (AD), Parkinson’s disease (PD), Huntington disease,
multiple sclerosis, and schizophrenia (Guo et al., 2014; Sattlecker
et al,, 2016; Xu et al., 2016; Khayer et al., 2020). Notably, Ras,
MAPK, and PI3K/AKT signaling were among the top enriched
pathways in the pink module. Ras acts upstream of MAPK/ERK
and PI3K/AKT signaling pathways (Lu et al, 2016). The
PI3K/AKT pathway regulates neuronal cell survival and MAPK
regulates neural cell proliferation/survival and differentiation,
underscoring their potential involvement in the pathogenesis
of neurodegenerative diseases (Rai et al., 2019). A recent study
showed that inhibiting the PI3K/AKT and MAPK/ERK signaling
pathways improved motor activity and survival in transgenic
flies expressing mutant hSOD1 (Wang et al., 2018). Thus, drugs
that target the PI3K-AKT and MAPK-ERK signaling pathways
may have therapeutic benefits for ALS patients. Genes in the red
module were enriched in the pathway of ALS, confirming the
crucial roles of immune genes in ALS.

We identified 19 immune-related genes (C3ARI, CCRI,
CCR5, CD86, CYBB, FCGR2B, FCGR3A, HCK, ITGB2, PTPRC,
TLR1, TLR2, TLR7, TLR8, TYROBP, VCAMI, CD14, CTSS,
and FCERIG) as hub genes in the LASSO regression analysis.
This IRG signature could distinguish ALS patients from non-
neurological control subjects and predicted the occurrence
of ALS. CD86 is a cell surface marker of pro-inflammatory
macrophages. In AD patients, CD86 expression increases with
age (Busse et al., 2015); the proportion of CD86 + microglia
increased with disease progression in SOD19%34 mice (Hirano
et al., 2013). CYBB, also known as NOX2, has been implicated
in oxidative stress in neurodegenerative disorders (Cahill-
Smith and Li, 2014). In ALS patients, high NOX2 activity
was shown to be associated with decreased 1-year survival
from onset, indicating that NOX2 could be an independent
prognostic factor (Marrali et al., 2014). Thus, NOX2 might be a
biomarker of disease severity and hold therapeutic potential for
ALS and other neurodegenerative diseases (Sorce et al., 2017).
ITGB2 is expressed by microglia/macrophage cells, which are
highly associated with ALS progression. Upregulation of ITGB2
expression was observed in the early stage of ALS (Andrés-
Benito et al., 2017). A reported gene signature that included
ITGB2 was able to differentiate patients according to disease
severity (Cooper-Knock et al., 2017). TLR2 was upregulated in

reactive glia in the spinal cord of ALS patients, implying that
TLR/RAGE signaling was activated, which could promote the
progression of inflammation and cause motor neuron injury
(Casula et al., 2011). TYROBP gene variants have been identified
in ALS (Giannoccaro et al., 2017). VCAMLI is a potential marker
of preclinical AD and its expression was found to be correlated
with disease severity in PD (Andersson et al., 2019; Perner et al.,
2019). VCAM1 protein was also upregulated in ALS patients;
this may activate the blood-nerve barrier, allowing the entry of
circulating inflammatory cells into the peripheral nervous system
(Shimizu et al., 2014). Significantly increased expression of CTSS
was found in the anterior lumbar spinal cord in ALS cases
compared to control subjects (Berjaoui et al., 2015). Although the
C3ARI1, CCR1, CCR5, and FCERIG genes have not been reported
in relation to ALS, they have been linked to AD (Liu et al., 2014;
Litvinchuk et al., 2018; Sierksma et al., 2020; Wojta et al., 2020),
implying a role in neurodegeneration. The FCGR3A, HCK, and
FCGR2B genes also offer new directions for investigations on the
molecular mechanisms of ALS.

There were some limitations to this study. Firstly, because
of a lack of patient information such as age, age of disease
onset, disease severity, and phenotype, we were unable to
evaluate associations between immune cell populations and
disease progression. Secondly, the gene expression data were
derived from postmortem brain or spinal cord tissue, which is
difficult to obtain in clinical practice. Thirdly, the ALS gene
signature in our study was established through in silico methods;
experimental and clinical data are needed to validate our findings.

CONCLUSION

The results of our study demonstrate that immune cells were
abundant in the brain and spinal cord of ALS patients, suggesting
that they can serve as therapeutic targets. We identified 19 IRGs
that are closely associated with ALS and can differentiate ALS
patients from controls, and are thus potential biomarkers for
disease diagnosis and therapeutic monitoring.
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