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Abstract: In this research, dry bean pods husks (DBPH) were used as an adsorbent material after
minimum processing (without chemical substances consumption and without thermal treatment)
to remove methylene blue from aqueous solutions. The adsorbent surface characteristics were
investigated using SEM and FTIR analysis. For maximum removal efficiency, several parameters
that influence the dye adsorption were optimized using the Taguchi method. Equilibrium and
kinetic modeling, along with thermodynamic studies, were conducted to elucidate the adsorption
mechanism. Taguchi experimental design showed that the factor with the highest influence was
the adsorbent dose, with a percent contribution established by the ANOVA analysis of 40.89%.
Langmuir isotherm and pseudo-second order kinetic model characterizes the adsorption process. The
maximum adsorption capacity, 121.16 (mg g−1), is higher than other similar adsorbents presented in
scientific literature. Thermodynamic parameters indicate a spontaneous, favorable and endothermic
adsorption process, and their values show that physical adsorption is involved in the process. The
obtained results, and the fact that adsorbent material is inexpensive and easily available, indicate
that DBPH powder represents an effective absorbent for treating waters containing methylene blue.
Additionally, the Taguchi method is very suitable to optimize the process.

Keywords: optimization; Taguchi method; methylene blue; adsorption; equilibrium modeling;
kinetics; thermodynamics

1. Introduction

Dyes are an important category of compounds widely used in many industries: textile,
dye, plastic, paper, leather, rubber and cosmetics [1–9]. The residual effluents can contain
variable amounts of dyes and without prior treatment, before discharge, they can cause
serious problems both to the environment and human health [2,3,6,7,9–11].

Methylene blue (MB) dye is used in many industrial fields as well as in medicine.
Even if it is not very toxic and dangerous, this compound can cause negative effects on
human health: respiratory problems, vomiting, increased heart rate, cyanosis, eye irritation,
nausea, methemoglobinemia, diarrhea and jaundice [2,9,11–17]. Therefore, its removal
from process effluents is absolutely required.

Unlike other methods used to remove dyes from wastewater (coagulation, precipita-
tion, ion exchange, membrane processes, chemical oxidation, electrochemical processes,
biodegradation), adsorption has several essential advantages such as high efficiency, ease
of operation, flexibility and low costs [1,3,4,6–10,12–18].

The actual trend is to identify various new low-cost adsorbents such as natural materi-
als, industrial wastes, agricultural wastes and bioadsorbents [1,3,8,12–14].

Another major advantage is the fact that the adsorption process can be easily optimized
and modeled [19–24].
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The Taguchi method is used to optimize various processes without increasing costs. It
allows understanding the effect of variable process parameters in a small number of exper-
imental tests, and the results obtained lead to improved process performance [19,21–26].
The Taguchi method uses an orthogonal array that distributes the variables in a balanced
way, and the experimental results are converted into a signal-to-noise ratio (S/N). The
optimal value of the process parameters is given by the highest S/N ratio [19,21,22].

Common bean (Phaseolus vulgaris L.) is an important legume that grows in subtropical
and temperate regions. Its seeds are a very important source of food for large parts of the
population due to its nutritional properties (high source of dietary fiber and proteins, low
level of lipids), low cost and long-term storage possibility. Almost 27 million tones of beans
are produced annually in the world [27–29]. If common bean is grown for dry beans, a
significant amount of dry pod husks results after harvesting and separation of the grains.

The aim of the present paper was to use this product, after minimum processing
(without chemical substances consumption and without thermal treatment), to remove
methylene blue dye from aqueous solutions by adsorption. Scanning electron microscopy
(SEM) and Fourier transform infrared spectroscopy (FTIR) were carried out to study the
adsorbent surface characteristics. For maximum removal efficiency the parameters that
influenced the adsorption process were optimized by using the Taguchi method. For a
description of the adsorption process, equilibrium, kinetics and thermodynamic parameters
were calculated and discussed.

2. Materials and Methods
2.1. Adsorbent Preparation and Characterization

Dry bean pods husks (DBPH) were provided by a local agricultural producer from
Cerneteaz village, Romania. The husks were first washed using distilled water, then dried
at room temperature for three days and then at 90 ◦C for 24 h. The next operations to which
the material was subjected were grinding (with an electric mill), passing over a sieve (with
a mesh diameter of 2 mm), washing with distilled water (for turbidity and color removal)
and drying at 105 ◦C for 5 h.

SEM analysis (Quanta FEG 250 microscope, at 1600× magnitude) was used to study
the surface morphology of the adsorbent material. Identification of functional groups of the
adsorbent was performed by FTIR spectroscopy (Shimadzu Prestige-21 FTIR spectropho-
tometer). The FTIR spectrum was recorded after the solid adsorbent sample was ground
with IR transparent potassium bromide (KBr) and then pressed into a pellet.

2.2. Taguchi Experimental Design

The Taguchi (L27) orthogonal array was used to establish the optimum conditions for
the dye removal by adsorption. The effect of five factors, at three levels, on the removal
efficiency of dye was studied. Table 1 presents the controllable factors and their levels,
which were used in the Taguchi design.

Table 1. The controllable parameters and their levels.

Parameter Level 1 Level 2 Level 3

pH 2 6 10
Time (min) 5 30 50

Adsorbent dose (mg L−1) 0.5 1.5 2.5
Initial dye concentration (mg L−1) 50 150 250

Temperature (K) 285 296 306

The Taguchi approach converted the obtained experimental results into a signal-to-
noise (S/N) ratio, which was used to analyze the experiment quality and the validity
of the result. The terms “signal” and “noise” represent the desirable value (mean) and
the undesirable value (standard deviation) for the output characteristic, respectively. To
evaluate the experimental results, the highest adsorption efficiency was considered. In
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analyzing the signal-to-noise ratio of the Taguchi method, the “larger-the-better” option
(Equation (1)) was chosen [19,30–32]:

S
N

= −log10

[
1
n

n

∑
i=1

(
1
yi

)2
]

(1)

where: n represents the repetitions number under similar experimental conditions, and yi
represents the experimental response.

The S/N ratio was calculated and analyzed using the Minitab19 software.
To establish the percentage contribution of each factor to the efficiency of MB removal

and to evaluate the results of the Taguchi model, an analysis of variance (ANOVA-General
Linear Model) was used [19,30–33]. The necessary calculations were performed with the
Minitab 19 software.

2.3. Adsorption Experimental Studies

The adsorption studies were performed at constant mixing intensity, in Erlenmeyer
flasks, using 50 mL of MB solution together with the adsorbent material. The pH adjustment
was realized with dilute solutions of NaOH and HCl (0.1 N). The dye concentration was
determined by a UV–VIS spectrophotometer at 664 nm wavelength.

The adsorption capacity at equilibrium, (qe), and at time t, (qt), were calculated
with Equations (2) and (3), while the dye removal percentage R(%) was calculated with
Equation (4) [4,9,10,12,14]:

qe =
(C0 − Ce) · V

m
(2)

qt =
(C0 − Ct) · V

m
(3)

R(%) =
(C0 − Ce)

C0
× 100 (4)

where: C0 represents the initial MB concentration (mg L−1), Ce represents the MB equilib-
rium concentration (mg L−1), Ct represents the MB concentration at time t (mg L−1), V
represents the solution volume (L) and m represents the mass of adsorbent (g).

2.4. Equilibrium and Kinetic Modeling

Adsorption isotherms are very important for describing the solid-liquid adsorption
process. The Langmuir and Freundlich isotherms were used to investigate the adsorption
behavior. Their equations are presented below:

Langmuir isotherm : qe =
qm · KL · Ce

1 + KL · Ce
, (5)

Freundlich isotherm : qe = KF · C1/nF
e , (6)

where: qm represents the maximum absorption capacity (mg g−1), KL represents the Lang-
muir constant, KF represents the Freundlich constant and 1/nF represents an empirical
constant indicating the adsorption intensity [34–38].

A lot of useful information on the mechanism and efficiency of adsorption used to
design an industrial treatment plant is provided by kinetics studies. The pseudo-first-order
and pseudo-second-order models were used to model the experimental data.

Pseudo-first-order model equation : qt = qe(1 − exp−k1·t), (7)

Pseudo-second-order model equation : qt =
k2 · t · q2

e
1 + k2 · t · qe

, (8)
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where: k1 represents the pseudo-first-order model rate constant, and k2 represents the
pseudo-second-order model rate constant [34–38].

To establish the best-fitting kinetic and equilibrium models, the values of determina-
tion coefficient (R2), sum of square error (SSE), chi-square (χ2) and average relative error
(ARE) were determined with the equations described below [37]. The higher value for R2

and the smaller values for SSE, χ2 and ARE were taken into account when choosing the
most suitable models.

R2 = 1 −

n
∑

i=1

(
yi,exp − yi,mod

)2

n
∑

i=1

(
yi,exp − yi,exp

)2
(9)

SSE =
n

∑
i=1

(
yi,exp − yi,mod

)2 (10)

χ2 =
n

∑
i=1

(
yi,exp − yi,mod

)2

yi,mod
(11)

ARE =
100
n

n

∑
i=1

∣∣∣∣yi,exp − yi,mod

yi,mod

∣∣∣∣ (12)

where: yi,exp represents the independent variable experimental value, yi,mod represents the
modeled value, yi,exp represents the observed values mean o and n is the information total
number.

2.5. Thermodynamic Parameter Determination

The data of methylene blue adsorption, at different temperatures (285, 296 and 306 K),
were used to determine Gibbs free energy change, enthalpy change and entropy change,
according to the following equations [37,39,40]:

∆G0 = −RTlnKL (13)

lnKL =
∆S0

R
− ∆H0

RT
(14)

where: R represents the universal gas constant, KL represents the Langmuir constant and T
represents the absolute temperature.

2.6. Desorption Experimental Studies

In the desorption studies, the MB-loaded adsorbent was mixed with various desorp-
tion agents: 0.1 N HCl, 0.1 N NaOH and distilled water.

The desorption percent D(%) of dye was calculated with Equation (15):

D(%) =
md
ma

× 100 (15)

where: md represents amount of dye liberated by desorbing agent, and ma represents
amount of dye adsorbed on adsorbent.

3. Results and Discussion
3.1. Adsorbent Material Characterization

SEM analysis of the adsorbent material showed the presence of irregular pores with
different shapes and sizes on its surface (Figure 1a). After adsorption, the surface was
modified, and the pores were covered by dye molecules (Figure 1b).
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Figure 1. Scanning electron microscopy images of DBPH powder: (a) before and (b) after MB
adsorption.

FTIR spectroscopy was used to identify the presence of different functional groups
on the surface of adsorbent. The FTIR spectra illustrated in Figure 2 suggest cellulose
and hemicellulose as main components. The differences between the peak’s wavenumber
before and after adsorption are less than 10 cm−1, indicating an adsorption mechanism
that could include physical interaction or ion-exchange mechanism [41].
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Figure 2. FT-IR spectrum of DBPH powder.

The specific peaks of the main functional group are: 3406 cm−1—strong absorption
peaks of O-H stretching vibration [42]; 2924 cm−1—the peak belongs to -CH2 groups
of cellulose [43]; 1738 cm−1—C=O stretching vibration of carboxylic groups of hemi-
cellulose [44]; 1636 cm−1—O-H bending vibration of water sorption characteristics of
cellulose [45]; 1453 cm−1—the peak belongs to the bending of -CH groups of cellulose [43];
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1255 cm−1—C–O stretching and CH or OH bending of hemicellulose structures [40,46];
1026 cm−1—C–O, C–O–H, C–O–C, C–C, ring stretching vibration in cellulose and hemicel-
lulose [47]; 609 cm−1—the bending modes of aromatic compounds of cellulose [48].

3.2. Optimization of Adsorption Parameters

Five controllable factors at three levels were used in the Taguchi design to estimate
the optimum conditions for MB adsorption. Table 2 shows the L27 orthogonal array and
results obtained after each run. Using the rank of S/N ratio, along with total increments
(delta values), the order of the controllable factors’ significance was determined (Table 3).
The delta value measures the magnitude of the effect considering the difference between
the highest and lowest characteristic average for a controllable factor [19]. The factor that
had the greatest influence on the process was the adsorbent dose, while the factor with the
least influence was temperature. The optimum conditions of adsorption are also marked in
Table 3.

Table 2. Experimental layout of L27 orthogonal array and results obtained for removal efficiency and S/N ratios.

pH Time Adsorbent Dose Initial Dye Concentration Temperature Dye Removal Efficiency S/N Ratio

2 5 0.5 50 285 38.81 31.77
2 5 0.5 50 296 42.22 32.51
2 5 0.5 50 306 42.62 32.59
2 30 1.5 150 285 53.95 34.63
2 30 1.5 150 296 58.69 35.37
2 30 1.5 150 306 59.24 35.45
2 50 2.5 250 285 53.35 34.54
2 50 2.5 250 296 58.04 35.27
2 50 2.5 250 306 58.58 35.35
6 5 1.5 250 285 48.67 33.74
6 5 1.5 250 296 52.97 34.48
6 5 1.5 250 306 53.44 34.55
6 30 2.5 50 285 80.12 38.07
6 30 2.5 50 296 87.16 38.80
6 30 2.5 50 306 87.98 38.88
6 50 0.5 150 285 52.94 34.47
6 50 0.5 150 296 57.59 35.20
6 50 0.5 150 306 58.13 35.28
10 5 2.5 150 285 63.67 36.07
10 5 2.5 150 296 69.26 36.80
10 5 2.5 150 306 69.91 36.89
10 30 0.5 250 285 48.73 33.75
10 30 0.5 250 296 53.01 34.48
10 30 0.5 250 306 53.51 34.56
10 50 1.5 50 285 74.66 37.46
10 50 1.5 50 296 81.21 38.19
10 50 1.5 50 306 81.98 38.27

Table 3. Signal-to-noise S/N ratios response.

Level pH Time Adsorbent Dose Initial Dye Concentration Temperature

1 34.17 34.38 33.85 36.29 * 34.95
2 35.95 36.00 35.80 35.58 35.68
3 36.28 * 36.01 * 36.75 * 34.53 35.76 *

Delta 2.11 1.63 2.90 1.76 0.81
Rank 2 4 1 3 5

* The maximum S/N ratio indicates the optimum condition.



Materials 2021, 14, 5673 7 of 16

Figure 3 shows comparatively the response curves for the individual effects of dye
adsorption parameters on the S/N ratio and dye removal efficiency.
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Figure 3. The response curves for the individual effects of dye adsorption parameters on S/N ratio and dye removal
efficiency.

The adsorbent dose has a greater influence on process efficiency due to the adsorption
surface area and the number of sites available for adsorption increase with the adsorbent
material dose [14,36,49]. Another parameter that has a great influence on the process is pH.
Dye removal efficiency increases with the increasing of pH in the range 2–10. At lower
values of pH the adsorbent surface is positively charged, but with the increase in this
parameter the adsorbent surface became negatively charged and favored the electrostatic
attraction with MB cations, resulting in a better efficiency [14,36,39]. With the increasing
of the initial dye concentration, almost all the adsorption sites on the adsorbents became
saturated due to the accumulation of dye molecules on the surface of the adsorbent particle
and the removal percentage of the dye decreasing [1]. The impact of contact time was
significant at the beginning of the process when a large number of active sites on the
adsorbent surface were available for MB adsorption that generated a rapid increase in dye
removal efficiency, until the equilibrium was reached after 30 min. The temperature had a
lower influence on the dye removing process from the aqueous solution. The increase in
temperature reduces the solution viscosity and has a positive effect on the mobility of the
dye cations [39].

The order of the controllable factor influence predicted by the Taguchi design was
confirmed by analysis of variance (ANOVA-General Linear Model). Figure 4 illustrates the
specific influence of each factor on dye removal by adsorption on DBPH powder. Even
though the Taguchi experimental design is based on a limited number of experiments,
by analyzing the correlation of the predicted MB removal efficiency with experimental
results, it can be observed that the accuracy of the Taguchi method prediction was very
good (Figure 5).
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Figure 5. Comparison of experimental and predicted MB removal efficiency.

3.3. Equilibrium Modeling

While Langmuir isotherm assumes a monolayer adsorption on a homogeneous surface,
Freundlich isotherm considers a multilayer adsorption on a heterogeneous surface, with
the sites having different affinity [2,7,19].

Both isotherms are comparatively illustrated in Figure 6. The values of the isotherm’s
constants, summarized in Table 4, indicate that the adsorption process follows the Langmuir
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isotherm. The maximum adsorption capacity of 121.16 (mg g−1) is comparable to those
previously reported in the literature, even higher than other similar adsorbents (Table 5).
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Table 4. Langmuir and Freundlich adsorption isotherms constants.

Isotherm Model Parameters Value

Langmuir

KL (L mg−1) 0.032 ± 0.004
qmax (mg g−1) 121.16 ± 7.53

R2 0.9921
SSE 21.51
χ2 0.41

ARE (%) 3.89

Freundlich

Kf (mg g−1) 9.88 ± 1.79
1/n 0.51 ± 0.04
R2 0.9839

SSE 44.79
χ2 1.38

ARE (%) 6.77

Table 5. Maximum adsorption capacities for a number of previously similar studied adsorbents.

Adsorbent Material Maximum Adsorption Capacity (mg g−1) Reference

papaya seeds 555.55 [50]
corncob 417.12 [51]

banana stalks 322.58 [52]
shaddock peel 305.81 [53]

maize silk powder 234.10 [54]
broad bean peels 192.72 [55]
mung bean shell 165.92 [56]

fava beans 140.00 [57]
dry bean pods husk 121.16 This study
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Table 5. Cont.

Adsorbent Material Maximum Adsorption Capacity (mg g−1) Reference

coffee husks 90.09 [58]
garlic peel 82.64 [59]

peanut husk 72.13 [60]
peanut hull 68.03 [61]
oiltea shell 64.35 [62]

Daucus carota stem powder 55.50 [63]
yellow passion fruit waste 44.70 [64]

rice husk 40.59 [65]
corn husk 30.33 [66]

Bengal gram bean 24.70 [67]
banana peel 20.80 [68]

mucuna beans 19.97 [69]
orange peel 18.60 [68]

raw corn cobs 18.28 [70]
wheat shells 16.56 [71]

3.4. Kinetic Modeling

The pseudo-first-order and pseudo-second-order models were used in the kinetic
study (Figure 7). Kinetic parameters for these models were summarized in Table 6. The
pseudo-second-order kinetic model had a higher value for R2 and smaller values for SSE,
χ2 and ARE. Therefore, this model is best suited to describe the adsorption process.
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Table 6. Tested kinetic model parameters.

Kinetic Model Parameters Value

Pseudo-first-order

k1 (min−1) 0.349 ± 0.029
qe,calc (mg g−1) 41.98 ± 0.47

R2 0.9965
SSE 0.45
χ2 0.013

ARE (%) 20.55

Pseudo-second-order

k2 (g mg−1 min−1) 0.018 ± 0.001
qe,calc (mg g−1) 43.89 ± 0.16

R2 0.9998
SSE 0.26
χ2 0.009

ARE (%) 20.46

3.5. Thermodynamic Parameters

Thermodynamic parameters, calculated based on the plot presented in Figure 8 and
mentioned in Table 7, suggests an endothermic (∆G0 < 0, ∆H0 > 0), spontaneous and favorable
adsorption process. ∆S0 > 0 indicates the affinity of adsorbent material for dye [8,14]. The
physisorption is involved in the MB adsorption process when ∆H0 < 40 (kJ mol−1) [72,73]. In
addition, when ∆H0 < (20 kJ mol−1), the physical adsorption is affected by van der Waals
interactions [74]. Generally, ∆G0 values ranged between −20 (kJ mol−1) up to 0 (kJ mol−1)
and indicate that physical adsorption is involved, while ∆G0 ranging between −80 and
−200 (kJ mol−1) suggests a possible chemisorption process. The calculated value presented
in Table 7 suggests an adsorption based on physisorption and enhanced by a small chemical
effect [40].
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Table 7. Thermodynamic parameters for MB adsorption on DBPH powder.

∆G (kJ mol−1) ∆H (kJ mol−1) ∆S (J mol−1 K−1)

285 K 296 K 306 K
0.99 12.62−21.66 −22.86 −23.86

3.6. Desorption Studies

In order to consider the regeneration possibility of adsorbent material, the desorption
studies were performed in three different media (acid, neutral and basic). Figure 9 shows
the desorption efficiency of the tested regeneration agents. The acid was found as being
the best desorbing reagent with efficiency of about 85%.
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The efficiency of the adsorption process after several adsorption-regeneration cycles
was studied in the next stage of experimental determinations. The results are shown in
Figure 10. It can be seen that the efficiency of the dye removal process decreased after
each adsorption-regeneration cycle. If initially this parameter was 87% after the first
cycle, it decreased to 73%, and after the second cycle it reached 15%. Practically only the
first regeneration cycle is recommended, after which the adsorbent material has a lower
performance. DBPH powder is cheap and easily available in large quantities; therefore, we
consider that regeneration is not mandatory.
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4. Conclusions

The dye removal efficiency by adsorption on dry bean pods husks powder is influ-
enced by solution pH, contact time, initial dye concentration and adsorbent dose. The
Taguchi (L27) experimental design showed that the most influential factor was adsorbent
dose (with a percent contribution, established by the ANOVA (General Linear Model)
analysis, of 40.89%), followed by pH, initial dye concentration, time and temperature.
The accuracy of the Taguchi method prediction was very good (R2 = 0.998). Langmuir
isotherm and pseudo-second-order kinetic model describe the adsorption process. These
kinetic and equilibrium models had greater values for R2 and smaller values for SSE, χ2

and ARE. The maximum adsorption capacity, 121.16 (mg g−1), was higher compared to
other similar adsorbents reported in the literature. The thermodynamic parameter values
indicate a spontaneous, favorable and endothermic (∆G0 < 0, ∆H0 > 0) adsorption process.
Furthermore, they denote those electrostatic forces and van der Waals interactions are
implied in the physical adsorption process (∆H0 < 20 kJ mol−1). The desorption studies
performed in three different media (acid, neutral and basic) showed that the acid was the
best desorbing reagent with an efficiency of about 85%. The efficiency of the adsorption
process after several adsorption-regeneration cycles decreased after each cycle. After the
second cycle it reached 15%. The obtained results, and the fact that adsorbent material is
cheap and easily available, recommend DBPH powder as an efficient, low-cost adsorbent
for methylene blue removal from aqueous media and the Taguchi method as a very suitable
adsorption optimization algorithm.
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