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Incorporating structure context of 
HA protein to improve antigenicity 
calculation for influenza virus  
A/H3N2
Jingxuan Qiu, Tianyi Qiu, Yiyan Yang, Dingfeng Wu & Zhiwei Cao

The rapid and consistent mutation of influenza requires frequent evaluation of antigenicity variation 
among newly emerged strains, during which several in-silico methods have been reported to facilitate 
the assays. In this paper, we designed a structure-based antigenicity scoring model instead of 
those sequence-based previously published. Protein structural context was adopted to derive the 
antigenicity-dominant positions, as well as the physic-chemical change of local micro-environment 
in correlation with antigenicity change. Then a position specific scoring matrix (PSSM) profile and 
local environmental change over above positions were integrated to predict the antigenicity variance. 
Independent testing showed a high accuracy of 0.875, and sensitivity of 0.986, with a significant ability 
to discover antigenic-escaping strains. When applying this model to the historical data, global and 
regional antigenic drift events can be successfully detected. Furthermore, two well-known vaccine 
failure events were clearly suggested. Therefore, this structure-context model may be particularly 
useful to identify those to-be-failed vaccine strains, in addition to suggest potential new vaccine strains.

As a continuous threat to public health, seasonal influenza viruses are under constant mutation to escape host 
immunity. Previous reports have revealed that mutations are primarily occurred on the major antigen protein 
hemagglutinin (HA), where antibodies to HA can provide effective protection to virus infection1. Thus meas-
uring the antigenic change via hemagglutination-inhibition (HI) assay become frequent duties of World Health 
Organization (WHO) in recommending new vaccine strains. The titer results of HI assay can be calculated into 
the antigenic distance of the two strains (Dab)2, where log−1Dab above 4 (Dab >​ 2) is usually considered as an anti-
genic escape or variant3.

Since HI assay involves serum preparation and repetitive binding, computational prediction of antigenic var-
iation has been highly desired in the past years. In the early 1980s, researches indicated the antigenicity change 
of an influenza virus was related to the amino acid mutations at certain positions of HA1 domain4,5. Soon Smith’s 
work characterized 44 such positions contributing to antigenic cluster transition which started the computa-
tional estimation of antigenic distance6. Meanwhile, Lee reported that mutational accumulation over seven amino 
acids among 131 positions of HA1 protein may lead to effective immune escape7. Liao et al. further reduced the 
antigenicity-dominant positions to 20 through a regression model based on pair-wise scoring vector8. Recently, 
an interesting paper tested different groups of “artificial sites” through linear model on a larger dataset of 203 
pair-wise samples, and found that antigenic distance may relate to concurrent change in multiple regions of the 
HA1, and the additional positions on top of the 131 positions may still have antigenic activity3. The observed 
inconsistence was explained as that the evolutionary selective pressure may change on specific locations over 
time9.

Once the antigenicity-dominant positions are derived, counting the number of mutations seems to be indic-
ative of the antigenic distance. But ineffective detections were often noticed when few mutations occurred on 
critical positions interacting with antibodies7. Then, incorporation of physic-chemical features was shown to sig-
nificantly improve the predictive power of antigenic variation8,10–12. An outstanding example is PREDAC model, 
which calculated the physic-chemical features based on Wiley’s sites5 to successfully suggest the antigenic clus-
ters of global influenza11. Recently, Sun’s work developed a sequence-based antigenicity scoring function via a 

Department of Bioinformatics, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China. 
Correspondence and requests for materials should be addressed to Z.C. (email: zwcao@tongji.edu.cn)

received: 04 May 2016

accepted: 11 July 2016

Published: 08 August 2016

OPEN

mailto:zwcao@tongji.edu.cn


www.nature.com/scientificreports/

2Scientific Reports | 6:31156 | DOI: 10.1038/srep31156

bootstrapped ridge regression to quantify the antigenic distance between HA sequences13,14. Despite of the great 
success, all these sequence-based models pointed out that incorporating spatial information of HA structures, 
particularly those positions potentially involved into HA-antibody interactions, may further improve the predic-
tive performance3,10,11. However, none of structure-based models have been reported yet.

In this study, a structure-based antigenicity scoring model was established fully considering the con-
formational context of HA structures. Based on the largest and most comprehensive dataset containing 
3867 non-redundant HA pairs from 1968 to 2013, those potential antigenicity-dominant positions were 
derived considering the structural neighboring change on HA surface through iterative algorithm. Then, the 
micro-environmental descriptors covering physical-chemical properties of sub-epitope areas were subsequently 
integrated with glycosylation sites and position specific scoring matrix (PSSM) to build the antigenicity calcula-
tion model. Compared to sequence-based peers on independent testing dataset, our structure-based model shows 
significant ability in detecting antigenicity variants, in addition to better accuracy and sensitivity. At last our 
model was adopted to predict the global antigenicity drift of historical vaccine strains recommended by WHO.

Results
Derivation of antigenicity-dominant positions and model construction.  The assumption of our 
model includes 1) HA protein mutate frequently at antigenicity-dominant positions to escape evolutionary pres-
sure while surface residues interacting with antibodies may play more important role in relating to the antigenic-
ity change than those inner ones. 2) Not only the individual residue mutation, but also the local change of the 
micro-environment may lead to antigenicity deviation. Thus in addition to the mutational effects at sequence 
level, our model take further into account of the neighboring effects of surface mutations at structure level (See 
Method Modelling the antigenic variance). 47 positions were identified as antigenicity-dominant positions, locat-
ing on both head and stem region on HA protein (Fig. 1). Interestingly, these positions form 5 clusters on HA 
surface covering 28 epitope positions defined by PDB complexes (see supplementary Table S1, Fig. S1).

Figure 1 presented the workflow of the model. Various classification and regression algorithms were evaluated 
(see supplementary Table S2), and linear regression was adopted to build the prediction model. For any queried 
HA pair (Fig. 1 step 4), a fingerprint of 67-dimention descriptors is formulated summarizing the variance at the 

Figure 1.  Flowchart of model. (1) Data collection of HI assay results and the corresponding HA 
sequence; (2) Structure information as well as the mutation frequency were both considered to select a set 
of combinational positions contributing to antigenic variance. 47 positions containing 5 spatial clusters 
were derived at HA protein surface through iterative screening; (3) Descriptors used to build the model 
include PSSM score describing the sequence variance at 47 positions and micro-environmental change for 
5 spatial clusters of antigenicity-dominant positions; (4) Antigenicity variation can be calculated for any 
queried HA pairs.
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47 positions (Fig. 1 step 3). The first part of the 67-descriptors in step3 illustrates the evolutionary pressure at the 
47 positions via PSSM, while the second part of descriptors represents the local micro-environmental change 
for the 5 clusters, including isoelectric point, hydrophobicity, van der waals volume and glycosylation site. The 
physic-chemical properties of neighboring residues within 3 Å of each antigenicity-dominant position (including 
the inner residues) are summarized into physical-chemical properties for each cluster.

Model performance.  As a quantitative method, our model was extensively validated through internal valida-
tion on training dataset of 3747 HA pairs during year 1968–2010 and independent data variation on 120 HA pairs 
during year 2011–2013. The overall quantitative correlation coefficient between the predicted and experimental 
antigenic distance reached 0.896 on 10-fold cross-validation and 0.827 on the 120 independent testing pairs. 
Then, the performance of our 47 positions was compared that of 20 positions latest proposed by Liao’s method8, 
and the correlation coefficient of Liao’s 20 positions reached 0.761 on the 120 testing set (see supplementary  
Fig. S2). The overall ROC of our method achieves a high AUC value of 0.894 on 120 independent testing set to 
classify the antigenicity similarity (see supplementary Fig. S3).

Further, our model was compared with several online programs on independent testing dataset, including 
Lee and Chen’s7, ATIVS(Liao & Lee)8,10,15, Lees and Shepherd’s3 and AntigenCO14 (Table 1). In addition to clas-
sification accuracy, parameters of Mathew Correlation Coefficient (MCC) and F-score were also introduced to 
indicate the potential bias on unbalanced data and the overall ability considering both precision and sensitivity 
respectively (see Methods parameter definition). Among the 5 peers, ATIVS (Liao) gives the best results suggesting 
an excellent ability in classification with accuracy of 0.800, MCC of 0.595 and F-score of 0.854. Surprisingly, our 
structure-based model further enhanced the performance with even higher accuracy of 0.875, MCC of 0.748, and 
F-score of 0.904, showing significant improvement in unbiased performance on testing samples.

To investigate the more detailed deviation between experimental and computational results, we plotted the 
120 independent testing data in Fig. 2, with X-axis indicating the experimental antigenic distance in Dab and 
Y-axis indicating the predicted antigenic distance from different models. From left to right, the increasing Dab 
illustrates the change from similar antigenicity, across the border (log−1 Dab =​ 4, Dab =​ 2)3, then to antigenicity 
variant. We can see that the distribution of Dab is highly uneven, with a condensed tendency near the border 
region. From our statistics, 89.167% of the testing data falls into the region of Dab∈​[0, 4] (exclude Dab =​ 2), and 
40% of testing data falls in Dab ∈​[1, 3] (exclude Dab =​ 2). We then defined a stringent fuzzy region I of Dab∈​[1, 3] 
(exclude Dab =​ 2) and clear region I as Dab outside of [1, 3]. A more relaxed fuzzy region II was further defined as 
Dab∈​[0, 4] (exclude Dab =​ 2) and clear II region as Dab outside [0, 4].

In Fig. 2, red cross marks the wrong predictions, and the blue marks the correct predictions. We found that 
prediction in both fuzzy regions seems to be more difficult than that in clear regions. The prediction accuracy of 
available methods range from 54.206% to 77.570% in the relaxed fuzzy II region, and 35.417% to 70.833% in the 
stringent fuzzy I region (see supplementary Table S3). In contrast, it’s easier to make correct predictions by all 
methods in the clear regions. It is reasonable because clear regions represent the highly similar or highly different 
antigenicity, where simply counting the number of mutations can discriminate major escaping cases in clear 
regions (see supplementary Fig. S4).

As the available data tends to concentrate towards the border regions where the prediction near the border is 
highly challenging, we focused on the detailed performance of different methods in fuzzy regions. Our method 
can reach the accuracy of 79.167% in fuzzy region I and 86.916% in fuzzy region II respectively. Meanwhile, the 
second best method is ATIVS (Liao) with accuracy of 70.833% in fuzzy I and 77.570% in fuzzy II respectively. 
In addition, our model provides the least root mean squared error (RMSE) among all quantitative peers in both 
fuzzy regions (see supplementary Table S3). Most importantly, our method reduces the false negatives to zero in 
quadrant 2, indicating the outstanding ability to detect antigenic escaping cases (Fig. 2E).

To evaluate the contribution of structure-based features, we tested alternative model using sequence-based 
features only. Table S4 indicates that incorporating structure-context features can improve the overall model 
performance from accuracy of 0.85 to 0.875, particularly it can enhance the prediction sensitivity of antigenic 
variance from 0.944 to 0.986. The robustness of our model is also tested to the deviation of modelled structures. 
We compared the difference of antigenic distance using 24 theoretically modelled structures instead of their crys-
talized HAs from PDB database. Details can be found in supplementary Table S5 and Preprocessing of structure 
modeling. The theoretical Dab between modelled structures to each of 288 HAs in our dataset was calculated via 
our model. Similar work was done for the 24 crystalized structures. Given that 14 out of the 24 are incomplete 
sequences in modelling HA structures, the results showed no difference for 23 out of the 24 structures, suggesting 
the high robustness of our model using homology modelled structures.

Methods Accuracy MCC F-score Sensitivity
Number of 
positions

Lee and Chen’s method 0.575 0.274 0.514 0.375 131

Lees and Shepherd’s 
method 0.725 0.516 0.723 0.597 241

AntigenCO 0.725 0.411 0.792 0.875 38

ATIVS(Lee) 0.767 0.544 0.788 0.722 17

ATIVS(Liao) 0.800 0.595 0.854 0.972 20

Our method 0.875 0.748 0.904 0.986 47

Table 1.   The performance of peering methods on 120 independent testing HA pairs.
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Detection of antigenic drift for vaccine strains.  Because of the potential ability in detecting 
antigenic-escaping strains, we further applied our model to evaluate the historical data for WHO recommends 
vaccine strains. Every year, WHO proposes vaccine strains for southern and northern hemisphere respectively 
for the coming influenza season. An ideal vaccine strain would preferably provide wide protection against the 
majority of circulating strains during valid time16. Traditionally, the antigenic deviations are tested via HI assays 
between proposed vaccine strains and selected circulating strains. Here, we show the high-throughput way to 
achieve above goal via our structure-based method.

The theoretical antigenicity coverage was dynamically calculated for each WHO vaccine strain as the propor-
tion of antigenic similar strains among all circulating strains in corresponding year (1994 to 2015). Figure 3 illus-
trates the results of northern vaccine, results of southern vaccine can be found in supplementary Fig. S5. It can 
be seen that most of the vaccine strains could successfully cover the antigenicity of a high portion of circulating 
strains (Fig. 3A), suggesting the wide efficacy during valid times. Despite of varied coverage, most vaccine strains 
displayed an inverted-V distribution of antigenicity coverage, with an ascending-maintaining-descending shape. 
Among the 12 vaccine strains, only A/Sydney/05/1997 was proposed as vaccine strain before the peak year of 
antigenicity coverage, and 5 vaccines were suggested after the peak year, while 6 vaccines were recommended in 
the year of peak coverage. Surprisingly, the antigenicity coverage of strain A/Johannesburg/33/1994 reached the 
highest coverage of over 78% in 1994 in northern temperate, but it was recommended as vaccine strain in 1995 
when its coverage had dropped sharply. Same occurred to vaccine strain A/Fujian/411/2002, hinting a noticeable 
lag between the vaccine recommendation and the rapid evolution of virus antigenicity.

Figure 2.  Detailed performance of representative methods on independent testing data of 120 pairs. Panel 
(A–E) demonstrate the correlation between predicted Dab  (Y-axis) and experimental Dab (X-axis). In each panel, 
blue cross indicates those correctly classified pairs, with true negatives in quadrant 1 and true positives in 
quadrant 3. Red ones represent misclassified pairs, with false negatives in quadrant 2 and false positives in 
quadrant 4. Dotted line indicates the fuzzy regions. The fuzzy region I (Dab ∈​[1, 3], exclude Dab =​ 2) was colored 
in gray. For better illustration, overlapped point was rearranged by slight deviation randomly without changing 
the overall classification. Lee and Chen’s method was a qualitative method and does not provide antigenic 
distance, thus was not compared in here.
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Interestingly, significant low coverage of vaccine strains was detected as potential vaccine failures from 
Fig. 3A. For instance, in the season of 2003–2004, WHO recommended A/Moscow/10/1999 as vaccine strain. 
However, it was reported that 87% of the isolated viruses in this season were antigenically similar to a drift variant 
A/Fujian/411/2002, instead of A/Moscow/10/199917. In our modelled result, the extremely low theoretical cover-
age of A/Moscow/10/1999 was successfully detected as only 10.746%. Similarly, a very low theoretical antigenic 
coverage of 40.043% was also detected for vaccine strain of A/Texas/50/2012 in 2014–2015 season. The reported 
vaccine effectiveness in 2014–2015 were only 13% from the observational study of clinical outcomes (95% confi-
dence interval: 2 to 23)18.

Similar calculation was done for peering methods of Lee and Chen’s7, ATIVS(Liao & Lee)8,10,15, Lees and 
Shepherd’s3 and AntigenCO14 (see supplementary Fig. S6). It can be seen some peer methods gave very low 
antigenicity coverage for those successful vaccine strains, even in the first year of being proposed. Examples are 
vaccine strain of 2000 and 2012 by Lee and Chen’s, ATIVS (Lee), Lees and Shepherd’s. Similar case is vaccine 
strain of 2004 and 2006 by AntigenCO. ATIVS (Liao) gave much better prediction of vaccine coverage than 
other peers, including the vaccine failure of 2003. But the well-known vaccine failure of 2014 was not detected by 
ATIVS (Liao) from Fig. S6C.

Figure 3.  Vaccine coverage in northern temperate and three continents for the recent 20 years. In subgraph 
(A–D), X-axis represents years from 1994 to 2015 and Y-axis represent vaccine coverage of each year. Each line 
refers to the antigenicity coverage of a vaccine strain from its emerging year to two years after being replaced 
by updated vaccine strain. Red stars indicate the recommendation years of the vaccine strain, while black dots 
labels the year being updated. Red box labeled the detected vaccine failure in seasons of 2003–2004 and  
2014–2015.
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In the three main continents of northern hemisphere, most of the vaccine strains share roughly similar 
coverage trend (Fig. 3B–D). But at a given time, different coverage was detected in different continents for a 
same vaccine strain. For instance of 1995–1996, coverage of A/Wuhan/359/1995 keep increased with 75% 
coverage in Europe (Fig. 3C), nevertheless the coverage decreased rapidly in Asia (Fig. 3D) and the coverage 
remain at low level in North America as well as in northern temperate (Fig. 3A,B). Similarly, the antigenicity of  
A/Fujian/411/2002 covered over 75% of circulating strains in Asia when it was firstly detected in 2002, and soon 
rose to peak in 2003 in both Asia and North America. But it was only proposed as vaccine strain in 2004 when 
its antigenicity coverage peaked in Europe but dropped significantly in both Asia and North America. In 2012, 
Jiang’s team pointed out that the emergence time and dominance magnitude of antigenic clusters were different 
in different areas of the world, which agrees highly well with our findings11. Thus, timely proposal of regional vac-
cine strains according to local antigenicity evolution may help to enhance the effectiveness of vaccine measures.

Discussion
In-silico evaluation of antigenicity change in influenza was proven useful to aid experimental screening, 
while better models have always been desired. In this paper, we constructed an improved method to calculate 
the antigenicity distance for H3N2 influenza incorporating structure context of HA protein. Compared with 
other sequence-based peer methods, our structure-based model can significantly improve the discovery rate of 
antigenic-escaping strains, in addition to overall prediction accuracy.

To realize that, we collected a comprehensive training dataset with 3747 pairs of HI assay values to structur-
ally derive antigenicity-dominant positions. It is realized that different antigenic positions may be derived from 
different dataset and models. Despite of the difference, certain overlapping was found between our 47 positions 
and the previous reports. For instance, 46 positions were found to be covered by Bush’s works4 and 29 common 
positions were included by the widely used 44 positions proposed by Smith6. The 47 sites we identified are all on 
protein surface, while Smith’s sites include two buried residues (V230I and V202I). Moreover, 7 recently reported 
positions responsible for major antigenic change were all covered by our set19. Since the antigenicity-dominant 
positions were reported to evolve with time in HA antigen, continuous accumulation of HI data and timely updat-
ing of antigenicity-dominant positions would benefit in silico prediction, as is seen in this paper.

Apart from the contribution of antigenicity-dominant positions, the improved performance of our model is 
also contributed by full consideration of the PSSM profile and the structure context over antigenicity-dominant 
positions. Previous features mainly focused on sequence-based characters like the number of mutations, residual 
distribution, physicochemical properties of amino acids, glycosylation site and so on3,7,11–13. In this paper, the 
mutations are further evaluated by a profile of PSSM, which provides a more detailed description on evolution 
pressure at antigenicity-dominant positions at sequence level rather than the simple mutation code (binary yes 
or no). More importantly, neighboring residues of antigenicity-dominant positions, including surface and inner 
ones, are also considered to better describe the local environmental change around target position. Thus, our 
model is based on, but not limited to the investigated antigenicity-dominant positions.

Currently, prediction of vaccine strain has been pretty successful11, while early detection of vaccine failure is 
still challenging. Partial reason for above may be related to the unbalanced dataset. From alternative perspective, 
vaccine failure is mainly caused by the accumulated mutations in the HA populations which leads to the gradual 
escape from the host immunity. In this sense, the peak distribution of antigenic distances between new mutant 
strains to the previous vaccine strain is expected to drift from small deviation to larger distance, during which 
the antigenic distances of a fair portion of new strains would fall into nearby regions of phase change(Dab =​ 2). 
Thus we defined the fuzzy regions to imply these sensitive zones, which is important for early detection of vaccine 
failure. Incorporating structure context can just increase the sensitivity to remove false negatives and reduce 
false positives during the fuzzy regions. The subsequent large-scale prediction of antigenic coverage for historical 
vaccines proved that our model can indeed detect the vaccine failure before experimental alert, in addition to 
provide regional suggestions.

Influenza’s consistent genetic drift is a well-known limitation of the vaccine and it is highly important to alter 
the to-be-failed vaccine in order to update vaccine strains timely. Our paper provided an improved model for 
antigenicity calculation incorporating structure-context of HA antigen for influenza A/H3N2 virus. Although 
several other factors contribute to the vaccine effectiveness, application to real-world data showed the ability of 
this model in sensitively identifying the vaccine failure cases, in addition to suggesting new vaccine strains. We 
are currently collecting HA proteins for structure modelling, and building the on-line tools. Future plan also 
includes building improved models for additional subtypes of influenza so that it can serve the public better.

Methods
Dataset.  HI-assay results were firstly collected from reports of international organizations and papers. Then, 
antigenic distance (Dab) of 3867 non-redundant HA pairs were derived from 288 unique HA sequence covering 
3539 strain pairs. Among which, 3747 HA pairs involving strains from 1968 to 2010 were adopted as training, 
while the left 120 HA pairs from 2011 to 2013 were used as the independent testing dataset.

=D log H H
H H (1)

ab
aa bb

ab ba

The HI titer Hab is the maximum dilution of serum raised again strain a, which is necessary to inhibit cell 
agglutination caused by strain b. Strain a and strain b were defined as antigenic variants (negative) when the 
log−1Dab was above 4, otherwise, the pair was treated as antigenic similar (positive)3. Further, 1848 representative 
HA structures were modeled by Modeller 9.1120 representing 18072 HA1 sequence longer than 327 amino acids 
from 1968 to 2015 from various international databases: The influenza virus resource at the National Center 
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for Biotechnology Information21, Global Initiative on Sharing All Influenza Data (http://platform.gisaid.org/), 
FluKB22, Influenza research database23 and reports from National Institute for Medical Research (http://www.
nimr.mrc.ac.uk/). Details can be found in supplementary Data Collection and Data Preprocessing.

Identifying antigenicity-dominant positions.  As antigenicity recognition often occurs at binding inter-
face of antigen, we started from those surface mutations in correlation with antigenicity distance in training data. 
After multiple sequence alignment, each position i from 1 to the full alignment length 330 will be considered if:

1) The position mutated frequently (>​10%) in historical monitoring.
2) Or the mutation at this particular position tends to cause immunity escape with escape rate ERi ≥​ 70%.

=
∑

∑
ER

v p
v p (2)

i
escape i

all i

vpi =​ 1 when a mutation occurred at position pi in the HA pair, otherwise vpi =​ 0; while ∑ v pescape i means the 
number of antigenically escaped pairs which all mutate at position pi.

After mapping those positions to template structure (PDB id: 3HMG), 100 surface positions24 are collected 
with solvent accessible surface area (SASA) over 1Å2, which was calculated by Naccess V2.1.1. As antigenic var-
iation may relate to mutations at multiple positions, it can be further correlated with Dab by linear regression.

3) Define position set as P, initial position set as P(0) (P(0) ⊆​100 surface positions), candidate position set 
waiting to be screened as Pc (Pc ⊆​100 surface positions), iterative position set at step j as P(j), final key position set 
as P(f ).

4) For each HA pair with Dab, a binary vector was assigned to describe the mutation at each aligned position 
between two HA sequences as follows:

= ∈ =B P S v p p P n card P( ) ( ), , ( ) (3)
H A H A

n i i
( , )

1:
a b

5) Then, 18 seed positions were taken as initial position set P(0) by taking the consensus positions previously 
reported4–6 to generate initial vector B(P(0)) for iterative screening. 61 surface positions within 10 Å of the 18 seed 
positions were adopted as candidate position Pc for iterative screening.

6) Linear regression model: intuitively, each position is added one by one from candidates Pc to initial position 
set P(0) to test their contribution to antigenicity variation, until the optimized position combination is reached as 
the final position set to give the best contribution to antigenicity variation. Details are described as below:

Through 10-fold cross-validation, the correlation coefficient between the predicted antigenic variance 
= Q q q q( , , )1 2 3747  and true antigenic values of = R r r r( , , )1 2 3747  was calculated as follows. Q is obtained by 

position set and R is derived from HI-assay.

=
∑ − −

∑ − ⋅ ∑ −

=

= =

CC P
q q r r

q q r r
( )

( )( )

( ) ( ) (4)

t t t

t t t t

1
3747

1
3747 2

1
3747 2

For step j in iterative screening, randomly add one candidate position to iterative position set:

′ = + ∈−P P p p P, (5)
j j

i i
c( ) ( 1)

If adding this candidate position pi will improve the correlation coefficient ′ > −CC P CC P( ) ( )j j( ) ( 1)  then 
accept this position into iterative set = ′P P( )j j( ) ( )  if β ≠ 0i , or remove those previously added positions whose 
β = 0i  from iterative set, βi was the weight of pi.

Otherwise, reject the candidate position if ′ ≤ −CC P CC P( ) ( )j j( ) ( 1) , until:

∈ − → ′ > =− −p P CC P CC P P P( ) ( ),i
C j j f j( ) ( 1) ( ) ( 1)

Finally, P f( ) included 47 selected antigenicity-dominant positions (Fig. 1).

Modelling the antigenic variance.  Quantitative descriptors for antigenicity-dominant positions.  
Quantitative descriptors are derived covering both position-specific residue distribution and 
micro-environmental features for the antigenicity-dominant positions in the 3-D context. A position specific 
scoring matrix (PSSM) was constructed by position-specific iterated BLAST (PSI-BLAST) version 2.2.2825 for the 
47 positions using 679 HA sequence form 1968–2010 as background (see supplementary Fig. S7).

Those antigenicity-dominant positions were clustered in 3-D space. After testing, physical-chemical 
AAindex26 of isoelectric point (ZIMJ680104), hydrophobicity (LEVM760101), and van der waals volume 
(FAUJ880103) were chosen as effective descriptors for further calculation, then the properties of neighboring 
residues within 3 Å of each key positions (including the inner residues) are summarized into physical-chemical 
properties for each clusters. The correlation between any two of the above index were less than 0.8. Also, muta-
tions related to glycosylation sites were also considered for each cluster.

Finally, for the HA pair of HAa and HAb, a 67-array quantitative descriptor for antigenicity-dominant posi-
tions (QDAP) was derived as below containing PSSM score and micro-environmental score (MES):

http://platform.gisaid.org/
http://www.nimr.mrc.ac.uk/
http://www.nimr.mrc.ac.uk/
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= +QDAP PSSM MES{ } (6)H A H A H A H A H A H A
1:67
( , )

1:47
( , )

1:20
( , )a b a b a b

= + + +MES Iso Hydro Van GS{ } (7)H A H A H A H A H A H A H A H A H A H A
1:20
( , )

1:5
( , )

1:5
( , )

1:5
( , )

1:5
( , )a b a b a b a b a b

PSSM H A H A
1:47
( , )a b  is the absolute difference of PSSM scores for amino acids on corresponding positions. 

Iso H A H A
1:5
( , )a b , Hydro H A H A

1:5
( , )a b , and Van H A H A

1:5
( , )a b  stands for absolute difference value of the isoelectric point, 

hydrophobicity and van der waals volume respectively of the corresponding clusters in a HA pair. The N-linked 
glycosylation pattern is defined as Asn-X-Ser/Thr, where X is any amino acid apart from proline, glycan could be 
attached to asparagine27. The value of 1 or 0 would be assigned to the position according to whether it is glycosyl-
ation site or not. The cluster difference GS H A H A

1:5
( , )a b  is calculated as the edit distance between two glycosylation 

vectors of each cluster.

Linear regression model.  Finally, linear regression was adopted to fit the parameters of 67-dimension descriptors 
for antigenic variation on the 3747 pairs of training data, as follows:

α α α α ε= + + + + +

↓
α



D QDAP QDAP QDAP

Train QDAP QDAP QDAP( , , , ) (8)
ab

Pair Pair Pair
0 1 1 2 2 67 67

3747 1:67 1:67 1:67
1 2 3747

Till the optimized model is reached as below:

γ γ γ γ= + + + +��D QDAP QDAP QDAP (9)ab 0 1 1 2 2 67 67

Score Dab  stood for the predicted antigenicity variation between two HA proteins. The experimental D sab  
from the HI assay were used to train the model, so that the score of our model Dab  can be directly compared 
to experimental Dab. Thus the escape threshold for the predicted Dab  is the same as that of the Dab from HI 
assay.

Antigenicity coverage of vaccine strain.  The antigenicity coverage of each WHO recommended vaccine 
strain in each year was defined as below:

=VC C
M (10)Y N

where VCY N
 means the vaccine coverage for year N, M means the total number of emerging strains collected in 

year N, C means the number of antigenic similar strains of the vaccine strain in M.

Parameter definition.  To evaluate the performance of our model, statistical parameters were defined as 
follows:

=
+

+ + +
TP TN

TP FP TN FN
Accuracy

(11)

=
× − ×

+ + + +
TP TN FP FN

TP FP TP FN TN FP TN FN
MCC

( )( )( )( ) (12)

=
+

TP
TP FP

Precision
(13)

=
+
TP

TP FN
Sensitivity

(14)

− = ⋅
⋅
+

precision sensitivity
precision sensitivity

F score 2
(15)

here, TP represents true positive, TN represents true negative, FP represents false positive and the FN represents 
false negative. Also, to evaluate our regression model, correlation coefficient was introduced as follows:

= ∑ − −

∑ − ∑ −
=

= =

X X Y Y

X X Y Y
Correlation coefficient

( )( )

( ) ( ) (16)

i
n

i i

i
n

i i
n

i

1

1
2

1
2

where Xi represents the predicted value, Yi represents the actual value, X refer to average of Xi, and Y  refer to the 
average of Yi.
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