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ABSTRACT

Methylation can occur on histidine, lysine and argi-
nine residues in proteins and often serves a regula-
tory function. Histidine methylation has recently at-
tracted attention through the discovery of the hu-
man histidine methyltransferase enzymes SETD3
and METTL9. There are currently no methods to en-
rich histidine methylated peptides for mass spec-
trometry analysis and large-scale studies of the mod-
ification are hitherto absent. Here, we query ultra-
comprehensive human proteome datasets to gener-
ate a resource of histidine methylation sites. In HeLa
cells alone, we report 299 histidine methylation sites
as well as 895 lysine methylation events. We use this
resource to explore the frequency, localization, tar-
geted domains, protein types and sequence require-
ments of histidine methylation and benchmark all
analyses to methylation events on lysine and argi-
nine. Our results demonstrate that histidine methy-
lation is widespread in human cells and tissues and
that the modification is over-represented in regions
of mono-spaced histidine repeats. We also report
colocalization of the modification with functionally
important phosphorylation sites and disease associ-
ated mutations to identify regions of likely regulatory
and functional importance. Taken together, we here
report a system level analysis of human histidine
methylation and our results represent a comprehen-
sive resource enabling targeted studies of individual
histidine methylation events.

GRAPHICAL ABSTRACT

INTRODUCTION

Methylation of histidine is a post translational modification
(PTM) that was first described to occur on actin (1) and
myosin (2) proteins around five decades ago. It can occur at
two distinct positions denoted as 1-methyl histidine (1MeH)
and 3-methyl histidine (3MeH) (here collectively referred to
as Hme) (3). Despite being known to the scientific commu-
nity for long it has gained far less attention than the well-
studied protein methylation events on lysine and arginine
(3), which are considered as key epigenetic modifications
linked to chromatin compaction state and gene activity (4).

Until recently, little was known about the enzymology
and significance of Hme. In 2018, SETD3 was uncovered
as the first human methyltransferase enzyme targeting his-
tidine and being responsible for the well-established methy-
lation of Actin-H73 (5). This finding was shortly thereafter
independently validated and functionally shown to modu-
late smooth muscle contractility (6). In addition, the hu-
man METTL18 (also known as C1orf156) enzyme rep-
resents a clear homolog to the established yeast methyl-
transferase Hpm1 (systematic name YIL110W) targeting a
RPL3-H243 in Saccharomyces cerevisiae (7,8), but its en-
zymatic activity remains to be validated. Finally, human
METTL9 has been shown to act as an enzyme with broad
specificity generating 1MeH in motifs composed of consec-
utive histidine residues spaced by small amino acids (9).

Aside from the few recent protein-centric studies focus-
ing on individual Hme events, little is known about the
abundance and function of the PTM. PTMs are most fre-
quently studied at a large scale by affinity enrichment of
modified peptides, or proteins, followed by mass spectrome-
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try (MS)-based identification of targeted sites (10). Such ap-
proaches have been described for lysine methylation (Kme)
(11,12) and are well-established for arginine methylation
(Rme) (13). For many PTMs, including Hme, there are no
established affinity reagents, creating a need for innova-
tive approaches for characterization. In such cases, query-
ing ultra-comprehensive proteomic datasets for mass shifts
corresponding to distinct modification events has recently
emerged as a promising alternative (14).

Studies dedicated to global characterization of Hme are
until this date absent. To explore the PTM we here mined a
panel of ultra-deep human proteome datasets (15) to gen-
erate an extensive resource of Hme sites. The analysis re-
vealed that Hme is widespread in human cells, and uncov-
ers its abundance, context, and function in relation to Kme
and Rme. To the best of our knowledge, the present study
represents the first system level analysis of Hme and is to
date the most comprehensive draft of the human histidine
methylome.

MATERIALS AND METHOD

Querying proteomic data for methylation events

Publicly available comprehensive proteomic datasets (Pro-
teomeXchange id: PXD004452) previously published by
Bekker-Jensen et al (15) were downloaded from Pro-
teomeXchange (16). The datasets were chosen based on ex-
haustive proteome depth, obtained through extensive off-
line peptide fractionation using reverse phase chromatog-
raphy at alkaline pH and analysis of individual fractions
using fast scanning MS methods with a Q-Exactive HF
mass spectrometer (15). The analyzed data correspond to
LC-MS/MS analysis of tryptic peptides from human tis-
sue biopsies from colon, liver and prostate as well as the
human cell lines A549, HCT116, HEK293, HeLa, MCF7
and SY5Y. In addition, an in-depth analysis of data derived
from HeLa cell sample digested with a panel of complemen-
tary proteases including trypsin, chymotrypsin, Glu-C and
Lys-C was included to achieve comprehensive proteomic
coverage.

All raw MS files were searched using MaxQuant (17) (ver-
sion 1.6.0.17i) against a database containing the canoni-
cal isoforms of human proteins (Uniprot Complete pro-
teome: UP 2017 04/Human/UP000005640 9606.fasta) us-
ing the default software settings with few exceptions. To re-
duce the search space, the number of allowed missed cleav-
ages was restricted to one. In addition to the default variable
modifications, corresponding to acetylation of protein N-
termini and oxidation of methionine, mono-methylation of
lysine and arginine, di-methylation of lysine and arginine,
tri-methylation of lysine as well as the custom generated
modification mono-methylation of histidine were included
as variable modifications.

Bioinformatic analyses

Bioinformatic analysis was performed using the Python
programming language: Python Language Reference
(version 3.8), available at http://www.python.org. The
MaxQuant output files were processed, removing an-
notated contaminants. Modifications identified in one

or more biological replicates containing a mono-, di- or
trimethylated modification at an arginine, lysine or histidine
were defined as a unique methylation site. If a methylated
peptide matched to multiple protein entries, all proteins
were categorized as methylated in the downstream analysis.
To benchmark our identified sites, the publicly available
resource PhosphoSitePlus (version 6.5.9.3) (18) was used
as a reference. Protein localization data was derived from
the SubCellularBarcode project (19) and the subcellular
localization of proteins in the cell line MCF7 was chosen
as surrogate dataset in order to infer localization of our
identified methylated proteins. Complete predicted sub-
cellular localization of all methylated proteins was also
done using the computational algorithm BUSCA (20),
allowing for protein assignment into 9 distinct subcellular
compartments. Identification of methylations colocalizing
with phosphorylation sites were achieved by searching
curated phosphoproteomic dataset (21) for known phos-
phorylations at a distance of 10 amino acids, and the
functional score of sites was defined as described in original
publication. Annotated protein domains were accessed
using the resource portal InterPro (version 82.0) (22) and
individual methylation sites were mapped to the interior
regions of protein domains annotated in the Pfam database
(version 33.1) (23). Functional enrichment analysis was
conducted using the String database (version 11.0) (24)
and multiple testing was corrected for with the Bonferroni
method for false discovery rate (FDR). Logo and enrich-
ment analysis of amino acids flanking methylation sites
were performed using the iceLogo server and the human
precompiled Swiss-Prot peptide sequence composition as
reference (25).

Proteomic characterization of METTL9 knockout cells

A HAP-1 METTL9 knockout (product number
HZGHC004343c010, Horizon Genomics) and a wild
type control cell line (product number C631, Horizon
Genomics) were propagated and maintained in IMDM
Glutamax media (Thermo Fisher Scientific) supplemented
with 10% fetal bovine serum (Thermo Fisher Scientific), as
well as 100 U/ml penicillin and 100 U/ml streptomycin.
The cells were lysed in a guanidine hydrochloride-based
buffer and peptides were prepared for analysis using a
Q Exactive HF mass spectrometer (26) as previously
described (27).

The LC-MS analysis was performed using an EASY-nLC
1200 HPLC system (Thermo Fisher Scientific) coupled to
a Q Exactive HF orbitrap instrument. For each single shot
proteome analysis, 500 ng peptide was separated using a 3 h
chromatography gradient linearly ramped from 10% to 30%
buffer B (80% acetonitrile in 0.1% formic acid) in buffer A
(0.1% formic acid) during 170 min, whereafter the gradi-
ent was steeply ramped to 45% buffer B during 10 minutes,
before column washing and equilibration. The mass spec-
trometer was set to continuously sample peptides through
a Top12-based data dependent acquisition method. Target
values for the full scan mass spectra were set to 3e6 charges
in the m/z range 375–1500 and a maximum injection time
of 25 ms and a resolution of 60 000 at a m/z of 200. Frag-
mentation of peptides was performed using higher energy
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Figure 1. Biochemistry of protein histidine methylation. Structure of the different methylated forms of histidine. The methylations are enzymatically
introduced by histidine (H) methyltransferases (HMT) and may potentially be removed by histidine (H) demethylases (HDM).

C-trap dissociation (HCD) at a normalized collision energy
of 28 eV. Fragment scans were performed at a resolution of
15 000 at a m/z 200 with a AGC target value of 1e5 and
a maximum injection time of 22 ms. To avoid repeated se-
quencing of peptides, a dynamic exclusion window was set
to 30 s.

The raw MS files were analyzed using MaxQuant (version
1.6.0.17i) with identical settings to the exploratory searches
of published proteomic datasets, statistical analyses was
performed using Perseus (28). First, LFQ intensities were
imported from the MaxQuant output file denoted ‘protein
groups’. Common contaminants, proteins only identified as
modified and proteins hitting the reverse decoy database
were thereafter removed by filtering. The resulting data ma-
trix was filtered for proteins detected in at least 70% of the
replicates in one experimental condition. The data was then
log-transformed and missing values were imputed from the
lower tail of the abundance distribution using the default
setting in Perseus (28). Proteins displaying significance dif-
ferences between the conditions were identified through
a Student’s t-test (P < 0.05) with P-values corrected for
multiple hypothesis testing using the Benjamini–Hochberg
method. For cluster analysis, LFQ intensities for proteins
displaying a significant difference between the conditions
were z-scored and row and columns trees were generated
using Euclidean distance and Pearson correlation, respec-
tively. Gene ontology analysis of proteins over- and under-
represented in METTL9 knockout cells, was performed us-
ing the embedded function in Perseus and P-values were
corrected using the Benjamini–Hochberg method.

RESULTS

Histidine methylation (Figure 1) is a poorly character-
ized PTM which has recently attracted notable attention
through the discovery of the human histidine methyltrans-
ferase enzymes SETD3 (5,6) and METTL9 (9). Large-scale
Hme analysis is challenging since there are no available
affinity agents to enrich peptides bearing the PTM for MS
analysis. Here, we devise an alternative strategy based on
mining ultra-deep human proteomic datasets (15) for the
modification. This approach enables global identification of
cellular Hme events and a subsequent system level analysis
of the PTM.

Histidine methylation is widespread in human cells

To explore the abundance of Hme we searched ultra-
comprehensive proteomic datasets derived from the com-
monly used human cell lines A549, HCT116, HEK293,
HeLa, MCF7 and SY5Y as well as tissue biopsies from hu-
man colon, liver and prostate (15) (Figure 2A). The datasets
were selected based on the expression of the recently estab-
lished human HMT enzymes SETD3 and METTL9 (Sup-
plementary Figure S1). The searches were performed using
MaxQuant (17) with Hme defined as a custom PTM. To
avoid misidentification of Hme sites, the PTMs mono-, di-
and trimethylation of lysine (Kme1, Kme2 and Kme3; re-
ferred to as Kme) (Supplementary Figure S2A) as well as
mono- and di-methylation of arginine (Rme1 and Rme2;
referred to as Rme) (Supplementary Figure S2B) were de-
fined as additional variable modifications (Figure 2A). This
approach enables cellular Kme and Rme events to serve as
a benchmark for the downstream Hme-centric analyses.

We anticipated that using a broad range of human
cell proteome datasets would enable the identification of
both general and cell specific Hme events. The exploratory
searches revealed 267 and 80 Hme sites across the cell lines
and tissue biopsies, respectively (Figure 2B, Supplemen-
tary Table S1). Moreover, we found several distinct Hme
events in multiple cell lines and tissue biopsies (Figure 2B).
This led us to define a core histidine methylome based
on sites identified in 50%, or more, of the cell lines and
tissue biopsies (Figure 2C). The core methylome includes
two sites present in several actin variants, and actin related
proteins, corresponding to ACTA1-H103 and established
SETD3-target site ACTB-H73 (1,5,6) (Figure 2C and Sup-
plementary Figure S3A). Moreover, the core methylome en-
compasses APEX1-H151 (Uniprot id P27695), CPT2-H369
(P23786), EXOS7-H275 (Q15024), NP1L4-H4 (Q99733)
and RBM22-H183 (Q9NW64) (Figure 2C) and the Hme
sites in these non-actin related proteins do not share appar-
ent sequence homology (Supplementary Figure S3B).

A detailed inspection of tandem mass spectra for actin
methylation revealed interesting features. First, fragment
spectra were of high quality and unambiguously supported
methylation of ACTB-H73, with high coverage of up- and
down-stream b- and y-ions (Figure 2D). Tandem mass spec-
tra from PTM bearing peptides can contain so-called im-
monium ions with a mass corresponding to the modified
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Figure 2. Exploring histidine methylation in human cells and tissues. (A) Methylome profiling workflow. Publicly available ultra-comprehensive proteomics
datasets from human cell lines and tissue biopsies were searched for histidine, lysine and arginine methylation using MaxQuant. Identified histidine methy-
lation events were analyzed to explore the abundance and cellular context of the PTM. (B) Clam plot representation of histidine methylation sites identified
in cells and tissues. The total number of sites and the number of shared sites between cell lines (left) and tissue biopsies (right) are indicated. (C) Core his-
tidine methylation sites. Sites were categorized as part of the core methylome if identified in more than 50% of the samples in each category. (D) Mass
spectra supporting methylation of ACTB-H73. Tandem mass for a tryptic peptide covering Y69-K84 of ACTB unambiguously supporting methylation of
H73. The presence of a specific immonium ion corresponding to methyl-histidine is indicated.

residue (29) and their identification may corroborate PTM
events (30). Peptides containing unmodified histidine of-
ten yield a strong immonium ion with a mass of 110.0718
atomic mass units (amu) when fragmented (31). Strikingly,
for the tryptic peptide covering ACTB-H73 we instead ob-
served a clear peak at 124.0875 amu, corresponding to the
mass of an Hme immonium ion (Figure 2D). Similarly, we
detected an internal Hme site on the likely histidine methyl-
transferase METTL18 (METTL18-H154) and the corre-
sponding fragment spectra also contained a clear Hme fin-
gerprint immonium ion (Supplementary Figure S4). The
observation of METTL18-H154 methylation is interesting
as auto-methylation of methyltransferase enzymes is a well-
established phenomenon, which has also previously been re-
ported to occur with an amino acid specificity reflecting the
enzymes physiological substrate (7).

In summary, the above analysis demonstrates that cellu-
lar Hme sites can be identified by querying comprehensive
proteomic datasets and that the PTM is widespread in hu-
man cells and tissues.

Exploring the HeLa methylome

Intrigued by our observation that Hme is prevalent in hu-
man cells we embarked on an in-depth exploratory analysis
of the PTM. For this analysis, we focused on human HeLa
cells, which is arguably the most used human cell line model

in experimental research. We devised the now established
successful approach of querying publicly available compre-
hensive datasets for Hme. This time, the chosen datasets (15)
were specific for Hela cells and generated using a panel of
complementary proteases including, chymotrypsin, Glu-C
and Lys-C, aside from trypsin, allowing for unprecedented
proteome depth and coverage (32).

Across the different proteases, the analysis revealed sup-
port for 2526 distinct cellular methylation events at 2241
sites (Figure 3B). The number of methylation events exceeds
the number of sites since several individual arginine and ly-
sine residues were detected with varying degrees of methy-
lation (Supplementary Table S1). Roughly 12% of methyla-
tion events correspond to Hme (n = 299) and the modifica-
tion was less prevalent (n = 299) than Kme (n = 895) and
Rme (n = 1332) (Figure 3B). In line with these observations,
a previous study has suggested that roughly 14% of protein
methylation events occur on histidine (33).

A comparative analysis of our HeLa methylome data to
publicly available PTM resources (18) suggests that the bulk
of (>80%) of Hme and Kme sites are not previously charac-
terized (Figure 3C). The fraction of novel sites was notably
lower for Rme (Figure 3C), which can be expected as estab-
lished workflows for affinity enrichment and MS characteri-
zation of the PTM exist (13). The large number of identified
new Hme sites highlights that the generated dataset is suit-
able for an exploratory systems level analysis of the PTM.
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Figure 3. In-depth characterization of the HeLa methylome. (A) HeLa-specific methylome profiling workflow. A panel of comprehensive proteomic datasets
generated using several proteases to obtain extensive proteome and PTM coverage were searched for histidine, lysine and arginine methylation. The iden-
tified histidine methylation events were explored using a range of bioinformatic tools and benchmarked to identified lysine and arginine methylation. (B)
Total counts of distinct methylation events, methylation sites and targeted proteins are indicated. (C) The percentage of sites identified in this study as
compared to the dataset available from PhosphoSitePlus. (D) The number of methylation events per protein. (E) Cellular abundance of methyl proteins.
The distribution of iBAQ values for proteins harboring a methylation site is shown. Significance was assessed for each group compared to control (All
proteins) by multiple comparison using one-way ANOVA, (adjusted P value < 0.01). (F) Subcellular localization of proteins for Hme, Kme, Rme assigned
to a designated compartment neighborhood as described in the SubCellBarcode project. Each methylation type as a relative distribution in the nucleus,
cytoplasm, mitochondria and secretory compartment.

To investigate whether Hme is scattered across the pro-
teome, or frequently occurring on individual proteins, we
first analyzed the number of Hme events per Hme protein.
This analysis revealed that a single methylation event was
identified for most (>80%) Hme proteins and that no pro-
teins were identified with more than two Hme sites, and
similar trends were observed for both Kme and Rme (Fig-
ure 3D). Next, we explored the abundance of identified
methyl proteins. Interestingly, we found that Hme, Kme
and Rme were all overrepresented on abundant proteins
(Figure 3E) and envision two alternative explanations for
this finding. First, the proteomics datasets in this study
were generated using data dependent acquisition MS, an
approach intrinsically biased to identify abundant peptides
and PTMs (34). Alternatively, it has been suggested that cer-
tain methyltransferases have evolved specificity towards key

abundant cellular proteins to modulate key cellular func-
tions (35). Prominent examples include Kme and Rme in
the core histone H3 (36), the key translational elongation
factor eEF1A (37,38), and the molecular chaperone Hsp70
(39–41) as well as Hme in actin (1,5,6), targets that were
all identified and validated in this study (Supplementary
Table S1).

Next, we investigated the subcellular localization of
methyl proteins. To this end, we used both experimental
data based on the SubCellBarCode resource (19) as well as
the predicted localization based on the BUSCA approach
(20). Both methods place Hme, Kme and Rme proteins in
the cytoplasm, nucleus, mitochondria and in secretory com-
partments, at comparable frequencies (Figure 3F and Sup-
plementary Figure S5), suggesting that Hme, Kme and Rme
are all widespread across cellular structures.
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Figure 4. Domains and sites targeted by methylation. (A) Sankey plot illustrating the top 30 Pfam domains targeted by histidine, arginine and lysine
methylation in HeLa cells. Total number of unique methylation sites residing within an annotated protein domain in the Pfam database is indicated.
Statistical analysis for significantly enriched domains is shown in Supplementary Figure S6. (B–D) Methylome sequence logos. Logos illustrating over
representation of amino acids in the five positions up- and down-stream of identified (B) Hme, (C) Rme and (D) Kme sites. Full sequence logos and
heatmap analysis are shown in Supplementary Figure S7.

In summary, the above indicates that Hme is prevalent
and present in all major cellular compartments.

Domains and motifs targeted by Hme

Intrigued by the finding of Hme events across different cel-
lular compartments, we next used the Pfam (23,42) database
to explore targeted proteins families and domains. Al-
though Hme, Kme and Rme proteins displayed similar sub-
cellular localization profiles (Figure 3F) they are clearly en-
riched in different Pfam entries (Figure 4A). Reassuringly,
the most strongly enriched Pfam entries include to domains
where the methylations are well established to exert impor-
tant function including Actin for Hme (5,6), RNA recog-
nition for Rme (13) and core histone proteins for Kme (4)
(Figure 4A). Notably, Hme was found overrepresented in
Pfam entries associated with zinc binding properties (E3
Ligase, CCCH- zinc finger; Zinc finger C2H2 type; Zinc fin-
ger CCCH type; Zinc finger C-x-C-x-C type (and similar);
ZIP zinc transporter) (Figure 4A and Supplementary Fig-
ure S6).

Having established that Hme is over-represented in cer-
tain zinc binding proteins and domains, we next set out to
analyze the sequence context flanking Hme sites using the
iceLogo approach (25). We queried the five flanking amino

acids for all detected Hme, Kme and Rme sites using the
human precompiled Swiss-Prot peptide sequence composi-
tion as reference. This analysis revealed distinct sequence
preferences for the different methylations (Figure 4B–D).
Hme was overrepresented in mono-spaced repetitive histi-
dine (H) sequences (Figure 4B), Rme in glycine (G) rich
regions (Figure 4C), and Kme in the context of the acidic
residues aspartate (D) and glutamate (E) (Figure 4D).

In summary, the above results demonstrate that Hme is
over-represented in specific classes of zinc binding proteins
and in the primary sequency context of consecutive mono-
spaced histidine residues.

Co-occurrence of methylation with phosphorylation and dis-
ease associated mutations

It has been reported that methylation events can cross-
talk with other PTM types such as phosphorylation, con-
structing a regulatory circuit known as methyl-phospho
switch (43). For example, the lysine methyltransferase
SET7 has been shown to regulate the stability of DNA
methyltransferase-1 (DNMT1) (44), a key enzyme in
maintaining methylation patterns after DNA replication.
DNMT1 is methylated at Lys142 and the adjacent Ser143
can be phosphorylated by AKT1 kinase. These two PTMs
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Figure 5. PTM colocalization. (A) Kernel density plots for the functional score distributions of colocalizing phosphorylation sites with identified methy-
lation events. Subsets of phosphorylation sites colocalizing with Rme, Kme or Hme methylation sites plotted separately. Separate grouping of phospho-
rylation sites co-localizing with methylation sites with a reported polymorphism or mutation associated with a pathological condition (ClinVar) is shown.
Black line indicate group mean. Methylation of ACTA1-H75 and the colocalizing phosphorylation event on ACTA1-Y71 are indicated. (B) The structural
context of actin histidine methylation. The structure of actin is shown in cartoon representation whereas ATP and the methylated histidine residue H73
is shown in stick representation. The hinge region (olive), ATP (salmon) and the H73 containing ATP-sensing loop (green) are indicated. The structure
is derived from rabbit muscle alpha actin (PDB #1EQYE). (C) Evolutionary conservation of the methyl-histidine containing loop in actin. Sequences:
human ACTA1 (P68133), ACTB (P60709) and ACTG (P63261) as well as homologues from Drosophila melanogaster (dm; AAA28314.1), Arabidop-
sis thaliana (at; NP 187818.1), Caenorhabditis elegans (ce; NP 508841.1), Saccharomyces cerevisiae (cs; NP 116614.1) and Saccharomyces pombe (sp;
NP 595618.1). (D) The methyl-histidine containing loop in ACTA1 is a PTM hotspot. PTMs annotated in the PhosphoSitePlus database (v6.5.9.3) are
shown. Modifications observed in mouse ACTA1 (star) and sites corresponding to disease associate mutations are indicated (red).

are mutually exclusive and in absence of phosphorylation
at Ser143, DNMT1 is methylated at Lys142. The conse-
quence of the methylation is an overall decrease in abun-
dance of the key epigenetic regulator DNMT1. In order to
pinpoint specific Hme events of high functional importance
we integrated a highly curated phosphoproteomic dataset
into our analysis (21). We searched for phosphorylations on
serine, threonine or tyrosine within a distance of 10 amino
acids from a methylation event and this analysis revealed
1999 co-localizing phosphorylation sites (Supplemental Ta-
ble S2). A distinct advantage of the curated phosphopro-
teomic dataset was that it had been evaluated using a novel
machine learning model that integrated multiple features re-
lating to conservation and structural properties of the phos-
phorylation site, that are indicative of functional relevance,
thus providing a functional score. This allowed us to eval-
uate our identified methylation events based on the func-
tional score of the phosphorylation site in close proximity

(Figure 5A). We found that Hme, in addition to Kme and
Rme, co-localized with phosphorylation sites with an above
median functional score (Figure 5A).

In addition, we queried a publicly available database (45)
for mutations in amino acid positions undergoing a methy-
lation event in order to identify sites linked to pathologi-
cal conditions (46). This analysis uncovered mutations of
212 methylation sites that are co-localizing with phospho-
rylations (Supplemental Table S3). Notably, the functional
score of phosphorylation sites colocalizing with methyla-
tion site mutations also had an above the median functional
score (Figure 5A).

Our analysis suggest that protein methylation co-
localizes with functionally important phosphorylation sites,
suggesting crosstalk between the PTMs. However, whether
crosstalk has a relevance in relation to regulation of cellu-
lar function needs to be further experimentally validated for
each individual protein.
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Figure 6. Cellular effects of METTL9 knockout. (A) Workflow for proteomics characterization of METTL9 KO cells. Proteins were extracted from HAP-
1 wild type (WT) and METTL9 knockout (KO) cells and processed for label free quantitative mass spectrometry. (B) Principal component analysis.
Separation of experimental conditions (WT and KO) and replicates (n = 5) in the first principal component is shown. (C) Clustering analysis. Hierarchical
cluster of z-scored LFQ intensities for proteins having a significant difference in abundance (Student’s t-test, P-adj < 0.05; Benjamini-Hochberg FDR)
between the WT and KO condition. (D) Gene ontology analysis. The top five ontologies within biological process and cellular component are shown both
for up- and down regulated proteins in METTL9 KO cells, relative to a WT control.

Identification of a conserved PTM hotspot in actin

Intrigued by the observations that the ACTA1-H75 methy-
lation site colocalizes with the functional high-scoring
ACTA1-Y71 phosphorylation site and that it is mutated in
severe nemaline myopathy (47) (Figure 5A and Supplemen-
tal Table S2), we decided to do an in depth analysis of the
region. Structurally, ACTA1-H75 is located in a loop which
has been reported to sense nucleotide binding (48) (Fig-
ure 5B). The loop is perfectly conserved between humans,
fly, plant, worm and yeast, emphasizing its functional im-
portance (Figure 5C). To explore whether the ATP-sensing
loop is targeted by additional PTMs, we again queried the
PhosphositePlus database. This analysis revealed five an-
notated PTMs in the H75-containing nucleotide sensing
loop and its flanking residues (Figure 5D), corresponding to
mono-methylation, ubiquitination, and acetylation of K70
as well as phosphorylation of Y71 and T79. Notably, the
bulk of these PTMs have also been observed in mouse actin
(Figure 5D), indicating that modification of this loop is evo-
lutionary conserved.

In summary, we observed disease associated mutations
and PTMs at, and in proximity to, ACTA1-H75, a Hme
site previously categorized as belonging to the core Hme-
ome. The findings emphasize the functional importance

of the ATP-sensing loop harboring H75 and support a
model where multiple PTMs may play a role in actin
regulation.

Cellular effects of METTL9 KO

Having uncovered hundreds of cellular Hme events and ex-
plored the subcellular distribution and context of the PTM,
we sought to also investigate its direct biochemical func-
tions. Human METTL9 was very recently described as a
histidine methyltransferase introducing the bulk of 1MeH
in mammalian proteomes through methylation of histidine
in the context of a HxH motif, where ‘x’ is a preferen-
tially small amino acid such as alanine, glycine or serine
(9). The reported specificity of METTL9 corresponds per-
fectly to our observed over-represented motif for Hme (Fig-
ure 4B), highlighting METTL9 gene targeted cells as a suit-
able model for studies of cellular Hme loss.

To uncover cellular processes regulated by Hme, we there-
fore obtained a CRISPR-mediated METTL9 knockout
(KO) HAP-1 cell line (49) and characterized its steady-state
proteome, compared to a wild type (WT) control (Figure
6A). Cellular proteins were extracted and quantified using
a label free MS approach (Figure 6A). Principal compo-
nent analysis of protein intensities revealed a clear separa-
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tion of WT and KO cells in the first component (Figure 6B),
indicating that the difference between the cellular condi-
tions exceeds the technical experimental variation. Accord-
ingly, hierarchical cluster analysis of proteins with a sig-
nificant difference (Student’s t-test, P-adj < 0.05) in abun-
dance between the conditions revealed two distinct clus-
ters of over- and under-represented proteins in the KO cells
(Figure 6C). To obtain insights into the processes and func-
tions affected in the METTL9 KO cells we performed gene
ontology enrichment analyses of the clusters. This analy-
sis revealed vesicle and vesicle-related processes as under-
represented and nuclear nucleic acid-associated processes as
over-represented in the KO cells (Figure 6D). This suggests
a complex and pleiotropic phenotype caused by METTL9
deletion and loss of pervasive Hme1.

DISCUSSION

We here report the first large-scale analysis of Hme and
demonstrate that the PTM is widespread in human cells and
tissues. Our analyses indicate that the PTM is present in all
major cellular compartments and that it is overrepresented
in specific protein families, in particular in actin and in zinc-
binding proteins. Taken together, we present the hitherto
most extensive resource on cellular Hme events and perform
the first system level analysis of the PTM.

Global PTM analysis almost invariably involves PTM
affinity enrichment followed by MS analysis. Such ap-
proaches have contributed greatly to the knowledge on
phosphorylation (50,51), acetylation (52), ubiquitination
(53), SUMOylation (54) and Rme (13) but it has been more
challenging to generate robust affinity agents for proteomics
characterization of Kme, and to the best of our knowledge,
has not yet been tried for Hme. To study Hme, we here de-
ployed an alternative brute-force approach, taking advan-
tage of the high throughput of modern mass spectrome-
ters, and queried ultra-comprehensive proteomic datasets
for the PTM. To provide a benchmark for identified Hme
events, we also searched the datasets for Rme and Kme. The
strength of our approach can be highlighted by comparing
our identified Kme-ome to the current state-of-the-art Kme
proteomics studies. We identified 895 Kme events in HeLa
cells alone (Figure 2B). For comparison, a study Cao et al
(12) using lab-specific IgGs for all Kme states identified 552
Kme events in HeLa cells by another acknowledged study
by Moore et al (11) using the bispecific Kme1 and Kme2
binding 3xMBT domain revealed 31 Kme events in 293T
cells.

A drawback with our approach is the extensive lab-
oratory work associated with off-line fractionation of
peptides before MS analysis required to generate ultra-
comprehensive proteomic datasets. Moreover, searching
comprehensive datasets for several variable PTMs is both
computationally challenging and time consuming. The es-
tablishment of Hme affinity enrichment workflows for MS
would reduce the requirements for MS analysis time and
data processing, and drastically reduce the efforts and costs
associated with our Hme-omic approach. Thus, we foresee
efforts will be made towards the generation of Hme-specific
affinity agents and their optimization for Hme-proteomic
applications. The affinity agents can be generated though

classical animal immunizations but this approach is inher-
ently associated with low reproducibility (55). A more ro-
bust and reproducible approach would be to generate re-
combinant Hme-binders, using phage-displayed recombi-
nant antibody libraries, an approach proven feasible for the
PTM sulpho-tyrosine (56).

Affinity enrichment followed by MS is arguably the most
widely employed approach to study PTMs. A prominent ex-
ample of this is for phosphorylations, where affinity agents
that specifically bind to the modified functional phosphate
group exist (51). These rely on immobilized metal cations
with affinity for the negatively charged phosphate group
and can consequently be used for enrichment of phosphory-
lated serine, threonine and tyrosine (10). For protein methy-
lations, which are small and chemically subtle PTMs, there
are no such affinity agents available. Antibodies and specific
methyl-state binding protein domains have instead been
used to enrich Kme and Rme modified peptides for MS (11–
13). However, antibodies and domains often display a pref-
erence for PTMs in specific contexts. For example, several
Rme antibodies have a preference for flanking residues (57)
and the affinity of Kme-binding domains can be affected
by neighboring PTMs, such as phosphorylation (58). Al-
though the depth of the histidine methylome may conceiv-
ably be increased beyond this study through future affin-
ity enrichment-based approaches, the herein identified Hme
events, and the subsequent bioinformatic analysis, is not
skewed or biased through context-specific affinity agents.

Our proteomic characterization of METTL9 KO cells
suggests a complex phenotype with perturbations of both
vesicle-associated and nuclear-linked cellular process. A re-
cent study suggested the presence of as many as 2807 candi-
date METTL9 target sites (HxH, x = A, N, G, S or T) in the
human proteome (9). Our observed pleiotropic phonotype
for METTL9 KO cells may be linked to the large number
of plausible substrates for the enzyme, which will likely be
subjects for future studies. The large number of substrates
for METTL9 also render our METTL9 targeted cells a
poor tool to study biochemical functions of individual Hme
events. Instead, we suggest ectopic expression of WT and
HxH-mutated METTL9 substrates in cells as a preferred
approach.

Actin proteins are subject to a wide range of PTMs,
many of which have determined regulatory function (59).
One prominent example is SETD3 mediated methylation
of ACTB-H73, which corresponds to ACTA1-H75, which
modulates actin dynamics by accelerating the assembly of
actin filaments, a process preventing primary dystocia (6).
Another example, is a unique multi-step N-terminal pro-
cessing and modification machinery involving N-terminal
acetylation of the initiating methionine (iMet), followed by
excision of iMet and subsequent acetylation of the residue
in position 2 (60). Our integrated analysis of Hme colocal-
ization with machine learning predicted functional impor-
tance scored phosphorylation events (Figure 5A) uncovered
ACTA1-H75 as colocalizing with ACTA1-Y71 phosphory-
lation, a site with a high functional score (0.62)20. Inter-
estingly, we observed five additional PTMs in the six up-
and downstream residues, of these four had also been re-
ported to occur in mouse (Figure 5D). To the best of our
knowledge, so far only H75 methylation has been the sub-
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ject of detailed biochemical studies. The multiple modifi-
cations within the loop reassembles the numerous PTMs
in the flexible tail of histone H3, a key component of the
histone code determining chromatin compaction state and
gene activity. Given the extent of PTMs in the functionally
important ATP-sensing loop, a similar ‘actin code’ may ex-
ist, where multiple dynamic PTMs collectively, or individu-
ally, determine the molecular functions of actin.

The protein methylation dataset we have generated may
support further studies on Hme and we envision three di-
rect applications. First, synthetic peptides corresponding to
the relatively small HeLa Hme-ome (n = 299) can be gen-
erated and evaluated as substrates for new candidate his-
tidine methyltransferase enzymes. The human genome en-
codes over 200 predicted methyltransferases (61) and given
the abundance and sequence diversity of identified Hme
events (Supplementary Table S1), a considerable fraction of
these may catalyze Hme. Candidate histidine methyltrans-
ferases may be cloned, expressed, and isolated from bacte-
rial systems, and evaluated for activity on peptide arrays
comprising the Hme-ome. Second, a synthetic peptide li-
brary corresponding to the Hme-ome may be used to un-
cover Hme-driven protein interactions for yet not discov-
ered Hme reader proteins and Hme demetylases through
affinity-enrichment MS approaches (27,62). Third, our re-
source provides the necessary information to design large-
scale targeted MS methods (63) for Hme that can be used
to further explore the regulation and variation of Hme-ome
in human cells, tissues, and biological fluids.

In summary, our data extends the current knowledge of
Hme and the study represents the first system level analysis
of the PTM. Finally, we encourage the research community
to use this resource for large-scale targeted MS and detailed
biochemical studies of individual sites to shed further light
on the emerging field of protein methylation biology.

Note added in proof: While this manuscript was revised it
was confirmed that human METTL18 is a histidine methyl-
transferase targeting RPL3-His245 (64).
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