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ARTICLE

Discovery of a ROCK inhibitor, FPND, which prevents
cerebral hemorrhage through maintaining vascular integrity by

interference with VE-cadherin

Shang Li'7, Nana Ai', Mingyun Shen?3, Yuanye Dang', Cheong-Meng Chong', Peichen Pan?, Yiu Wa Kwan® Shun Wan Chan’,
George Pak Heng Leung®, Maggie Pui Man Hoi', Tingjun Hou** and Simon Ming-Yuen Lee'

Hemorrhagic stroke occurs when a weakened vessel ruptures and bleeds into the surrounding brain, leading to high rates of death
and disability worldwide. A series of complex pathophysiological cascades contribute to the risk of hemorrhagic stroke, and no
therapies have proven effective to prevent hemorrhagic stroke. Stabilization of vascular integrity has been considered as a potential
therapeutic target for hemorrhagic stroke. ROCKs, which belong to the serine/threonine protein kinase family and participate in the
organization of actin cytoskeleton, have become attractive targets for the treatment of strokes. In this study, in vitro enzyme-based
assays revealed that a new compound (FPND) with a novel scaffold identified by docking-based virtual screening could inhibit
ROCK1 specifically at low micromolar concentration. Molecular modeling showed that FPND preferentially interacted with ROCK1,
and the difference between the binding affinity of FPND toward ROCK1 and ROCK2 primarily resulted from non-polar contributions.
Furthermore, FPND significantly prevented statin-induced cerebral hemorrhage in a zebrafish model. In addition, in vitro studies
using the xCELLigence RTCA system, immunofluorescence and western blotting revealed that FPND prevented statin-induced
cerebral hemorrhage by enhancing endothelial cell-cell junctions through inhibiting the ROCK-mediated VE-cadherin signaling
pathway. As indicated by the extremely low toxicity of FPND against mice, it is safe and can potentially prevent vascular integrity

loss-related diseases, such as hemorrhagic stroke.
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INTRODUCTION

Hemorrhagic stroke, which accounts for 20% of all strokes, occurs
when a weakened vessel ruptures and bleeds into surrounding
brain tissues. The accumulated blood (also referred to as
hematoma) compresses and damages the surrounding brain.'
Hemorrhagic strokes have been treated by anticoagulants,
antihypertensives and antiplatelets through controlling high
blood pressure and/or managing atrial fibrillation in high-risk
patients.>* Loss of the vascular endothelial integrity leads to the
rupture of vessels and blood flow into interstitial spaces. For
instance, as a common vascular dysplasia of cerebral hemorrhage,
cerebral cavernous malformation (CCM) is caused by loss of the
vascular endothelial integrity. CCM can potentially be treated
with ROCK inhibitor to reverse vascular leak.> Therefore, intracer-
ebral hemorrhage (ICH) may be prevented by maintaining the
vascular endothelial integrity.

As a powerful model system, zebrafish has been widely used to
unravel the basic genetic and cellular mechanisms of cerebrovas-
cular diseases.® ICH in zebrafish embryos can be easily and directly
observed, thus allowing rapid screening of a huge number of
mutagenized, preventive or therapeutic compounds for hemor-
rhage defects. Statins are a class of drugs used to lower high

cholesterol levels and to prevent associated complications, for
example, by treating cardiovascular diseases through inhibiting
HMG-CoA reductase. However, statins have been associated with
an increased risk of ICH."”7'° Atorvastatin can induce cerebral
hemorrhage in zebrafish through loss of vascular stability in the
brain."" In addition, it induces the rupture of cerebral vessels by
undermining the establishment of endothelial cell-to-cell
associations.'? As discussed above, and given the molecular
mechanisms of vascular development in vertebrates, zebrafish is a
useful in vivo model for studying vascular integrity.

As serine/threonine kinases, ROCK1/2 contribute to the forma-
tion of stress fibers by inactivating myosin phosphatase and
phosphorylating myosin light chain (MLC), which regulates the
assembly of stress fibers. By regulating the contractility of
endothelial cells (ECs), pMLC has a crucial role in vascular tone
and functions. In addition, ROCK activates Lim kinase, suppresses
cofilin, prevents actin depolymerization and elevates contractility
by phosphorylating MLC directly.'® Increased contractility disrupts
cell—cell adhesion and improves vascular permeability. Therefore,
ROCK inhibitors can relieve CCM and vascular leakage by
enhancing endothelial cell-cell junctions.’

Virtual screening based on molecular docking has become a
powerful strategy for identifying lead compounds.'® The high-
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resolution X-ray structure of ROCK1 provides a basis for structure-
based drug design. Our group has initiated a research program to
identify new drug candidates targeting ROCK for the prevention of
hemorrhagic stroke, which combined docking-based virtual
screening with a zebrafish model.’>'® In this study, we identified
a new ROCK1 inhibitor 6-[4-(2-fluorophenyl)-1-piperazinyllmethyl-
N-1-naphthyl-1,3,5-triazine-2,4-diamine  (FPND, PubChem CID:
17168340, chemical structure in Figure 1), which exerted
promising protective effects on atorvastatin-induced cerebral
hemorrhage in zebrafish in vivo and the rupture of endothelial
cell—cell junctions in human umbilical vein cells (HUVECs) in vitro.

RESULTS

Inhibition and binding characteristics of FPND

There are two isoforms of ROCK (ROCK1 and ROCK2), which share
the same downstream effector proteins.'” The kinase inhibitory
assay showed that the ICsy value of FPND against ROCK1 was
11.2£22uM (Figure 1), whereas no inhibitory activity was
observed for ROCK2. Thus, FPND inhibited ROCK1 specifically.

In order to understand the underlying mechanism, molecular
docking, molecular dynamic (MD) simulations and free energy
calculations were used to analyze interactions between FPND and
the ATP-binding sites of ROCK1 and ROCK2. FPND was docked
into the active sites of ROCK1 and ROCK2, and the conformations
with the best docking scores were submitted for 5ns MD
simulations and MM/GBSA rescoring. As displayed in
Supplementary Figure S1, the ROCK1/FPND complex becomes
stable after ~500 ps, whereas the ROCK2/FPND complex reaches
stability after 3 ns. Therefore, 100 snapshots, evenly extracted
from 3 to 5 ns, were used for the following MM/GBSA binding free
energy calculation and decomposition.
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The predicted binding free energies of the ROCK1/FPND and
ROCK2/FPND complexes are listed in Table 1. The substantial
difference in AGpeq (15.69 kcal/mol) indicates that FPND interacts
with ROCK1 much more strongly than with ROCK2, which is in
good agreement with the experimental data. The non-polar
interaction (AE,gw+AGsa=—56.33 kcal/mol) for the ROCK1/FPND
complex evidently exceeds that (AE, g, +AGsp=—40.04 kcal/mol)
for the ROCK2/FPND complex. However, the polar interactions for
these two complexes (AEq+AGgg=5.77 and 5.15 kcal/mol for
ROCK1 and ROCK2, respectively) are similar. Therefore, non-polar
interactions have a significant role in determining the specificity of
FPND to ROCK1 and ROCK2.

In order to determine the most important residues for the
binding specificity of FPND, residue—inhibitor interaction profiles
were obtained by performing binding free energy decomposition
analysis. According to Figure 2, the number of important residues
for the binding of FPND to ROCK1 exceeds that for ROCK2. The
interactions of FPND with residues 1le82, Arg84, Gly85, Gly88,
Val90, Ala103, Lys105, Leu107, Met153 and Met156 in ROCK1
make crucial contributions to the selectivity of FPND. These
residues can be roughly divided into two groups: one group
includes residues around the naphthalene ring and the other
includes residues surrounding the fluorobenzene ring. Residues
lle82, Arg84, Gly85, Gly88, Val90, Ala103, Lys105 and Leu107,
especially Val90 and Lys105, form strong non-polar interactions
with the naphthalene ring. The contributions of Val90 and Lys105
(-3.46 and —3.08 kcal/mol) are particularly significant, and are
dominated by the van der Waals and non-polar desolvation terms
(=3.50 and -3.92 kcal/mol). Furthermore, there are strong non-
polar interactions between the fluorobenzene ring and residues
Met153 and Met156. The contributions of Met153 and Met156 are
—2.02 kcal/mol and - 1.4 kcal/mol, respectively. In summary,

Hil-

-5.6 -54 -5.2 -5.0 -4.8 -4.6
Log[Conc.(M)]

(a) The structure of FPND. (b) Concentration-dependent inhibition of ROCK1 kinase activity by FPND.

Table 1. The predicted binding free energies and the individual energy components of FPND toward ROCK1 and ROCK2 (g;, =2.0)
Ligand Protein Non-polar contributions Polar contributions AGpreq
AEvdw AGSA AEeIe AGGB
FPND ROCK1 -51.80+292 -4.53+0.12 —183.37 +3.06 189.14+2.00 -50.57+1.97
FPND ROCK2 —34.88+0.03 -3.33+0.03 -171.43+53 176.58 +4.84 —34.88 +0.03
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Contributions of the important residues for binding of FPND with (a) ROCK1 and (b) ROCK2; the red columns represent the non-

polar contributions, the blue columns represent the polar contributions and the green columns represent the total energy of each residue.
The structures of (c) the ROCK1/FPND complex and (d) the ROCK2/FPND complex; the carbon atoms of FPND are colored in cyan and the

carbon atoms of the key residues are colored in yellow.

interactions with residues Val90, Lys105, Met153 and Met156
enhance the binding affinity of the ROCK1/FPND complex.

FPND prevented atorvastatin-induced cerebral hemorrhage in
zebrafish embryos

We have previously reported that ROCK inhibitors protected
against statin-induced cerebral hemorrhage.'>'® We established a
Tg (fli1: EGFP) y1 and Tg (Gatal: dsRed) double transgenic zebrafish
model to test the protective effects against statin-induced cerebral
hemorrhage of a new ROCKT1 inhibitor, FPND. In this study, 1 dpf
embryos were treated with 2 uM atorvastatin for 24 h. Hemor-
rhages were identified through o-dianizidine staining of erythro-
cytes (Supplementary Figure 2) and fluorescence imaging of blood
vessels and erythrocytes in Tg (fli1: EGFP) y1 and Tg (Gatal: dsRed)
double transgenic embryos (Figure 3), aiming to observe blood
accumulated through leakage in the cranial region (Figure 3B,
Supplementary Figure 2B). This hemorrhage symptom was
mitigated by pretreatment with FPND dose-dependently (10, 30
and 100 uM) for 3 h (Figures 3C—E, Supplementary Figures 2C-E).
To determine whether the observed protective effect was
atorvastatin specific, we also exposed zebrafish to pravastatin,

Official journal of the Cell Death Differentiation Association

another statin drug. Treatment with 10 uM pravastatin for 24 h
significantly induced cerebral hemorrhage in 2 dpf zebrafish
embryos. FPND also prevented cerebral bleeding in this case (data
not shown). In short, FPND prevented statin-induced cerebral
hemorrhage, which was activated via the statin-dependent
signaling pathway.

Structure—activity relationship of FPND analogs against
atorvastatin-induced cerebral hemorrhage

The structure of FPND is mainly composed of naphthalene,
triazine and phenylpiperazine. In order to identify the dominant
scaffold of FPND contributing to the protective effects, we carried
out a substructural search for FPND and obtained seven analogs
from the ChemBridge chemical library (Figure 4). According to the
experimental data, FPND exhibited the highest activity against
cerebral hemorrhage in zebrafish (ICso=17.49 uM). The substitu-
tion pattern decreased the activity, and the naphthalene ring was
crucial for maintaining the activity of FPND. Notably, phenylpiper-
azine was also required for the anti-hemorrhagic activity (FPND,
FPND-1, FPND-2, FPND-3 FPND-4 and FPND-5, versus FPND-6 and
FPND-7). With a site-changed F atom, FPND-3 was less active than
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Figure 3. The preventive effect of FPND against atorvastatin-induced cerebral hemorrhage in developing zebrafish. The 22 dpf embryos were
pretreated with either 0.1% DMSO (A, B, F and G), 10 (C and H), 30 (D and I) or 100 uM (E) FPND for 3 h and replaced with 0.1% DMSO (A and
F) or 2 uM atorvastatin (C-E and G-I) for 24 h. (A and F) The embryos treated with 0.2% DMSO (solvent) served as the normal control group. At
48 hpf, a lateral view of the hindbrain of the wild-type embryo shows CtA (white arrows) draining into the PHBC. Homozygous double
transgenic zebrafish Tg (flila: EGFP) y1 and Tg (gatal: dsRed) sd2; the green fluorescence is Tg (flila: EGFP) y1 (a-e), the red fluorescence is Tg
(gatal: dsRed) sd2 (A-E), and the third column is the overlapping photo of the first two columns (Aa, Bb, Cc, Dd and Ee). The asterisks indicate
erythrocyte accumulation in the cerebral hemorrhage region of the zebrafish head. The yellow arrows indicate the morphologically abnormal
blood vessels. White scale bar =200 um. (J) The representative index of hemorrhage indicates that FPND could prevent atorvastatin-induced
cerebral hemorrhage in zebrafish in a dose-dependent manner. Data presented in the bar graphs are the mean + S.D. of three independent
experiments. *P < 0.05 and **P < 0.01 (versus control group) were considered significantly different.

N/_\N F
GOP, QOP, 0P 0T
> { > 0 .

FPND, IC50: 17.49+0.53 FPND-1, IC50: 21.73+0.82 FPND-2, IC50: 33.34+0.48 FPND-3, IC50: 33.76+0.33
Chembridge ID# 9138900 Chembridge ID# 9068364 Chembridge ID# 9136676 Chembridge ID# 7724947
00 OO0 & O
Y WA /ﬁ N‘<7 — Q N:( _/ Q N:( __/
3 /N k/ A = HN—<\ /N < HN_<\N4/<N < ”N_<\N4/<N a
9
FPND-7, IC50: N/A FPND-6, IC50: N/A FPND-5, IC50: 125.20+0.98 FPND-4, IC50: 70.87+0.99
Chembridge ID# 7990076 Chembridge ID# 9128248 Chembridge ID# 9129729 Chembridge ID# 9152832

Figure 4. 1Cso of the FPND analogs to atorvastatin-induced cerebral hemorrhage in zebrafish embryos.
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the structurally related FPND-1. Besides, the structures of FPND-4
and FPND-5 resembled that of FPND, but their inhibitory effects
were significantly different. Loss of the F atom in the phenyl group
decreased the activity significantly (FPND versus FPND-4 and
FPND-5). SAR analysis revealed that the fragments of naphthalene
and phenylpiperazine, particularly the F atom of phenylpiperazine,
predominantly controlled FPND activity in an independent
manner.

FPND prevented atorvastatin-induced abnormal vascular
phenotype

Atorvastatin can cause vascular rupture, followed by bleeding, in
the central arteries (CtA) of developing zebrafish embryos.'® To
gain more insights into the preventive effects of FPND on
atorvastatin-induced bleeding, we observed changes in the blood
vessels in CtA of atorvastatin-treated Tg(fli1:EGFP)y1 zebrafish by
laser scanning confocal microscopy. The ECs and blood vessels in
CtA and the primordial hindbrain channel (PHBC) were well
connected and had intact shapes. However, in the atorvastatin-
treated group, ECs shrank, accompanied by larger individual EC
areas and disconnection between blood vessels in CtA and PHBC
(Figures 3G-I). Accordingly, pretreatment with FPND significantly
reversed atorvastatin-induced vascular defects. These results
indicated that FPND exerted clear protective effects against
cerebral hemorrhage, possibly by enhancing the poor contact
between ECs.

Ator (2 uM) == +
FPND (30 uM) - -
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FPND prevented the cell-cell junction disruption caused by
atorvastatin

As atorvastatin can cause blood vessel bursting during the
formation of CtA, ECs contact poorly.'® Further studies showed
that 24 h of treatment with 2 uM atorvastatin induced marked
changes in the morphology of ECs.'”?° We hypothesized that
atorvastatin caused poor contact between ECs by inducing cell
morphology changes, leading to abnormal morphology of blood
vessels, bursting and cerebral hemorrhage. We therefore applied
HUVECs as an in vitro model to investigate the effects of
atorvastatin on endothelial cell-cell junctions. Under normal
conditions, HUVECs formed a monolayer of cobblestone-like oval
cells that were in close contact along the entire cell periphery
(Figure 5a). In contrast, treatment by atorvastatin resulted in
shrinkage, with increased formation of pseudopodia of HUVECs
from the neighboring ones (Figure 5b). We pretreated HUVECs
with FPND for 2h, and thereafter treated them with 2 uM
atorvastatin for 12 h. FPND was able to prevent the changes in
cell morphology induced by atorvastatin treatment (Figure 5c).
The xCELLigence RTCA system is a non-invasive and label-free
platform. HUVECs can be cultured and maintained on an E-Plate to
form a stable monolayer, and changes in cell-cell contact can be
quantified by measuring the impedance changes across the cell
monolayer. As a result, cell-cell interaction, transient contractions
and cell layer permeability can be indirectly measured.?’?* The
cell-cell junctions of HUVECs were significantly disrupted by
atorvastatin, as shown by the decreased cell index after
application of 2 uM atorvastatin. However, pretreatment with
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Figure 5.

FPND significantly prevented atorvastatin-induced cell retraction and rupture of cell-cell junctions on HUVECs. HUVECs were treated

with 0.1% DMSO (a and b) or 30 uM FPND (a and b) for 2 h, followed by washout and incubation with 0.1% DMSO (a and d) or 2 uM
atorvastatin (b and ¢) for 12 h. Imaging was done with a phase contrast microscope. Yellow arrows show retracted cells; red arrows show
formation of pseudopodia. Scale bar =100 um (black color). (e) The representative cell index showed that FPND inhibited atorvastatin-induced
EC contraction and rupture of cell-cell junctions. HUVECs were cultured on the E-Plate in complete medium for 48 h and pretreated with 3, 10,
30 uM FPND for 2 h, followed by washout and incubation with 2 uM atorvastatin for 24 h. ‘Ator’ in figure indicates 2 uM atorvastatin. Data
presented in the bar graphs are the mean +S.D. of three independent experiments. *P < 0.05 and **P < 0.01 (versus the atorvastatin-alone
group) were considered significantly different.
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Figure 6.

FPND prevented atorvastatin-induced VEC junction dissociation and loss of VEC from cell borders. HUVECs monolayers were treated

with 0.1% DMSO (A, a, Aa, A’; B, b, Bb and B’), and 5 (C, ¢, Cc and Cc’), 10 (D, d, Dd, Dd’), and 20 (E, e, Ee, Ee’; F, f, Ff and Ff') uM FPND for 2 h,
followed by washout and treatment with 0.1% DMSO (A, a, Aa, A'; F, f, Ff and Ff') or 2 uM atorvastatin (B, b, Bb and B’; C, ¢, Cc and Cc’; D, d, Dd
and Dd'; E, e, Ee and Ee’) for 12 h; 0.1% DMSO treatment for 12 h was the vehicle control (A, a, Aa, Aa’). Treatment with FPND alone (F, f, Ff and
Ff') resulted in a slight decrease in stress fiber formation but with no effect on VEC distribution or cell-cell junctions. The VEC signal was
labeled with VEC-specific antibody in green color (A-F). F-actin was labeled with tetramethyl rhodamine isothiocyanate (TRITC)-phalloidin in
red color and nuclei were labeled with the nuclear-specific dye Hochest 33342 in blue color (A-F). White asterisks indicate formation of
scrambled knots, membrane ruffle and focal adhesion complexes. White arrows show a drastic loss of VEC from cell borders and formation of

a net-like structure. White and yellow scale bars =50 and 10 um, respectively.

FPND prevented the loss of atorvastatin-induced cell—cell junc-
tions in a concentration-dependent manner (Figure 5e).

FPND prevented atorvastatin-induced loss of cell-cell junctions by
regulating actin cytoskeleton and junction protein distribution

Adherens junctions (AJs) are involved in the establishment and
maintenance of cell-cell adhesion, intracellular signaling and
remodeling of the actin cytoskeleton. Cell-cell adhesion, which is
mediated by junctional protein VE-cadherin, is the transmembrane
component of endothelial AJ and constitutes an intercellular
junctional complex, having a crucial role in defining the
physiological functions of cells.* VEC functions through the
interaction of its cytoplasmic tail with cytoplasmic proteins called
catenins. The resulting catenin complexes (VE-catenin, B-catenin
and p120-catenin) in the cell periphery have key roles in
establishing AJs in ECs. To further evaluate the effects of
atorvastatin on endothelial cell-cell junctions, immunofluores-
cence staining with antibodies directed against VE-catenin,
B-catenin and catenin 8-1 (p120-catenin) was conducted, showing
abundant distribution of catenins (VE-catenin, B-catenin and p120-
catenin) at the cell periphery of normal HUVECs (Figures 6A-Aa,
Supplementary Figures 3A-Aa and 4A-Aa). Treatment with
atorvastatin resulted in VEC junction dissociation, formation of
net-like VEC and drastic losses of VE-catenin, p120-catenin

Cell Death Discovery (2017) 17051

and f-catenin from cell borders (Figure 6B, Supplementary
Figures 3B and 4B). However, the losses were significantly
reversed after pretreatment with FPND (Figure 6E,
Supplementary Figures 3E and 4E).

Catenins, such as f-catenin and p120-catenin, worked in
concert to associate the cadherin complex with the actin
cytoskeleton. These catenins have essential roles in attaching
cadherin to the actin cytoskeleton, which is required for the
formation of a restrictive monolayer and the maintenance of cell-
cell junctions.?® The stability of AJs is mainly dependent on the
dynamics of peripheral actin cytoskeleton. HUVECs were stained
with rhodamine—phalloidin to visualize F-actin. Normal HUVECs
had parallel bundles of F-actin stress fibers. Treatment with
atorvastatin induced loss of actin stress fibers, with increased
scrambled actin knots and focal adhesion complexes, as well as
membrane ruffle formation close to the cell-cell contacts
(Figure 6B, Supplementary Figures 3b and 4b). Thus, we
hypothesized that atorvastatin disrupted the actin cytoskeleton
in response to loss of VEC-catenin, B-catenin or p120-catenin from
cell borders. Interestingly, the negative outcomes caused by
atorvastatin were reversed by FPND pretreatment (Figures 6C-E,
Supplementary Figures 3c—e and 4c—e). Thus, the cell border
distribution of VEC/catenin complex-dependent reorganization of
actin cytoskeleton may participate in the prevention of
atorvastatin-induced rupture of cell—cell junctions.

Official journal of the Cell Death Differentiation Association



FPND prevented the rupture of cell-cell junctions by inhibiting the
activation of ROCK/VEC signaling pathways

The signaling pathways of ROCK/MYPT1/MLC2 and ROCK/LIMK/
cofilin are essential in the assembly of cytoskeleton stress fibers
and cell adhesion.?® H1152 is a selective ATP-competitive inhibitor
of ROCK-I/I>” In order to further confirm that FPND acted as a
ROCK inhibitor in ECs, HUVECs were pretreated with either 30 uM
FPND or 2.5uM H1152 for 1h and then stimulated with 2 uM

ROCK inhibitor
S Lietal

phosphorylation of cofilin, an actin-binding protein regulated by
LIMK1 (Figures 7a and b). These results showed that FPND was a
ROCK inhibitor similar to H1152 and suppressed atorvastatin-
induced ROCK activation.

To explore whether the ROCK signaling pathway was correlated
with cell-cell junctions in statin treatment, HUVECs were
pretreated with FPND, H1152 or ROCK-I siRNA. As shown in
Figure 7c¢, pretreatment with FPND or H1152 prevented the loss of

atorvastatin for 30 min. It is well known that MYPT1 and LIMK1 are
downstream effector proteins of ROCK, which can be phosphory-
lated and activated by ROCK.?® We found that once HUVECs were
pretreated with FPND, the phosphorylation of MYPT1 and LIMK1
stimulated by atorvastatin was inhibited significantly (Figures 7a
and b). In addition, FPND or H1152 treatment also inhibited the

atorvastatin-induced cell-cell junctions. Furthermore, atorvastatin
induces VEC phosphorylation in HUVEC cells, whereas FPND,
H1152 and ROCK-I siRNA block this effect (Figures 7a and b,
Supplementary Figure 5). Moreover, when embryos were pre-
treated with H1152 for 3 h (Supplementary Figure 6), they died
upon 10 uM treatment (data not shown). Below this concentration,
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Figure 7. FPND or ROCK inhibitor inhibited atorvastatin-induced ROCK signaling pathways. HUVEC cells were pretreated with either 20 uM

FPND or 2.5 uM H1152 for 1 h and then stimulated with 2 uM atorvastatin for 30 min. (a) The expression ratios of phosphorylated MYPT1/total
MYPT1, phosphorylated LIMK1/total LIMK1, and phosphorylated confilin/total confilin were detected by western blotting with specific
antibodies, as indicated; (b) the data were quantified by the ratio of the band intensity. (c) Inhibition of ROCK significantly prevented
atorvastatin-induced rupture of cell-cell junctions on ECs. HUVECs were cultured on the E-Plate in complete medium for 48 h and pretreated
with 30 uM FPND or 2.5 uM H1152 for 2 h, followed by washout and incubation with 2 uM atorvastatin for 24 h. ‘Ator’ in figure indicates 2 uM
atorvastatin. Data presented in the bar graphs are the mean + S.D. of three independent experiments. *P < 0.05, **P < 0.01 and ***P < 0.005
(versus the atorvastatin-alone group) were considered significantly different.
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Figure 8. FPND prevented any atorvastatin-related decrease in

zebrafish locomotion activity in a dose-dependent manner. In all,
1 dpf zebrafish were treated with or without FPND for 3 h, and then
incubated with 2 uM atorvastatin for 3 days. The swimming
distances of fishes were examined by the Viewpoint Zebrabox
system (Viewpoint, Paris, France) and the total distance moved in
10 min was calculated. Representative patterns of zebrafish locomo-
tion traced from different treatment groups. Statistical analysis of
the total distance traveled by each zebrafish larva in the different
treatment groups (12 fish larval per group from three independent
experiments). The results show the mean distance traveled by 36
larvae and are expressed in mm/10 min. Data presented in the bar
graphs are the mean + S.D. of three independent experiments.

atorvastatin-induced cerebral hemorrhage was ameliorated, but
the prevention effects were not as strong as those of FPND. These
results strongly implied that FPND prevented atorvastatin-induced
cerebral hemorrhage via ROCK/VEC signaling pathways.

FPND was a promising candidate for the prevention of
hemorrhagic stroke

The pathophysiology of ICH is complex. Hemorrhage into the
brain initially and obviously compresses the adjacent microvascu-
lature by producing hematoma. Intracranial hematoma induces
degeneration and necrosis of neurons and the brain. Indexing
neurological deficits is important for not only patients with stroke,
but also in animal models of ICH.>° For zebrafish, such deficits can
be characterized using different paradigms associated with
complex behaviors such as memory and anxiety, as well as
neuroprotection of dopaminergic neurons and movement dis-
orders. In our experiment, 6 dpf zebrafish treated with atorvastatin
continuously for 5 days from 1 dpf were subjected to behavioral
testing. FPND prevented atorvastatin-induced cerebral hemor-
rhage in zebrafish embryos. Meanwhile, 6 dpf zebrafish larvae
were also subjected to behavioral testing. Atorvastatin signifi-
cantly decreased their swimming distance, but pretreatment with
FPND reversed atorvastatin-induced locomotor activity defects in
a dose-dependent manner (Figure 8).

Finally, we tested the toxicity of FPND by orally administering
FPND to 10 mice at 10 mg/kg body weight. Meanwhile, another 10
mice were intravenously injected with 0.5 mg/kg FPND. All the
mice were alive and the body weights remained stable over
14 days. The calculated LDsq of orally administered FPND was
higher than 5mg/kg, and that of intravenously administered
FPND was higher than 0.5 mg/kg, suggesting that FPND was safe
and worthy of further study.
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DISCUSSION

We herein presented a new ROCK inhibitor for the prevention of
cerebral hemorrhage by maintaining vascular integrity. Similar to
our results, ROCK inhibitor has been reported to protect against
the chronic hemorrhage of CCM lesions in mouse models3*"
However, the detailed mechanism is still unknown. We postulated
that ROCK inhibitor had a direct role in maintaining the integrity of
blood vessels through inhibition of VEC activities.

Inhibition of the ROCK signaling pathway can relieve both CCM
and vascular leak by enhancing endothelial cell-cell junctions.’
Activation of ROCK induces actin cytoskeletal rearrangement and
disrupts VEC-mediated intercellular adhesion.>> Our group has
initiated a research program to identify new drug candidates
targeting ROCK for the prevention of hemorrhagic stroke, which
combined docking-based virtual screening with a zebrafish
model.”>'® We demonstrated that ROCK1 inhibitors effectively
inhibited the phosphorylation of downstream targets in the ROCK
signaling pathway in vitro, and protected against statin-induced
cerebral hemorrhage in vivo."”>'® The barrier function is main-
tained and regulated by AJs connecting ECs and neighboring cells.
As the most important cell adhesion protein in endothelial Als,
VEC ensures that ECs stay connected and limits leakage from
blood vessels.3®* VEC interacts with catenins (for example, p120-
catenin) to escape internalization,®* with B-catenin and a-catenin
being anchored to the actin cytoskeleton.>® Disruption of VEC-
dependent Als, for example, in response to inflammatory
mediators such as lipopolysaccharide, induces the loss of
endothelial integrity, accompanied by increased endothelial
permeability.®*” Null mutation of VEC leads to severe defects in
junctional morphology and vascular morphogenesis, whereas
partially knocking down VEC can increase vascular permeability.®
In addition, the vascular integrity of mice can be disrupted merely
by blocking VEC with antibodies, which concomitantly increases
permeability and hemorrhage® Taken together, inhibition of
ROCK protected against vascular integrity-based cerebral hemor-
rhage, probably via the VEC signaling pathway. To validate this
hypothesis, we used atorvastatin, a small-molecule inhibitor of
HMG-CoA reductase. High-concentration atorvastatin can induce
cerebral hemorrhage in a zebrafish model and disrupts the
junction of ECs in vitro.'*'%?° Interestingly, we identified a new
ROCK1 inhibitor, FPND, which had stronger protective effects than
those of other ROCK inhibitors (for example, H1152) on
atorvastatin-induced cerebral hemorrhage in zebrafish. To inves-
tigate the function of ROCK in cerebral hemorrhage, we examined
its effects on the junction of ECs. As expected, the in vitro results
showed that high-concentration atorvastatin significantly shrank
ECs and decreased cell—cell junctions, effects that were reversed
by FPND treatment. To further understand the effects of ROCK on
the junction of ECs, we focused on the cytoskeleton arrangement
and VEC signaling pathway after FPND treatment. FPND prevented
atorvastatin-induced scrambled knots, assembly of focal adhesion
complexes, formation of membrane ruffle close to cell-cell
contacts, and drastic losses of VE-catenin, B-catenin and p120-
catenin from cell borders, which marked the rupture of Als.
Phosphorylation of VEC leads to the uncoupling of p120- and
B-catenin, internalization and ubiquitination of VEC, and disrup-
tion of cell-cell junctions.*®*' Partly reducing VEC expression may
generate important defects in vascular integrity, such as cranial
hemorrhages, and increase the vascular permeability in zebrafish
embryos. In this study, statin-stimulated phosphorylation of
MYPT1, LIMK1 and VEC was reversed by FPND treatment. H1152
and ROCK1 siRNA also decreased the phosphorylation of VEC,
further suggesting that FPND prevented atorvastatin-induced
cerebral hemorrhage through cytoskeletal rearrangement and
enhancement of cell-cell junctions in ECs via the ROCK1 and VEC
signaling pathways. Furthermore, FPND also prevented
atorvastatin-induced hemorrhagic stroke and locomotor activity
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defects, and the mice could tolerate high-concentration FPND that
was orally or intravenously administered. Collectively, FPND is a
promising drug candidate for treating vascular integrity-based
cerebral hemorrhage.

Although the relationship between the ROCK1 and VEC
signaling pathways has been explored, further studies are
required to determine whether the difference between the effects
of ROCK1 inhibitor and the ROCK inhibitor H1152 on cerebral
hemorrhage is linked to ROCK2. Furthermore, the interaction
between ROCK1 and VEC still needs in-depth study.

In summary, FPND with a novel scaffold was able to inhibit
ROCK1 specifically at a low micromolar concentration. It sig-
nificantly protected against the cerebral hemorrhage induced by
the loss of vascular endothelial integrity by regulating the ROCK
and VEC signaling pathways. Moreover, the protective effects of
FPND on vascular endothelial integrity were at least partially
mediated through rearrangement of the actin cytoskeleton and
enhancement of VEC-mediated cell—cell junctions. Given the
extremely low toxicity of FPND against mice, FPND was safe.
Our results support the use of FPND to prevent hemorrhagic
stroke, particularly that associated with rupture of endothelial cell-
cell junctions and deficiencies in vascular endothelial integrity.

Significance

Using docking-based virtual screening and in vitro enzyme-based
assays approach, we revealed a new compound (FPND) with a
novel scaffold could inhibit ROCK1 specifically at low micromolar
concentration. In in vivo studies, FPND significantly prevented
statin-induced cerebral hemorrhage in a zebrafish model. In
addition, in vitro studies showed that FPND prevented statin-
induced cerebral hemorrhage by enhancing endothelial cell—cell
junctions through inhibiting the ROCK-mediated VE-cadherin
signaling pathway. As indicated by the extremely low toxicity of
FPND against mice, it is safe and can potentially prevent vascular
integrity loss-related diseases, such as hemorrhagic stroke.

MATERIALS AND METHODS
Ethics statement

All animal experiments were conducted according to the ethical guidelines
of the Institute of Chinese Medical Sciences (ICMS), University of Macau,
and the protocol was approved by the Institute of Chinese Medical
Sciences — Animal Ethics Committee (ICMS-AEC) of the University of Macau
(permit number: 20120601).

Cell culture and material

HUVECs were obtained from Thermo Fisher Scientific Inc. (Waltham, MA,
USA) maintained in vascular cell basal medium (ATCC, Manassas, VA, USA)
and used before to passage 7. Fetal bovine serum, phosphate-buffered
saline (PBS), penicillin—streptomycin (PS) and 0.25% (w/v) trypsin/1 mM
EDTA were all purchased from Invitrogen (Carlsbad, CA, USA). EC growth
supplement, heparin, gelatin were supplied by Sigma (St Louis, MO, USA).
Dimethyl sulfoxide (DMSO) and anti-VE-cadherin antibody, phospho
[Tyr731] were also acquired from Sigma. Antibodies of ve-cadhrin, p-LIMK1,
LIMK1, P-MYPT1, MYPT1, P-cofilin, cofilin and beta-actin were all purchased
from Cell Signaling Technology (Danvers, MA, USA).

Enzymatic inhibitory activity assays of ROCK

The enzymatic activity assays of lead compounds against ROCK were all
conducted in 384-well plates by using the Z'-LYTE kinase assay kit (Thermo
Fisher Scientific Inc.). In brief, 1.5 uM peptide substrate, 5 ng ROCK1 or
ROCK2 enzyme and testing compounds were added to each well and the
reaction was then initiated by adding 12.5 uM ATP. The plate was shaken
on a plate shaker for 30 s and then incubated for 1 h at room temperature.
Development solution was then added immediately and the assay plate
was shaken for 30s before incubation for another hour at room
temperature. Stop reagent was then added to terminate the reaction.
Finally, the coumarin (Ex. 400 nm, Em. 445 nm) and fluorescein (Ex.
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400 nm, Em. 520 nm) emission signals were measured by the fluorescence
plate reader. The inhibitory activity against ROCK1 or ROCK2 was
quantified by calculating the ICso values.

Molecular docking

The structure of FPND was sketched and minimized by using the
OPLS-2005 force field*? in Schrodinger (version 9.0) (Schrédinger, LLC,
New York, NY, USA). The crystal structures of ROCK1 (PDB entry: 2ETR) and
ROCK2 (PDB entry: 2H9V), retrieved from the RCSB Brookhaven Protein
Data Bank, were used as the templates for molecular docking. The Protein
Preparation wizard in Schrodinger 9.0 was used to remove all crystal-
lographic water molecules, add hydrogen atoms, assign partial charges
and minimize each structure until the root-mean-square deviation reached
a maximum value of 0.3 A. FPND was then docked into the active site of
ROCK1 or ROCK2 by using the Glide module in Schrédinger with the extra
precision (XP) scoring mode. The receptor grid box for glide docking was
generated and centered on the ligand in the active site with a size of
10Ax10Ax10Ax10Ax 10 A

MDs simulations

The binding poses with the best docking scores were then submitted to
the following MD simulations. FPND was optimized by the semi-empirical
AM1 method in Gaussian09 followed by the single-point HF/6-31G*
calculation of electrostatic potentials,** and the partial charges and force
field parameters for FPND were obtained using the antechamber program
in AMBER11.** Counter ions of Na* were added to neutralize the charge of
each system. Then, each system was immersed into a rectangular box of
TIP3P water molecules, at a distance of 10 A from any solute atom. The
particle mesh Ewald (PME) method® was used to handle long-range
electrostatics in a periodic boundary condition. The general AMBER force
field (gaff) and the ff99SB force field*® were used for FPND and the
proteins, respectively.

Each system was optimized by two-stage minimization with the sander
program in AMBER11* before the MD simulations. In the first stage, the
backbone carbons of each protein were constrained (50 kcal/mol/A%) and
each system was optimized by 1000 cycles of minimization (500 cycles of
steepest descent and 500 cycles of conjugate gradient minimization). In
the second stage, the whole system, with no constraint, was optimized by
5000 cycles of minimization (1000 cycles of steepest descent and 4000
cycles of conjugate gradient minimization). After that, each system was
gradually heated from 0 to 300 K over a period of 50 ps followed by 5 ns
NPT MD simulations with a target temperature of 300K and a target
pressure of 1 atm. The SHAKE algorithm was used to constrain all bonds
involving hydrogen atoms.”” The time step was set as 2.0fs and the
coordinate trajectories were saved every 10 ps during the MD runs.

MM/GBSA binding free energy calculations and decompositions

The binding free energy for each system was calculated by the MM/GBSA
method, implemented in AMBER according to Equation 1:%34°

AGbind = Gcomp/ex — Uprotein — Gligand = AH + AGso/vation —TAS
= AEyy + AGgg + AGsy— TAS (1)

where AEyy represents the gas—phase interaction energy between protein
and ligand, contributed from the electrostatic and van der Waals
interactions; AGgg is the polar component of the desolvation free energy;
AGs, is the non-polar component of the desolvation free energy; — TAS
represents the change in conformational entropy upon ligand binding,
which was ignored here due to the expensive computational cost and low
prediction accuracy.*®*° AGgg was estimated by using the generalized
born (GB) model with the parameters developed by Onufrievet al.
(igb=2).51 The exterior dielectric constant was set to 80, and the solute
dielectric constant (g;,) was set to 2. AGsa was calculated based on the
solvent-accessible surface area (SASA), determined by the LCPO method.>?
A total of 100 snapshots, evenly extracted from 3 to 5 ns, were used to
calculate the energy terms.

The total protein—inhibitor interaction was decomposed into residue—
inhibitor pairs by using the MM/GBSA decomposition protocol in
AMBER®>>™* The residue—inhibitor interactions consist of wan der Waals
contributions (AE,q4,), electrostatic contributions (AEg), polar contribu-
tions of desolvation (AGgg) and non-polar contributions of desolvation
(AGsp). AGgg was estimated by the GB model with the parameters
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developed by Onufrievet al. (igh=2),>' and AGsa was calculated based on
SASA with the ICOSA technique.>®

Cell—cell junction detection using the xCELLigence system

The xCELLigence RTCA System (RTCA DP Station, Roche, San Diego, CA,
USA) is a non-invasive, label-free platform that utilizes impedance changes
across the cell monolayer to indirectly measure cell-cell interaction,
transient contractions and cell layer permeability. ECs and the RTCA system
(Roche) enable in vitro screening of compound effects on human
endothelium permeability.’>* For xCELLigence electrical conductivity
assays, HUVECs were cultured and maintained on a 16-well E-Plate for
2 days to form a stable monolayer, pretreated with FPND, H1152 and/or
PP2 for 2 h, and then treated with 2 uM atorvastatin for 24 h. Data analysis
of cell—cell junctions in HUVECs was accomplished with the RTCA software
(Roche). Values represent the mean of triplicate points for all experiments.

Immunofluorescence microscopy

Cells were seeded on 96-well plates, and mature junctions were allowed to
establish over 2 days. When the experiment was done, cells were washed
once for 1 min with PBS and fixed for 20 min with 4% formaldehyde in PBS.
After being rinsed once with PBS, cells were permeabilized with PBS
containing 0.3% Triton X-100 for 20 min on ice. After being washed three
times with PBS for 1 min, cells were blocked with 2% BSA in PBS for 1 h at
room temperature. Primary antibodies were applied in 2% BSA in PBS and
incubated overnight at 4 °C. Cells were then washed three times for 1 min
in PBS. Secondary antibodies conjugated to fluorescent probes (Alexa Fluor
488 rabbit anti-goat 1gG (H+L), Molecular Probes, Thermo Fisher Scientific
Inc.) were applied for 1 h at room temperature. Cells were washed 4 x with
PBS for 5 min per wash and images were taken with the IN Cell Analyzer
2000 system (General Electric, Marlborough, MA, USA).

Western blotting analysis

Cells were pretreated with FPND for 2 h before the addition of 2 uM
atorvastatin at 15, 30 and 45 min. Cells receiving DMSO (0.1%) served as
the vehicle control, which was equivalent to no treatment. Cells were then
washed with PBS and lysed for 30 min on ice with lysis buffer (0.5 M NaCl,
50 mM Tris, 1 mM EDTA, 0.05% SDS, 0.5% Triton X-100, 1 mM PMSF, pH
7.4). Cell lysates were centrifuged at 11 000 x g for 20 min at 4 °C. Protein
concentrations in the supernatants were measured using the bicinchoninic
acid assay (Pierce, Rockford, IL, USA). Supernatants were electrophoresed
on 12% SDS-PAGE, and transferred to polyvinylidene diuoride membranes,
which were then blocked with 5% non-fat milk. Immunoblot analysis was
undertaken by incubating with antibodies at 4 °C overnight. After washing,
membranes were incubated for 1 h at room temperature with horseradish
peroxidase-conjugated goat anti-rabbit IgG. Proteins were detected using
an advanced enhanced ECL system (GE Healthcare, Little Chalfont, UK).
Semiquantifications were performed with densitometry analysis by
Quantity One software (Quantity One, Hercules, CA, USA).

Maintenance of zebrafish and embryos

Tg(flila:EGFP)y1; Tg(gatala:dsRed)sd2 homozygous double transgenic
zebrafish, which expresses green fluorescent protein (GFP) under the
control of fli1 promoter in EC, and red fluorescent protein (dsRed) under
the control of gatal promoter in erythrocytes, were kindly provided by
ZFIN (Eugene, OR, USA) and wild-type zebrafish was purchased from a local
pet shop. The embryos were cultured at 28.58 °C in embryo medium that
was prepared according to ZFIN’s instructions.

Morphological observations of zebrafish

Tg(flila:EGFP)y1; Tg(gatala:dsRed)sd2 homozygous double transgenic
zebrafish embryos at 21 h post-fertilization (hpf) were pretreated with
different concentrations of both FPND (1, 3, 10, 30 or 100 uM) and H1152
(1.25, 2.5 or 5 uM) for 3 h, whereas the embryos treated with 0.2% DMSO
(solvent) for 3 h served as the vehicle control group. Then, the pretreated
embryos were treated with 2 uM atorvastatin for 24 h and observed for
viability and gross morphological changes under a fluorescence micro-
scope (Olympus MVX10; Tokyo, Japan) equipped with a digital camera
(ColorView I, Soft Imaging System; Olympus). The images were analyzed
with Adobe Photoshop 7.0 and ImageJ software (ImagelJ, Bethesda, MD,
USA). To evaluate hemorrhage stroke in zebrafish embryos, the indexes of
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hemorrhage were quantified by measuring the area of hemorrhage in
cerebra.

Preparation of FPND solution for intravenous injection (i.v.
injection)

A certain amount of Solutol HS 15 was heated up to 60 °C in a water bath
for dissolving. Then, 1 ml dissolved Solutol was added into the glass tube
with 2.5 mg FPND. Heat and ultrasound methods were used until the drug
completely dissolved. Then, 4 ml water was added into the tube and mixed
thoroughly to obtain 1 mg/ml FPND solution.

Acute toxicity test for FPND

Mature BalB/c mice with a minimum body weight of 20 g were used, and
the concentration administered orally was 10 mg/kg of body weight, and
i.v. 0.5 mg/kg of body weight. At the target dose, all mice should be alive
for 2 weeks. During the 2-week period, the weight of each mouse was
recorded every 2 days. All experiments were in compliance with national
regulations on the administration of experimental animals, approved by
The Hong Kong Polytechnic University (license key: SCXK 2008-0002;
44007200004512).

Statistical analysis

Statistical analysis was performed using PRISM software (version 5.0,
GraphPad Software, La Jolla, CA, USA). All experiments were performed at
least in triplicate. Data are expressed as means=+S.D. Statistical testing
included one-way ANOVA and Student’s t-test, applied as appropriate and
with P < 0.05 considered statistically significant.
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