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Abstract: Previous reports on phytochemicals in green tea (GT) and processed teas mainly focused
on more representative compounds such as catechins. Here, we focus on the insignificantly studied
non-catechin components in tea extracts, and explore the multivariate correlation between diverse
phenolic compounds in tea and the in vitro antioxidant and anticancer effects. Extracts from GT
and four types of processed teas were further divided into hydrophilic and hydrophobic fractions,
whose phenolic compositions and antioxidant capacities were quantified using HPLC-MS and three
antioxidant assays, respectively. For three types of teas, the anticancer effects of their extracts and
fractions were assessed using cancer cell lines. The hydrophobic fractions had lower antioxidant
capacities than the corresponding hydrophilic fractions, but exhibited superior antiproliferative
effects on cancer cells compared with the whole extract and the hydrophilic fraction. Partial least
squares-discriminant analysis revealed a strong correlation between the anticancer effects and the
theaflavins and flavonols. Therefore, in addition to catechins, the hydrophobic fraction of tea extracts
may have beneficial health effects.

Keywords: anticancer effect; antioxidant capacity; high-performance liquid chromatography-mass
spectrometry; fermented green tea; multivariate analysis; oxidized green tea; partial least
squares-discriminant analysis

1. Introduction

Green tea (GT; Camellia sinensis) contains large amounts of bioactive polyphenols such as
flavan-3-ols (catechins), flavonols, and flavones [1]. Common processed teas include oxidized teas (black
tea (BT) and oolong tea), microbial fermented green tea (MT), and post-fermented tea (pu-erh or pu’er
tea, also called Chinese fermented dark tea). These representative types of tea contain substantial
amounts of phenolic compounds, of which catechins, theaflavins, flavonols, and flavones account
for approximately 15%, 4%, 0.4%, and 0.1% of the dry weight (DW), respectively [1,2]. One study
simultaneously analyzed over 45 compounds in tea, including catechins and flavonols, using ultra
high-performance liquid chromatography (UPLC) coupled with quadrupole time-of-flight (Q-TOF)
mass spectrometry (MS) [3]. Recently, 145 compounds such as hydroxycinnamic acids, catechins,
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and flavonols in GT and pu-erh tea were further characterized using UPLC-Q-Orbitrap-MS/MS in
order to discriminate the tea sources by matching the chemical profiles [4].

Advanced analytical instruments and methods, such as high-resolution MS, chemometric
analysis, and targeted or non-targeted metabolomics approaches, have provided a wealth of
information on the potential health benefits of bioactive phenolics in agricultural plant resources [3,5,6].
Several reports suggested that phenolic compounds in GT and processed teas have anticancer,
anti-inflammatory, anti-obesity, and/or antioxidative effects [7–10]. Many chemometric approaches,
such as multivariate analysis, principal component analysis (PCA), linear discriminant analysis,
and partial least squares-discriminant analysis (PLS-DA), have been applied to tea phenolics. However,
those studies have mainly focused on catechins [11,12], while there exist only a few reports on the
correlation between the phenolic composition and function of GT and processed teas. In one such study,
multivariate analysis revealed differences between C. sinensis and herbal teas [13]. Both the contents
and composition of flavonols and flavones also vary among C. sinensis cultivars [14]. Additionally,
the harvest season, tea manufacturing process, and sample extraction procedure should all be carefully
considered when investigating the phenolic profile of teas.

Since the hydrophobic fraction of tea extracts contains very little catechins, we hypothesize that
separating the extract into hydrophobic and hydrophilic fractions may allow more comprehensive
characterization of the phenolic compounds therein. Chemometrics and multivariate analysis of the
different fractions should give less-biased correlations between the phenolic compounds and in vitro
biological effects. The whole extracts of green, oxidized, and fermented teas and two fractions of each
extract were compared in terms of phenolic profiles and antioxidant and anticancer effects. Many cohort
trials have been conducted on the chemopreventive effects of drinking green and fermented teas [15–17].
However, we thought that brewing may not sufficiently extract the more hydrophobic compounds,
and thus it is important to investigate the impact of different tea fractions.

For better control, green tea and fermented teas were manufactured in this study from the same
batch of leaves (i.e., the same cultivar and harvest season). Extracts of these teas were further separated
into hydrophilic and hydrophobic fractions, which contain the highest and lowest amounts of catechins,
respectively. Those fractions from different teas were then compared in terms of their antioxidant and
anticancer effects in vitro.

2. Materials and Methods

2.1. Chemicals and Reagents

Apigenin, (−)-catechin (C), (−)-catechin gallate (CG), (−)-epicatechin (EC), (−)-epicatechin
gallate (ECG), (−)-epigallocatechin (EGC), (−)-epigallocatechin gallate (EGCG), (−)-gallocatechin (GC),
(−)-gallocatechin gallate (GCG), theaflavin (TF), theaflavin 3-O-gallate (TF3G), theaflavin-3′-O-gallate
(TF3′G), and theaflavin-3,3′-O-digallate (TF3,3′DG) were purchased from FUJIFILM Wako Pure
Chemical Industries, Ltd. (Osaka, Japan). The following chemicals and reagents were purchased from
Sigma-Aldrich Co., LLC (St. Louis, MO, USA): 2,2-azobis(2-amidinopropane) dihydrochloride
(AAPH), 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS), 3-(4,5-
dimethylthiazol-2yl)-2,5-diphenyltetrazolium bromide (MTT), aluminum chloride, ascorbic acid,
caffeine, dimethyl sulfoxide (DMSO), Dulbecco’s modified Eagle’s medium (DMEM), 1,1-diphenyl-
2-picrylhydrazyl (DPPH), fetal bovine serum (FBS), Folin–Ciocalteu’s phenol reagent, gallic acid
(GA), iron(III) chloride hexahydrate (FeCl3·6H2O), hydrogen peroxide (H2O2), isoquercitrin (IQ),
kaempferol, myricetin, paclitaxel (code: Y0000698), phosphate-buffered saline (PBS), rutin, quercetin,
penicillin/streptomycin, Roswell Park Memorial Institute (RPMI) 1640, 2,4,6-Tris(2-pyridyl)-s-triazine
(TPTZ), and an in vitro lactate dehydrogenase toxicology assay kit. Formic acid, mass-grade acetonitrile
and water, and high-performance liquid chromatography (HPLC)-grade acetonitrile and methanol
were purchased from Thermo Fisher Scientific Inc. (Waltham, MA, USA). Water for HPLC was
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purchased from Burdick & Jackson (Muskegon, MI, USA). All other chemicals were of American
Chemical Society grade or higher.

2.2. Tea Cultivar and Cell Lines

Fresh tea leaves (C. sinensis var. sinensis) were harvested from May to June 2017 (2nd harvest of the
year) at Osulloc Farm Corp. (Jeju-do, Korea). The leaves were processed as described below to produce
five types of tea samples. Leaves of garland chrysanthemum (crown daisy; Chrysanthemum coronarium L.,
for making the co-oxidized green tea) were purchased from Agro-fisheries & Food Corp. (Seoul, Korea).
Some of previous research associated with our institute had focused on patients with colorectal
adenoma or breast cancer [9,18]. Therefore, in this study the antiproliferative effects were examined
using the corresponding cell lines of DLD-1 (colorectal adenocarcinoma cell line; CCL-221™) and
E0771 (murine breast cancer cell line; #940001), which were purchased from American Type Culture
Collection (Manassas, VA, USA) and CH3 BioSystems LLC (Amherst, NY, USA), respectively.

2.3. Preparation of Five Teas

GT was produced from fresh leaves using modern tea factory machines (120K line; Kawasaki
Co., Shizuoka, Japan). Briefly, the leaves were harvested with a riding type tea plucking machine,
transported to the factory, and placed on automated conveyer belt for loading into the steaming
machine. The leaves were in contact with steam for approximately 30 s to deactivate an endogenous
enzyme and fix the color. The steamed leaves were rolled and dried until the moisture content was
below 4% (w/w). This GT was used to make MT and natural post-fermented tea (PT) as described below.

BT was prepared by oxidizing the withered leaves in modern tea factory machines (35K line;
Kawasaki Co.). Briefly, the fresh tea leaves were naturally withered at 30–40% relative humidity for
18 h, until the moisture content was reduced to 60% (w/w). A rolling process was conducted for 1 h by
applying the Orthodox method [19]. Further oxidation was carried out by spreading the tea leaves on
a large wooden board and kept at 40 ◦C for 7 h, with sparging additional water on the leaf surface.
At the end of oxidation process, the leaves were dried in 80 ◦C air for 2 h. The final moisture content of
BT was 4–6% (w/w).

MT was prepared following previous research with modification [20]. Briefly, dried GT was mixed
with 1% (w/v) sucrose solution and fermented at 50 ◦C for 72 h after inoculation of Bacillus subtilis.
Dried MT (5–8% (w/w) moisture content) was obtained by convective heating without post-maturation.

PT was prepared following the method of Mo et al. [21] with modifications. Briefly, 100 kg
of dried GT was mixed with 30 L tap water on a wooden board. The wet GT was collected into
one lump on the board, compacted tightly by tapping, and then covered with a thick vinyl film.
This allowed natural fungal fermentation to proceed, as indicated by an increase in temperature up
to 50 ◦C. Additional water was supplied after 7 days of fermentation, and then the tea leaves were
re-mixed. The fermentation was carried out for a total of three weeks. The fermented tea was dried by
heat until the moisture content reached 5% (w/w).

Co-oxidized GT (CT) was made following a previously reported method [22]. Fresh tea leaves and
garland chrysanthemum leaves were washed with water. After removing the excess water, each type
of leaves was soaked in liquid nitrogen and crushed into a crude powder. After defrosting, the tea
leaves (100 g) and garland chrysanthemum leaves (50 g) were mixed and fermented at 37.5 ◦C for 3 h
using a z-blade mixer (IKA, Staufen, Germany). Then, the fermented mixture was directly used to
prepare the extract as described below.

2.4. Preparation of Tea Extracts and Fractions

To prepare the extracts of BT, GT, MT, and PT (abbreviated as BTE, GTE, MTE, and PTE,
respectively), 50 g of dried tea was ground using an IKA tube mill at 10,000 rpm for 30 s, and then
soaked in 10-fold 70% (v/w of DW) aqueous ethanol at 60 ◦C for 2 h. To prepare the CT extract
(CTE), the fermented mixture was added with 1.75-fold absolute ethanol and soaked at 60 ◦C for
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3 h. Solid particles in the ethanolic extract solutions were removed by a 90-mesh sieve, followed by
a 0.22-µm bottle top vacuum filter (Dow Corning, Corning, NY, USA). Ethanol in the extracts was
removed using an evaporator (Heidolph Instruments, Schwabach, Germany), and the residue was
freeze-dried (Labconco, Kansas City, MO, USA) to produce a powder.

Preparative HPLC was used to separate the extract into hydrophilic (WFR) and hydrophobic (OFR)
fractions. Powdered extract (5 g) was dissolved in 50 mL of 70% (v/v) aqueous ethanol by sonication for
30 min. The mixture was centrifuged to separate the supernatant from the sediment. The sediment was
resuspended in 30 mL of 70% (v/v) ethanol, and the aforementioned liquid extraction was repeated twice.
The obtained supernatants were combined and filtered through a 0.45-µm polyvinylidene fluoride
syringe filter (Pall Corp., Port Washington, NY, USA). The filtered solution (10 mL) was injected into a
preparative liquid chromatography system (ÄKTA Purifier 10; GE Healthcare, Stockholm, Sweden)
coupled with a photodiode array detector at wavelengths of 275 nm and 365 nm. The fractions were
separated using an octadecyl-silica (ODS) AQ-HG column (120 Å, 10 µm, 20 × 250 mm, column volume
(CV) = 78.5 mL; YMC, Kyoto, Japan). Gradient elution was performed with water (solvent A) and
acetonitrile (solvent B) at a 10 mL/min of flow rate, and the elution program is described in Figure S1.
The eluent from each cycle was divided into WFR and OFR and collected in separate bottles via 12
repeated cycles of injections (Figure S1). After the repeated cycles, 500 mL of 100% acetonitrile was used
to elute the remaining compounds in the column, which were combined with the OFR. The collected
fractions were evaporated and lyophilized as described above for the extracts (Figure 1).

Figure 1. Method of preparing tea extracts and fractions. BT, black tea; CT, co-oxidized green tea,
GT, green tea; MT, microbial fermented green tea; PT, post-fermented green tea; BTE, BT extract;
CTE, CT extract, GTE, GT extract; MTE, MT extract; and PTE, PT extract. C18 means reverse-phase
octadecyl-silica column.

2.5. Analysis of Phenolics and Caffeine by HPLC-Ultraviolet (UV)-Coupled Single Quadrupole Mass Detector

Nineteen phenolic compounds and caffeine were quantified according to the following method.
Powdered extracts and fractions were dissolved in 10% (v/v) DMSO in methanol using 20 min of
sonication, and then passed through a 0.45-µm GHP syringe filter (Pall Corp.). The filtered samples
were injected into an Alliance e2695 HPLC system (Waters Corp., Milford, MA, USA) equipped with an
auto-sampler, a quaternary pump, and a Poroshell 120 SB ODS column (120 Å, 2.7 µm, 4.6 × 150 mm;
Agilent Technologies, Santa Clara, CA, USA) with an injection volume of 5 µL. The eluent was passed
through a Waters Isocratic Solvent Manger simultaneously into a single quadrupole mass detector
(MSS) and a UV detector, with a retention time gap (0.075 min on average) between the two. The elution
program and the conditions for separation and mass detection are described in Supplementary Data I.
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For the UV detector, gallic acid, catechins, and theaflavins were detected at 275 nm, and flavonols
and flavones were monitored at 365 nm. All data were collected and processed using Empower 3
software (Waters Corp.). The relative contents of flavonol glycosides (such as kaempferol, myricetin,
and quercetin glycosides) were compared using the peak area of 365 nm.

2.6. Post-Data Processing of LC-MS Acquisitions by R Script

To quantify phenolic compounds and caffeine in the standards and samples, the mass chromatograms
were smoothed using the mathematical mean method (levels 7−9) by Empower 3 software (Waters
Corp.). The two sets of results obtained from UV and MSS were exported into .cvs files. Unnecessary or
unmatched UV data with a retention time gap outside the proper range (0.06−0.09 min) were rejected.
The matching algorithm was implemented in R software v 4.0.1 (The R Foundation; www.r-project.org)
and RStudio Desktop v1.3.959 (RStudio, Boston, MA, USA) based on the same injection identification
for MS and UV acquisition (Figure S3 and Supplementary Data I and II).

2.7. Determination of Total Flavonoid and Phenolic Contents

The total flavonoid content (TFC) was measured using the method by Kim et al. [23] and expressed
in mg catechin equivalents (CE)/g DW of extract (DWEX). The total phenolic content (TPC) was
determined using a colorimetric method with Folin–Ciocalteu’s phenol reagent [23,24] and presented
as mg gallic acid equivalents (GAE)/g DWEX. The detailed methods are described in Supplementary
Data I.

2.8. Measurements of Antioxidant Capacities of Tea Extracts and Fractions

The antioxidant capacities of tea extracts and their fractions were determined by ABTS, DPPH,
and ferric reducing antioxidant power (FRAP) assays following the methods described by Kim, Im,
Jeong, Jung, Lee, Kim, Park, and Kim [23] and presented as mg vitamin C equivalents (VCE)/g DWEX.
The detailed methods are described in Supplementary Data I.

2.9. Assessment of Antiproliferative Effects of Tea Extracts and Fractions on Cancer Cells

DLD-1 and E0771 cells (5 × 103 cells/well) were incubated in 96-well plates with the sample
(10 and 100 mg/L; based on a previous report [10]) for 24 h. Further, paclitaxel, a common anti-cancer
drug [25,26], was used for positive control and applied in the same way. After adding MTT, the cells
were incubated for another 2 h. Cell viability was confirmed based on the formation of a purple
formazan metabolite from MTT. The detailed methods are described in Supplementary Data I.

2.10. Multivariate Analysis and Statistical Analysis

PCA was performed using JMP Pro 13 (SAS Institute Inc., Cary, NC, USA) for 20 components in
five tea extracts and their fractions (123 rows in total; n = 6–9 for each sample). PLS-DA was performed
using JMP Pro 13 for three augmented datasets combining the results of TFC, TPC, antioxidant
capacities, anticancer effects, and the composition of 20 compounds in five tea extracts and their
fractions by matching the sample name column with replications. Dataset (1) contains 612 rows
generated from the anticancer effect (80 rows) and compound composition (123 rows). Dataset (2)
contains 369 rows generated from the antioxidant capacities (45 rows) and compound composition
(123 rows). Dataset (3) contains 240 rows generated from the anticancer effect (80 rows) and antioxidant
capacities (45 rows). Nonlinear iterative partial least squares (NIPALS) fit was applied with the fewest
factors for which the van der Voet T2 significance level exceeds 0.10 [27]. The KFold validation method
of PLS-DA was selected with 7 folds.

The data are expressed as mean ± standard error of the mean (n = 3). One-way analysis of variance
and Tukey–Kramer honestly significant difference test with p < 0.05 were implemented in JMP Pro 13.

www.r-project.org
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3. Results and Discussion

3.1. Phenolic Compositions of Tea Extracts and Fractions

The TFC and TPC in GTE are known to be affected by the extraction method [28]. We used 70% (v/w)
aqueous ethanol to obtain over 30% (w/w) of the catechins while minimizing the other components such
as sugars and proteins [29]. In total, 29 phenolic compounds and caffeine were identified in five teas by
HPLC-MSS (Table 1). These identified compounds consist of 10 flavonol glycosides, eight catechins,
four theaflavins, three flavonol aglycones, two flavone glycosides, one flavone aglycone, one phenolic
acid, and caffeine. Twelve flavonol and flavone glycosides were found in all the five teas, which were
prepared from leaves from the same cultivar and harvested in the same season (Table 1 and Figure S2).
Compared to GTE, BTE and CTE contained theaflavins that came from the intrinsic enzymatic action
of catechin polymerization (Figure S2A,B). MTE and PTE of microbial fermented teas contained higher
amounts of gallic acid and non-epicatechins (i.e., C, CG, GC, and GCG), and a lower amount of flavonol
aglycones compared with GTE (Figure S2D,E). Except for CT (which contains about 1/3 crown daisy
leaves in fresh weight and therefore less caffeine), extracts of the other four teas had similar levels of
caffeine (approximately 70 mg/g DWEX). Meanwhile, the extract of crown daisy leaves showed no
detectable signals at the wavelength of UV 275 and 365 nm (data not shown).

Table 1. Identification of compounds in the five tea extracts.

Peak a Class b RTav
c Molecular Mass d λmax1/λmax2

e Formula Identification f

1 PA 3.55 170.02 270.7/- C7H6O5 Gallic acid
2 F3 5.53 306.07 269.5/- C15H14O7 (−)-Gallocatechin
3 F3 7.38 306.07 269.5/- C15H14O7 (−)-Epigallocatechin
4 F3 8.06 290.08 279.0/- C15H14O6 (−)-Catechin
5 MX 8.61 194.08 273.0/- C8H10N4O2 Caffeine
6 F3 9.67 290.08 279.0/- C15H14O6 (−)-Epicatechin
7 F3 10.16 458.08 274.2/- C22H18O11 (−)-Epigallocatechin gallate
8 F3 11.41 458.08 274.2/- C22H18O11 (−)-Gallocatechin gallate
a FE 11.52 563.14 270.7/333.8 C32H27O14 Apigenin-6-C-glucosyl-8-C-arabinoside
b FL 12.65 479.08 258.8/355.3 C21H19O13 Myricetin-3-O-galactoside
c FL 13.13 479.08 255.2/358.9 C21H19O13 Myricetin-3-O-glucoside
d FL 13.88 771.20 255.2/354.1 C33H39O21 Quercetin-3-O-galactosylrutinoside
e FL 15.18 771.20 255.2/352.9 C33H39O21 Quercetin-3-O-glucosylrutinoside
f FL 16.42 609.15 268.3/338.6 C27H29O16 Quercetin-3-O-rhamnosylgalactoside
9 FL 16.87 609.15 255.2/352.9 C27H29O16 Quercetin-3-O-rhamnosylglucoside
10 F3 17.18 442.09 276.6/- C22H18O10 (−)-Epicatechin gallate
g FE 17.21 431.10 245.8/344.6 C26H19O10 Apigenin-6-C-glucoside or isomer
h FL 17.77 463.09 255.2/355.3 C21H19O12 Quercetin-3-O-galactoside
11 FL 17.91 463.09 255.2/352.9 C21H19O12 Quercetin-3-O-glucoside
12 F3 18.18 442.09 276.6/- C22H18O10 (−)-Catechin gallate
i FL 18.74 755.20 264.7/346.9 C33H39O20 Kaempferol-3-O-glucosylrutinoside
j FL 20.43 593.15 264.7/346.9 C27H29O15 Kaempferol-3-O-rhamnosylglucoside

13 FL 24.30 317.03 254.1/376.7 C15H9O8 Myricetin
14 FL 32.05 563.13 268.3/375.5 C29H24O12 Theaflavin
15 FL 32.65 301.03 254.1/363.9 C15H9O7 Quercetin
16 TF 35.28 704.17 270.7/375.5 C36H32O15 Theaflavin-3-O-gallate
17 TF 37.20 704.17 274.2/375.5 C36H32O15 Theaflavin-3′-O-gallate
18 TF 37.75 868.15 274.2/375.5 C43H32O20 Theaflavin-3,3′-O-digallate
19 FE 42.08 270.05 265.9/337.4 C15H10O5 Apigenin
20 FL 43.41 285.04 264.7/363.9 C15H9O6 Kaempferol
a Lowercase characters indicate flavonol and flavone glycosides which were not included in quantitative analysis.
b Identification inferred from the literature [10,30]. F3, flavan-3-ol; FE, flavone; FL, flavonol; MX, methylxanthine; PA,
phenolic acid; TF, theaflavin. c RTav: average retention time of UV detection. d All acquisitions were carried out in
the negative mode (m/z, [M −H]−), except for caffeine which used the positive mode (m/z, [M + H]+). e λmax1/λmax2:
obtained by other HPLC coupled with photodiode array detector (Waters Corp.) with same separation methods as
described in this article (solvent: 0.1% (v/v) formic acid in water and acetonitrile; pH ≈ 2.7). f Refer to previous
report for identification of FL and FE [10].

In detail, the levels (unit: mg/g DWEX) of EGCG and EGC were 218 and 76 for GTE, 51 and 18 for
MTE, 35 and 50 for PTE, below 5 of them for BTE, and none for CTE, respectively (Figure 2A and Table S1).
In GTE, MTE, and PTE, the levels of ECG and EC were approximately 2–5 folds lower than those of
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EGCG and EGC, and their relative proportions (ECG/EC and EGCG/EGC) were similar. Meanwhile,
ECG and EC were not detected in BTE and CTE. The total theaflavins were 16.6 and 24.6 mg/g DWEX

for BTE and CTE, respectively. The levels of TF and TF3G were higher in CTE than in BTE, while
these two extracts have similar contents of TF3′G and TF3,3′DG (Figure 2B and Table S1). Substantial
amounts of non-epicatechins were present in MTE and PTE. The total amount of non-epicatechins was
77.9 and 55.4 mg/g DWEX for MTE and PTE, respectively (Figure 2B and Table S1). The least amount of
gallic acid (<1 mg/g DWEX) was found in GTE, followed by BTE and CTE (4.5–7.9), and then MTE and
PTE (20–90) according to Figure 2C and Table S1. The content of caffeine was 68 mg/g DWEX for GTE,
and 60–75 mg/g DWEX for the four processed tea extracts (Figure 2C and Table S1). As a representative
flavonol glycoside, isoquercitrin (quercetin-3-O-glucoside) was present at ~0.7 mg/g DWEX in BTE
and CTE and at ~1.0 mg/g DWEX in GTE, MTE, and PTE. Meanwhile, rutin (quercetin-3-O-rutinoside)
was detected in all five tea extracts (Figure 2D and Table S1). Quercetin aglycone was not detected in
BTE and GTE, while it was detected at 0.3–0.4 mg/g DWEX in CTE, MTE, and PTE. Kaempferol was
detected only in BTE (Table S1).

Each tea extract was divided in two fractions in this study, and the yields (w/w) were approximately
0.75 for WFR and 0.15 for OFR. In each extract, the 20 identified compounds (numbered peaks in Table 1
and quantified in Figure 2) had the following distribution in the two fractions: hydrophilic compounds
(e.g., catechins and gallic acid), 1.2–1.3 folds in WFR and <0.05-fold in OFR; amphiphilic compounds
(e.g., rutin and isoquercitrin), 1.2–2.4 folds in OFR and 0.8–1.0 folds in WFR; hydrophobic compounds,
3.4–8.3 folds in OFR and none in WFR for e.g., myricetin and quercetin as well as 1.3–6.1 folds in OFR

and 0.4–1.0 folds in WFR for e.g., theaflavins (data not shown). Taken together, the composition of the
20 compounds was different among the five tea extracts and their fractions, and these differences were
well distinguished for the 15 samples by PCA as shown in Figure 2E.

The relative content of 10 flavonol glycosides in the four processed tea extracts differed from
that in GTE (Table S2). Myricetin glycosides completely disappeared in BTE and CTE, presumably
due to intrinsic enzymatic reaction according to a previous report [31]. The contents of apigenin
glycoside (peak g), kaempferol glycoside (peak j), and quercetin glycoside (peak f) in MTE and PTE
were increased because of their microbial transformation by detaching the monoglycosyl (arabinose or
glucose) moieties of peak a, peak i, and peak d or e, respectively. Those changes are to be elucidated in
further studies, while the presence of apigenin glycoside in pu-erh tea has been reported [32].

The TPC was similar across the five tea extracts (~100 mg GAE/g DWEX) except for BTE. TFC is
ranked as GTE (440 mg CE/g DWEX) > MTE and PTE (~350) > BTE and CTE (~300), as shown in
Figure 3A,B. The proportion of TFC increased in the OFR of CTE and GTE, while in the other three
extracts its proportion increased in the WFR (Figure 3 and Table S3). The proportion of TPC in each
extract changed to 0.64 in OFR and 1.10 in WFR on average (data not shown).

Compared to the other extracts, EGCG was more enriched in GTE and GCG was more
enriched in MTE (Figure 2A,B). MTE and PTE had higher portions of non-epicatechins, due to
their chemical instability in the aqueous or highly humid conditions during microbial fermentation [33].
Catechins are unstable in aqueous conditions by undergoing epimerization or ring fission, depending
on environmental factors such as the moisture and pH [34]. Despite those changes in catechins, the TFC
values in GTE, MTE, and PTE were not statistically different (Figure 3). In contrast, TFC and TPC were
significantly (p < 0.05) reduced in BTE and CTE compared to those in GTE, due to the disappearance
of catechins and the formation of theaflavins (Figure 3B) [35]. A distinctive increase in gallic acid in
PTE (and to a lesser extent in MTE) was due to the fungal and bacterial enzymatic degalloylation of
gallated catechins [4]. The least amount of gallic acid was found in BTE and CTE, owing to the action
of intrinsic and extrinsic plant enzymes such as polyphenol oxidase and peroxidase [36].
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Figure 2. Contents of phenolic compounds and caffeine in the five tea extracts and their fractions.
(A) Epicatechins, (B) theaflavins and non-epicatechins, (C) caffeine and gallic acid, (D) flavonol
glycosides, and (E) Correlation between 20 identified compounds and the extracts and fractions by
PCA. Different letters, numbers, and dotted marks on the bars indicate significant differences according
to the Tukey–Kramer honestly significant difference test (p < 0.05). The suffixes -T, -Fw, and -Fo
on the X-axis indicate whole extract, hydrophilic fraction (WFR), and hydrophobic fraction (OFR),
respectively. DWEX, dry weight of extract; EC, (−)-epicatechin; ECG, (−)-epicatechin gallate; EGC,
(−)-epigallocatechin; EGCG, (−)-epigallocatechin gallate; C, (−)-catechin; CG, (−)-catechin gallate; GC,
(−)-gallocatechin; GCG, (−)-gallocatechin gallate; TF1, theaflavin; TF2a, theaflavin 3-O-gallate; TF2b,
theaflavin-3′-O-gallate; and TF3, theaflavin-3,3′-O-digallate.
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Figure 3. Contents of (A) total flavonoids and (B) total phenolics of five tea extracts and their fractions.
Labels T, Fw, and Fo on top of the graphs indicate whole extract, WFR, and OFR, respectively. Lowercase
letters on the bars indicate significant differences according to the Tukey–Kramer honestly significant
difference test (p < 0.05). CE, catechin equivalents; and GAE, gallic acid equivalents.

3.2. Antioxidant Capacities of Tea Extracts and Fractions

The antioxidant capacities of GTE were 1071, 810, and 526 mg VCE/g DWEX when measured using
the ABTS, DPPH, and FRAP assays, respectively (Figure 4 and Table S3). The antioxidant capacities
measured in the ABTS assay for the other four extracts were only approximately 50–70% those of
GTE. When measured in the DPPH and FRAP assays, the antioxidant capacities of BTE and CTE
decreased to approximately 40% those of GTE, and the antioxidant capacities of MTE and PTE reduced
to approximately 80% those of GTE. Recall that the TFC and TPC in each tea extract became lower in
OFR and higher in WFR. In all three assays, the OFR of BTE and CTE had approximately 50–75% of
antioxidant capacities of the corresponding extract, while the OFR of the other three extracts retained
approximately 30–50% of the antioxidant capacities (Figure 4A–C; Table S3). The WFR of PTE had
approximately 120–150% of antioxidant capacities in the ABTS, DPPH, FRAP assays compared to
the corresponding extract, while WFR of the other four extracts had approximately 100–120% of the
antioxidant capacities. The antioxidant capacities of teas are primarily associated with monomeric
flavan-3-ols (catechins) [37]. Generally, the antioxidant capacity of flavonol glycosides decreases as
the number of conjugated glycosides increases, owing to the masking effect of complex glycoside
structures [38]. The decreased antioxidant capacities of OFR could be explained by assuming that
the number of free hydroxyl (−OH) group at C3 position in flavonoids is crucial for maintaining
antioxidant capacity [39]. In this context, a higher content of flavonol glycosides and a lower amount
of catechins contributed to the low antioxidant capacity of OFR [10,40].

Figure 4. Antioxidant capacities of five tea extracts and their fractions. (A) ABTS, (B) DPPH, and (C)
FRAP. Legends: labels T, Fw, and Fo on the graph indicate whole extract, WFR, and OFR, respectively.
Lowercase letters a–g on the bars indicate significant differences according to the Tukey–Kramer
honestly significant difference test (p < 0.05). VCE stands for vitamin C equivalents.

3.3. Antiproliferative Effects of Tea Extracts and Fractions on Cancer Cells

The anticancer effects of GTE, CTE, and BTE as well as their two fractions were examined using
two adenoma cell lines (DLD-1 and E0771). A chemotherapeutic agent (paclitaxel) was used as positive
control, and buffer was used for negative control. At concentration of 10 µg/mL, these three extracts
did not affect the viability of DLD-1 cells but reduced that of E0771 cells to 70–80% of negative control.
Meanwhile, paclitaxel reduced the viability of both types of cells to ~70% (Figure 5). At 100 µg/mL, GTE
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and BTE significantly (p < 0.05) reduced the viability of DLD-1 and E0771 cells to 30–40% and 10–50%
that of the negative control, respectively. Therefore, tea extracts at a sufficiently high concentration
have anticancer effects comparable to chemotherapy drugs. Among the fractions, only the WFR and
OFR of BTE exhibited anticancer effects at 10 µg/mL for DLD-1 compared with the positive control,
and the OFR of GTE and BTE for E0771. At 100 µg/mL, all WFR and OFR of the three extracts exhibited
significant (p < 0.05) anticancer effects on the two types of adenoma cells compared with the positive
control. Overall, the anticancer effects are ranked as OFR (<9% viability) > extract (27–36%) ≥WFR

(30–47%). Specifically, all three WFR had equal or less effects compared to the corresponding whole
extract. These anticancer effects of the tea extracts are consistent with the previously reported inhibitory
effects of tea constitutes on various adenoma cells [41]. Furthermore, OFR showed significantly stronger
anticancer effects than those offered by the corresponding WFR. Thus, in addition to the catechins,
minor compounds in OFR such as flavonols and theaflavins have crucial biological effects [42,43].

Figure 5. Antiproliferative effects of three tea extracts (GTE, CTE, and BTE) and their fractions.
(A) Viable DLD-1 cells after 24 h and (B) Viable E0771 cells after 24 h. Con = negative control (buffer
treatment), and Taxol = positive control (paclitaxel, 10 nM). T, Fw, and Fo on the X-axis mean whole
extract, WFR, and OFR, respectively. Different letters a–j on the bars indicate significant differences
according to the Tukey–Kramer honestly significant difference test (p < 0.05).

3.4. Multivariate Analysis of Phenolic Composition, Antioxidant Capacities, and Anticancer Effects of Tea
Extracts and Fractions

Our chemometric analysis used PLS-DA to distinguish which compounds are correlated with the
TFC and TPC, as well as their contribution to the measured biological effects. The variable importance
in projection (VIP) method was adopted to screen the influential variables with the criterion of VIP
value > 0.8. A diagram of VIP versus coefficients was generated for the centered and scaled data,
highlighting key compounds that contribute to the TFC, TPC, antioxidant capacities, and anticancer
effects (Figure 6A1,B1,C1). Then, the corresponding correlation loading plots were created for the
20 compounds (Figure 6A2,B2,C2). The established models of PLS-DA were built using a valid number
of factors (10−15) that responded to the lowest root mean PRESS values (data not shown).

Four epicatechins (EC, ECG, EGC, and EGCG) were major contributors to TFC and TPC with
high VIP values (>1.0), and were more strongly correlated to TPC than TFC (Figure 6A1,A2). The good
quality of the fit was confirmed by the parameters of fitness (cumulative R2X = 0.996 and R2Y = 0.896)
and predictability (Q2 = 1.000) [44]. This result indicates that the contents of these four epicatechins
can represent the TPC in tea extracts and fractions with statistical significance (Table S4). The PLS-DA
for TFC and TPC explained 44% of X variance and 68% of Y variance from the sum of factor 1 and
factor 2 (Figure 6A2). Isoquercitrin and kaempferol are considered to be the least correlated to the TFC
and TPC of tea extracts and fractions. In a similar manner, four epicatechins were highly correlated
to the three assay of antioxidant capacities with high VIP values (>1.5) and large coefficients. The fit
had good quality in terms of the cumulative R2X (0.996), R2Y (0.970), and Q2 (1.000). The antioxidant
capacities were significantly and strongly correlated to the content of these four epicatechins in tea
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extracts and fractions (Figure 6B1,B2 and Table S4). The PLS-DA for antioxidant capacities explained
45% of X variance and 91% of Y variance from the sum of factor 1 and factor 2 (Figure 6B2). On the
other hand, caffeine and gallic acid showed high VIP with moderate coefficient values, and EGC
showed moderate VIP with large coefficient for the anticancer effects. The viability of DLD-1 cells was
mainly influenced by theaflavins and flavonols, whereas that of E0771 cells was mainly influenced by
catechins (Figure 6C1,C2). The PLS-DA for anticancer effects explained 57% of X variance and 68%
of Y variance from the sum of factor 1 and factor 2 (Figure 6C2). Multivariate analysis indicates that
the anticancer effects of tea extracts and fractions are more correlated to the contents of flavonols and
theaflavins than those of catechins (Table S5 and Figure S4). Caffeine was negatively correlated to the
anticancer effects. In some cases, care is required to properly apply multivariate analysis to the in vitro
function of bioactive compounds [45,46]. Our PLS-DA gave meaningful correlation coefficients for the
anticancer effect of phenolic compounds.

Figure 6. Partial least squares-discriminant analysis for the 20 compounds identified in five tea extracts
and their biological effects. (A) TFC/TPC, (B) antioxidant capacities, and (C) anticancer effects. (1): VIP
versus coefficients matrix diagram for centered and scaled data and (2) correlation loading plots. Factor
1 and factor 2 are constructed to account for the correlation or covariance between the observed variables.
Factor rotation was used to change the reference axes of the factors to increase their interpretability.

4. Conclusions

This study explored the phenolic compositions of extracts from five authentic teas (one green
tea, two oxidized teas, and two microbial fermented teas) and their hydrophilic and hydrophobic
fractions. These phenolic profiles were further correlated to the antioxidant capacities. PCA revealed
that the 20 identified compounds were well distributed across the 15 tea extracts and fractions.
Especially, TPC may be more useful than TFC for estimating the antioxidant capacities. Interestingly,
the hydrophobic fractions of tea extracts exhibited stronger antiproliferative effects on both colorectal
and breast carcinoma cell lines than their hydrophilic counterparts. Among the hydrophobic
compounds, multivariate analysis additionally revealed that flavonols and theaflavins may be important
indicators of the biological effects. Further research is needed to elucidate the mechanisms behind the
observed anticancer effects. However, considering that most research conducted thus far has focused
on catechins, our findings suggest that core compounds in the hydrophobic fraction of teas should
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also be explored. Moreover, when studying the biological effects of other edible plant sources, such as
various teas, coffees, and herbs, there is a similar need to screen all the components and not just the
major ones.
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