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Inflammatory bowel disease (IBD), including Crohn’s disease and ulcerative colitis, is a
chronic immune-mediated inflammatory disorder of the gastrointestinal tract that is closely
associated with dysbiosis of the intestinal microbiota. Currently, biologic agents are the
mainstream therapies for IBD. With the increasing incidence of IBD, limitations of biologic
agents have gradually emerged during treatment. Recent studies have indicated that gut
microbiota is highly correlated with the efficacy of biologic agents. This review focuses on
alterations in both the components and metabolites of gut microbiota during biological
therapy for IBD, systematically summarises the specific gut microbiota closely related to
the clinical efficacy, and compares current predictive models for the efficacy of biologics,
further highlighting the predictive value of intestinal microbiota. Based on the mechanistic
analysis of faecal microbiota transplantation (FMT) and biologic agents, a new therapeutic
strategy, comprising a combination of FMT and biologics, has been proposed as a
promising treatment for IBD with improved efficacy.
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1 INTRODUCTION

Inflammatory bowel disease (IBD) refers to a group of immune-mediated inflammatory diseases of
the intestinal tract that are associated with a variety of factors, including risk variants in the human
genome, exposure to adverse environmental factors, and dysbiosis of the intestinal microbiome (Chu
et al., 2016; Ni et al., 2017). IBD can be clinically phenotyped as Crohn’s disease (CD) and ulcerative
colitis (UC) (Yilmaz et al., 2019). The second half of the 20th century witnessed a rapid increase in
IBD morbidity in North America and Europe, along with a significant increase in Asian countries
(Ananthakrishnan, 2015). Currently, IBD is a social burden of global concern (Chi, 2016).

Recently, biologic agents targeting tumour necrosis factor-alpha (TNFα), adhesionmolecules, and
the p40 subunit of interleukin (IL)-12/23 have emerged to revolutionise the treatment of IBD (Yanai
and Hanauer, 2011; Feagan et al., 2013; Sands et al., 2019a). However, approximately 30% of patients
with IBD still exhibit primary non-response during biological therapy (Stidham et al., 2014; Li et al.,
2022), and secondary loss of response occurs in another 40% of patients with IBD (Kopylov et al.,
2019; Argollo et al., 2020; Caenepeel et al., 2020). The main causes of failure to respond are the
formation of antidrug antibodies (Bar-Yoseph et al., 2019; Sazonovs et al., 2020; Bots et al., 2021),
drug immunogenicity (Yanai et al., 2015; Sazonovs et al., 2020; Srinivasan et al., 2021), and altered
pharmacokinetics (Brandse et al., 2017). Additionally, side effects of biologic therapy, including the

Edited by:
Ruixin Zhu,

Tongji University, China

Reviewed by:
Jian Lin,

Affiliated Hospital of Putian University,
China

Wei Wu,
Tongji University, China

*Correspondence:
Zhe Zhang

fbsktz@163.com
Baisui Feng

fengbs@zzu.edu.cn

Specialty section:
This article was submitted to
Gastrointestinal and Hepatic

Pharmacology,
a section of the journal

Frontiers in Pharmacology

Received: 28 March 2022
Accepted: 26 April 2022
Published: 06 June 2022

Citation:
Pu D, Zhang Z and Feng B (2022)

Alterations and Potential Applications
of Gut Microbiota in Biological Therapy

for Inflammatory Bowel Diseases.
Front. Pharmacol. 13:906419.

doi: 10.3389/fphar.2022.906419

Frontiers in Pharmacology | www.frontiersin.org June 2022 | Volume 13 | Article 9064191

REVIEW
published: 06 June 2022

doi: 10.3389/fphar.2022.906419

http://crossmark.crossref.org/dialog/?doi=10.3389/fphar.2022.906419&domain=pdf&date_stamp=2022-06-06
https://www.frontiersin.org/articles/10.3389/fphar.2022.906419/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.906419/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.906419/full
https://www.frontiersin.org/articles/10.3389/fphar.2022.906419/full
http://creativecommons.org/licenses/by/4.0/
mailto:fbsktz@163.com
mailto:fengbs@zzu.edu.cn
https://doi.org/10.3389/fphar.2022.906419
https://www.frontiersin.org/journals/pharmacology
www.frontiersin.org
https://www.frontiersin.org/journals/pharmacology#articles
https://www.frontiersin.org/journals/pharmacology
https://www.frontiersin.org/journals/pharmacology#editorial-board
https://doi.org/10.3389/fphar.2022.906419


development of various infections, increased risk of tumours, and
worsening of other autoimmune diseases, skin diseases, cardiac
and neurological disorders, raise much distress, especially in
patients who are also administered immunomodulators
(Baddley et al., 2014; Shivaji et al., 2019).

Simultaneously, the therapeutic goals of IBD have gradually
increased from clinical steroid-free remission to endoscopic
remission and mucosal healing (Caenepeel et al., 2020;
Kobayashi et al., 2020). Therefore, scientific and rational
stratification of patients with IBD and the quest for
personalised biological therapy strategies to maximise efficacy
and minimise drug side effects are urgently needed in the field of
IBD (Flamant and Roblin, 2018).

2 HIGH CORRELATION BETWEEN
DYSBIOSIS OF GUT MICROBIOTA AND IBD

It is well-accepted that IBD results from altered interactions
between gut microbiota and the mucosal immune system
(Kostic et al., 2014). The anomalous immune response of the
intestine, as the characteristic of IBD, correlates with dysbiosis of
gut microbiota. At the genetic level, variants of NOD2 and
ATG16L1, the main risk genes for IBD, cause defects in the
innate immunity of the intestine, resulting in alterations in the
structure of intestinal microbes and impaired protective function
of commensal bacteria, thereby inducing the development of IBD
(Chu et al., 2016). Numerous animal studies have confirmed that
commensal bacteria maintain mucosal homeostasis by
suppressing pathogenic innate and adaptive immune
responses, inducing the secretion of antimicrobial peptides,
and promoting epithelial restitution. Dysbiosis of the gut
microbiota impairs the protective effects of healthy intestinal
microecology, leading to increased immune stimulation,
epithelial dysfunction, and enhanced mucosal permeability, all
of which are associated with the development and dissemination
of IBD (Sartor, 2008). Additionally, in real-world studies,
alterations in the composition and metabolism of gut
microbiota are being revealed in patients with IBD, further
confirming the strong correlation between dysbiosis of gut
microbiota and IBD.

2.1 Changes in the Composition of Gut
Microbiota in Patients With IBD
Continuous updating of gene-sequencing technologies and the
increased availability of powerful bioinformatics tools have
provided a wealth of novel insights into the effect of
microbial communities on IBD. Using these technologies,
researchers have indicated that dysbiosis and decreased
complexity of the gut microbial ecosystem are common
features of patients with IBD (Manichanh et al., 2012).
Changes in the gut microbiota of patients with IBD, namely,
a significant decrease in commensal bacteria, were first reported
in 2007 (Frank et al., 2007). Compared to healthy individuals,
the gut microbiota’s α-diversity in patients with IBD is reduced
by 50–70%, suggesting a serious imbalance in intestinal

microecology (Ott et al., 2004). This imbalance includes a
noticeable decrease in anti-inflammatory bacteria and a
marked increase in pro-inflammatory opportunistic
pathogens (Kang et al., 2010; Kostic et al., 2014; Kolho et al.,
2015; Ribaldone et al., 2019).

Dysbiosis is more severe in patients with IBD during the active
stage (Kolho et al., 2015), characterized by the increased abundance
of Actinobacteria and Proteobacteria and decreased abundance of
Firmicutes, all of which are strongly correlated with disease severity
(Zhou et al., 2018). In addition, patients with different types of
disease severity also have different distribution features of gut
microbiota (Shaw et al., 2016). A higher proportion of Bacilli
enrichment, represented by Streptococcus, have been detected in
patients with mild CD. However, patients with severe CD
demonstrated a significant increase in Proteobacteria and
Enterococcaceae, but a remarkable decrease in Ruminococcaceae
and Clostridiales. Correspondingly, the gut microbiota of patients
with moderate UC is similar to that of patients with mild CD,
showing an increased abundance of Streptococcus, whereas patients
with severe UC have significant enrichment of Proteobacteria and
Bacilli in their intestine (Zhou et al., 2018).

2.2 Alterations in Metabolism Associated
With the Intestinal Microbiota in Patients
With IBD
Along with compositional alterations, the metabolic function
associated with the gut microbiota also changed notably,
including decreased synthesis of short-chain fatty acids
(SCFAs) and medium-chain fatty acids (MCFA), decreased
amino acid biosynthesis, enrichment of acylcarnitines and
disturbances of bile acid metabolism in IBD patients (De
Preter et al., 2015; Jacobs et al., 2016; Franzosa et al., 2019;
Lloyd-Price et al., 2019). In parallel, metabolic pathways, such as
amino acid transport, sulfate transport, oxidative stress, and the
type II secretory system (T2SS) are activated significantly in
patients with IBD (Kostic et al., 2014). The current findings
support a close correlation between these metabolic alterations
and the pathological process of IBD.

SCFAs, which are products of bacterial fermentation in the
gut, are of great value in modulating the host’s immune system.
By targeting histone deacetylases and G protein-coupled
receptors on intestinal epithelial cells or immune cells, SCFAs
contribute to regulating cellular anti-inflammatory activity and
regulatory T (Treg) cell development (Sun et al., 2017; Dupraz
et al., 2021). Severe dysbiosis of the gut microbiota in patients
with IBD results in reduced SCFA production, which
consequently impairs protective intestinal immunity and
exacerbates intestinal inflammation.

Recently, bile acids (BAs), as a key class of microbiota-
associated metabolites in patients with IBD, have drawn
considerable attention. In stool samples from patients with
IBD, it was noted that primary BAs and conjugated BAs are
increased while the secondary BAs reduced significantly.
Previous researches have ascribed these changes to alterations
in BAs absorptions, synthesis and bacterial modification (Li
et al., 2021a). Furthermore, these characteristic alterations of
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FIGURE 1 | Baseline levels of gut microbial taxa and intestinal metabolism in IBD patients associate with different responses to biologic agents (Kolho et al., 2015;
Magnusson et al., 2016; Shaw et al., 2016; Ananthakrishnan et al., 2017; Doherty et al., 2018; Zhou et al., 2018; Aden et al., 2019; Ribaldone et al., 2019; Zhuang et al.,
2020; Lee et al., 2021; Ventin-Holmberg et al., 2021). (A) Lineage diagram showing the baseline abundance of specific gut microbes positively (in green font) or
negatively (in red font) correlated with the good response to biologic agents; (B) The left panel shows intestinal metabolites that are positively correlated with the
good response to the biologic agents; the right panel shows intestinal metabolites that are negatively correlated with the good response to the biologic agents.
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BAs are considered to correlate with the disease severity of IBD
(Duboc et al., 2013; Kriaa et al., 2022). Recent studies have also
provided evidence for the involvement of BAs in IBD-associated
autophagy, apoptosis, and inflammasome pathways (Thomas
et al., 2022). Meanwhile, the interactions of BAs with intestinal
epithelial cells and immune cells have also been revealed, further
providing novel insights into the gut microbiota-BA-host axis in
the pathogenesis of IBD (Yang et al., 2021; Kriaa et al., 2022).

Consequently, gut microbiota show marked compositional
differences between populations with and those without IBD,
between active and remissive phases, and between different
disease severities, and exhibits significant alterations in
intestinal metabolic activities. Current evidence has established
that both composition and metabolism of gut microbiota are
closely associated with the pathogenesis of IBD. Along with the
emergence of functional metagenomic tools, the relationship
between gut microbiota and IBD will be better elucidated.
Moreover, high-throughput analysis of gut microbial
composition and metabolism in large samples of patients with
IBD to screen out specific gut microbiota and metabolic pathways
will bring new biomarkers for the diagnosis of IBD and provide
new perspectives for the exploration of therapeutic strategy
(Dubinsky and Braun, 2015).

3 ALTERATIONS OF GUT MICROBIOTA
CORRELATE WITH THE EFFICACY OF
BIOLOGICAL THERAPY
In addition to infliximab, adalimumab, golimumab, and
sacituzumab, all of which target tumour necrosis factor-alpha
(TNFα), a growing number of biologics are used in the clinical
treatment of IBD, such as ustekinumab that targets the shared
p40 subunit of IL-12/23 and vedolizumab that target the
alpha4beta7 integrin, etc. (Danese et al., 2015; Coskun et al.,
2017; Moschen et al., 2019). Numerous studies have illustrated
that the structure and function of gut microbiota changes
significantly during biological therapy of IBD. Meanwhile, the
compositional and functional metabolic levels of gut microbiome
also differ at baseline corresponding to the different responses to
biologic agents. (Figure 1).

3.1 Compositional Changes of Gut
Microbiota During Biological Therapy
3.1.1 Anti-TNFα Monoclonal Antibodies
Anti-TNFα monoclonal antibodies, especially infliximab, have
been used as first-line therapy for IBD over the past 20 years. In
recent years, the correlation between anti-TNFα therapy and gut
microbiota has gradually become an important topic.

Anti-TNFα agents, such as infliximab and adalimumab,
reduce disease severity and increase the alpha diversity of gut
microbiota in patients with IBD over a short period (Estevinho
et al., 2020). These agents result in a healthier gut microbiome
composition, which is more pronounced in patients who respond
well to biologics (Busquets et al., 2015; Zhou et al., 2018). A study
that combined a Chinese IBD cohort and two western cohorts,

PRISM and RISK, revealed that decreased levels of Clostridiales in
the gut, as a hallmark of IBD, were significantly restored after
infliximab therapy, and the baseline abundance of Clostridiales
was positively associated with a good response to infliximab
(Zhou et al., 2018). Recently, a similar study from Finland that
included a larger sample size described in more detail the baseline
groups that were positively or negatively associated with
infliximab response at the family and genus levels (Ventin-
Holmberg et al., 2021). In addition, separate studies have been
conducted on different disease subtypes of IBD, such as CD and
UC. A prospective study from Italy analysed changes in the
intestinal microbiota during adalimumab treatment. It
concluded that Proteobacteria decreased significantly and
Lachnospiraceae increased in patients with CD who achieved
remission after 6 months of adalimumab treatment, revealing a
high correlation between the abundance of these two bacteria and
therapeutic success (Ribaldone et al., 2019). In patients with UC,
the abundance of Faecalibacterium prausnitzii in faecal samples
have been demonstrated to be much higher in responders than
non-responders at different time points during anti-TNFα
therapy, even though the degree of gut microbiota dysbiosis
varies considerably (Magnusson et al., 2016).

Similar to adults, altered gut microbiota diversity is also
closely associated with the response to biologic therapies for
paediatric inflammatory bowel disease as well (Kowalska-
Duplaga et al., 2020). During the induction period of anti-
TNFα therapy, the microbial diversity of the well-responding
group increased in a similar manner as that of healthy
individuals, whereas no such changes occurred in the non-
responding group. At the species and genus levels, many sub-
strains of Bacilli and Proteobacteria were enriched in the
intestines of non-responders, as opposed to responders.
Meanwhile, several groups of bacteria associated with anti-
TNFα efficacy were identified, namely high abundance of
Bifidobacterium, Clostridium colinum, Eubacterium rectale,
and Vibrio, as well as low abundance of Streptococcus mitis
at baseline were associated with good responses (Kolho et al.,
2015).

In summary, anti-TNFα therapy reduces disease severity and
increased gut microbial alpha diversity in patients with IBD
(Zhou et al., 2018). More meaningfully, the abundance of
specific gut microbes are strongly associated with the anti-
TNFα response (Figure 1A).

3.1.2 Other Biologic Agents
Vedolizumab, an intestine-selective humanised monoclonal
antibody against alpha4beta7 integrin, has shown durable
efficacy and high safety in the treatment of UC and CD
(Feagan et al., 2013; Colombel et al., 2017; Sands et al.,
2019b). In 2017, a study on the intestinal microbiota of CD
patients who achieved 14-weeks remission with vedolizumab
concluded that remitters possessed higher alpha-diversity of
gut microbiota at baseline. Specifically, the abundance of
Roseburia inulinivorans and Burkholderiales was markedly
higher among patients with CD who achieved remission,
whereas Streptococcus salivarium was enriched in patients with
UC who did not achieve remission (Ananthakrishnan et al.,
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2017). More recently, a study incorporating a larger sample size
revealed that three groups of bacteria, namely Bifidobacterium
longum and two species of the genera Bacteroide, showed a
marked positive correlation with remission at week 14 in patients
with IBD treated with Vedolizumab (Lee et al., 2021). Similarly, a
significant increase in microbiota diversity was also identified during
the first 22 weeks of ustekinumab therapy, and differences in
community diversity at baseline were strongly correlated with
treatment response, especially in the genera Faecalibacterium and
Bacteroides (Doherty et al., 2018) (Figure 1A).

3.2 Altered Intestinal Metabolism in Patients
With IBD During Biological Therapy
Apart from compositional changes, there were also remarkable
alterations in the metabolism of the gut microbiota during
biological therapy. As discussed above, SCFA, a metabolite of
the gut microbiota, regulates intestinal transit, nutrient
absorption, intestinal pH, and immune function of colonic
Treg cells, all of which are beneficial for reversing the
inflammatory intestinal environment (Smith et al., 2013).
Many SCFA-producers, including Anaerostipes, Blautia,
Coprococcus, Faecalibacterium, Lachnospira, Odoribacter,
Roseburia, Ruminococcus and Sutterella, are reduced in

patients with IBD and are associated with disease relapse and
poor anti-TNFα response (Wang et al., 2018; Yilmaz et al., 2019;
Ventin-Holmberg et al., 2021).

In addition to the above changes in fatty acid metabolism,
amino acid metabolism, folate biosynthesis, and signalling
pathways are disrupted in patients with IBD (Kolho et al.,
2017). In baseline samples from patients with CD who achieve
remission after week 14 of anti-integrin therapy (vedolizumab), 13
metabolic pathways, including branched-chain amino acid
synthesis, were significantly enriched, and reductions in several
tricarboxylic acid cyclic (TC) pathways (I and V types) and the
nicotinamide adenine dinucleotide (NAD) salvage pathway
were also detected, suggesting reduced levels of oxidative
stress (Ananthakrishnan et al., 2017). A prospective German
study showed that metabolite exchange in faecal samples from
patients with IBD was dramatically reduced at baseline and was
associated with later clinical remission. At the same time, anti-
TNFα treatment restored the disrupted gut microbial
metabolism, including ethanol, glutamate, and glycine, none
of which was observed in non-remitters (Aden et al., 2019)
(Figure 1B).

In summary, both the composition and metabolism of the
intestinal microbiota changed during biological therapy, and
closely correlated with the response to biologics. This

FIGURE 2 | Summary of previous predictors of response to biologic agents (Esters et al., 2002; Parsi et al., 2002; Arnott et al., 2003; Louis et al., 2004; Ferkolj et al.,
2005; Hlavaty et al., 2007; Arijs et al., 2010; Schreiber et al., 2010; Kiss et al., 2011; Gazouli et al., 2013; Lee et al., 2013; Atreya et al., 2014; Billiet et al., 2015; Juillerat
et al., 2015; Vande Casteele et al., 2015; Bek et al., 2016; Detrez et al., 2016; Ding et al., 2016; Zittan et al., 2016; Lopetuso et al., 2017; Nasuno et al., 2017; West et al.,
2017; Boden et al., 2018; Gaujoux et al., 2019; Jung et al., 2019; Verstockt et al., 2019; Wilson et al., 2020; Agrawal et al., 2022; Bertani et al., 2022)
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conclusion further supports the potential of the gut microbiota as
a promising biomarker for predicting the efficacy of biological
therapy for IBD.

4 POTENTIAL APPLICATION OF GUT
MICROBIOTA IN THE BIOLOGICAL
THERAPY FOR IBD

4.1 Gut Microbiota as Biomarkers for the
Efficacy of Biologic Agents
4.1.1 Early Attempts to Seek Biomarkers for the
Efficacy of Biologic Agents
Over the past few decades, the issue of predicting the response of
patients with IBD to biologics has been of great concern. Clinical,
biological, and genetic indicators have been measured, but to date,
no predictor of high clinical value has been identified (Pariente et al.,
2012; Tighe et al., 2017; Karmi et al., 2021) (Figure 2). Therefore,
predictors or models with high specificity and sensitivity are needed
to guide the selection of biologics for IBD treatment.

4.1.2 Novel Predictive Models Encompassing Gut
Microbes Mark a New Era in Biological Therapy
Considering the numerous changes in gut microbiota during
biological therapy, we increasingly believe that responders and
non-responders can be distinguished based on their differences in
gut microbiota composition and metabolic levels. Extensive
studies have been conducted to identify valuable biomarkers
associated with gut microbes.

A clinical study on predicting week 30 remission in
patients with CD treated with infliximab revealed that
compared with the Crohn’s Disease Activity Index (CDAI;
58.7% predictive accuracy) and calprotectin (62.5% predictive
accuracy), which are commonly used for disease evaluation in
clinical practice, the use of certain gut microbes, mainly
Clostridiales, increased the predictive accuracy to 86.5%
alone and 93.8% combined with the data of CDAI and
calprotectin (Zhou et al., 2018). Another study revealed
that the enrichment of Lachnospiraceae and Blautia at
week 6 of infliximab treatment correlated with clinical
response, and the combined increase of these taxa showed
84.2% and 89.1% accuracy in predicting clinical and
endoscopic responses at weeks 14 and 30, respectively
(Zhuang et al., 2020). Furthermore, even when used as
predictors alone, gut microbiota also exhibited a higher
value (AUC, 0.849) compared to clinical data (AUC, 0.624)
(Lee et al., 2021).

Vedonet, a neural network algorithm that combines the
microbiome and clinical data, was found to be effective in
predicting the efficacy of vedolizumab, with a true positive rate
of 87.2% and a false negative rate of <25%, and was validated in
another anti-TNFα cohort, also demonstrating a high
predictive value (Ananthakrishnan et al., 2017). In 2018,
Doherty et al. achieved high prediction levels of 83.1%
specificity and 77.4% sensitivity in ustekinumab therapy for
CD based on a random forest model containing gut microbes

and clinical indicators, which was significantly higher than
prediction levels using only clinical data (Doherty et al., 2018).
Recently, predictive models designed on the basis of SCFA-
producing bacteria Enterobacter, Streptococcus and
Granulicatella, have also been proven to reach a high level
of prediction (area under the curve >0.8) encouragingly
(Ventin-Holmberg et al., 2021). Furthermore, even when
used as predictors alone, gut microbiota also exhibited a
higher value (AUC, 0.849) compared to clinical data (AUC,
0.624) (Lee et al., 2021).

As shown in Table 1, by comparing different predictors or
models, it was found that the predictive models incorporating gut
microbes improved the accuracy of prediction markedly,
indicating the promising application of gut microbes in
predicting the efficacy of biologics.

4.2 New Therapeutic Strategy: The
Combination of Faecal Microbiota
Transplantation (FMT) and Biologics
Numerous studies have shown that biological therapy, which is
currently the main treatment strategy for IBD, does not fully
restore all intestinal microbiota, including SCFA-producing
bacteria and intestinal metabolism (Wang et al., 2018;
Kowalska-Duplaga et al., 2020). This may be one of the
reasons for the poor response to biologics. Moreover, the
aggravation of side effects caused by repeated high doses due
to poor responses have attracted increasing attentions. Therefore,
we sought to identify adjuvant therapies that could increase the
effectiveness of biologics and reduce side effects.

FMT, an emerging therapeutic modality, has been
successfully applied in treating recurrent Clostridium difficile
infections with high cure rates (80–90%). Furthermore, many
new indications for FMT have emerged, including IBD,
metabolic diseases, graft-versus-host diseases, and neurological
diseases (Allegretti et al., 2019). The therapeutic value of FMT for
IBD, especially UC, has been previously reported. Whether
treated with single, double, or multiple FMT treatments,
patients with active UC showed a good response to FMT,
achieving steroid-free clinical and endoscopic remission at
7–8 weeks (Moayyedi et al., 2015; Costello et al., 2019; Fang
et al., 2021). A network meta-analysis of 16 randomised
controlled trials revealed that infliximab, vedolizumab, and
FMT demonstrated good efficacy in the treatment of UC.
There was no statistically significant difference in efficacy
among the three treatment regimens, further suggesting the
possibility of FMT as a promising and efficient alternative to
biologic agents (Zhou et al., 2021). High safety is another
advantage of FMT, with a significantly lower rate of clinical
recurrence and serious adverse effects in patients treated with
FMT compared to infliximab (Li et al., 2021b). Consequently, as
a promising candidate, FMT has attracted a great deal of interest.
We propose a combination of FMT and biologics as a promising
therapy that may play a synergistic role in the treatment of IBD
to improve the efficacy and reduce the side effects caused by
repeated dosing of biologic agents.
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TABLE 1 | Comparison of predictive effects of different prediction models with or without gut microbiota.

Study
author

Biologics Disease Specimen Design Research
technique

Population
(cohort
size)

Predictive
markers

Prediction
accuracy/AUC

Prediction
time

Prediction
model with gut
microbiota

Arijs et al. (2009) IFX UC Mucosal biopsy cross-
sectional

microarray and
qPCR

cohort A: adult (24) top five genes from
cohort A

accuracy:A to A (83%) A to
B (59.1%)

week 4–6

cohort B: adult (22) top five genes from
cohort B

accuracy:B to B (90.9%) B
to A (70.8%)

Week 8

Billiet et al. (2015) IFX CD clinical data retrospective Matrix model adult CD (201) age at first IFX, BMI, and
previous surgery

0.78 < AUC <0.80 week 14

Gonczi et al. (2017) IFX IBD serum prospective ELISA adult CD (184) Infliximab trough level AUCTLweek2 = 0.72 week 14
adult UC (107) Infliximab trough level AUC TLweek2 = 0.81 week 14

Bar-Yoseph et al.
(2018)

IFX IBD serum retrospective ELISA adult (140) Infliximab levels <6.8 μg/ml
ATI > 4.3 μg/mL-eq

AUC = 0.68 week 14

AUC = 0.78
Dulai et al. (2018) VDZ CD GEMINI 2 and

VICTORY Dataset
cross-
sectional

Model derivation discovery cohort:
GEMINI 2 (814)
Validation cohort:
VICTORY (336)

Individual multi-variable
logistic regression
prediction models

AUC = 0.67 week 26

Zhou et al. (2018) IFX CD serum, clinical
data

prospective ELISA discovery cohort:
adult (16) Validation
cohort: RISK(668),
PRISM(155)

CDAI accuracy: CD (58.7%) week 30
Fecal calprotectin accuracy: CD (62.5%)

Engström et al.
(2019)

IFX IBD feces, serum cross-
sectional

ELISA and near-
infrared particle
immunoassay

adult (CD: 76
UC: 47)

Fecal calprotectin
>221 μg/g

AUC = 0.71 week 12

CRP > 2.1 mg/L AUC = 0.58
Shi et al. (2021) IFX/ADA IBD Mucosal biopsy cross-

sectional
RNA-seq and
microarray

GEO and SRA
databases

GIMATS module AUC = 0.720–0.853 week 4–6
VDZ AUC = 0.661–0.728

Lee et al., 2021 IFX/
UST/VDZ

IBD feces, serum prospective Random forest
classifiers

adult (CD: 108
UC: 77)

clinical features AUC = 0.624 week 14

Prediction
model with gut
microbiota

Ananthakrishnan
et al. (2017)

IFX,VDA IBD feces prospective 16srRNA adult (CD: 42 UC: 43) Gut microbiota AUC 0.872 week 14

Zhou et al. (2018) IFX IBD feces prospective 16srRNA Discovery cohart
:adult (16) Validati
Cohort: RISK (668)
PRISM(155)

Gut microbiota Accuracy.CD (87.5%)
UC (79.1%)

week 30

Zhou et al. (2018) IFX IBD feces,
serum,Clinical,
data

prospective 16srRNA ELISA Discovery cohart
:adult (16) Validati
Cohort: RISK
PRISM(155)

Gut microbiota+FC+CDAI Accuracy.CD (93.8%) week 30

Doherty (2018) UST CD feces,
serum,Clinical,
data

prospective 16srRNA Adult(306) Gut microbiota AUC = 0.844 week 6

Zhuang et al, (2020) IFX CD feces prospective 16srRNA Adult(49) Gut microbiota Clinical response (83.4%)
Clinical response (83.4%)
endoscopic
response(89.1%)

week 30

Ventin and
Holmberg et al,
(2021)

IFX IBD feces prospective 16srRNA adult (CD: 25 UC: 47) Gut microbiota CD AUC = 0.933 UC
AUC=0.818

week 12

Lee et al. (2021) IFX/
UST/VDZ

IBD feces, serum prospective Metagenomic
Sequencing

adult (CD: 108
UC: 77)

Gut microbiota+Clinical
Features

AUC = 0.849 week 14
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4.2.1 Therapeutic Mechanisms of the Combination of
FMT and Biologics in IBD
After analysing the identified therapeutic mechanisms of FMT
and biologics in IBD, we conclude that the combination of FMT
and biologics can synergistically improve the efficacy of biologic
agents by resetting the intestinal microbiota and metabolism,
maintaining the intestinal mucosal barrier, and modulating
intestinal immune responses.

4.2.1.1 FMT Restores the Composition and Metabolism of
Intestinal Microbiota, Contributing to a Good Response to
Biologics
Based on both colon and faecal samples, numerous studies have
demonstrated that FMT increases the microbial diversity and
improves the intestinal microbiota structures (Paramsothy et al.,
2019), which is closely associated with a good response to biologic
agents. At the family and genus levels, therapeutic FMT increased
the abundance of SCFA-producers, such as Coprococcus,
Bifidobacterium, Ruminococcaceae and Lachnospiraceae, all of
these taxa contribute to a better response to biologics. Meanwhile,
bacteria such as Shigella, Escherichia coli, and Bacteroides
acidifaciens, which are significantly upregulated in IBD and
associated with poor response to biologics, were also reduced
after therapeutic FMT (Kellermayer et al., 2015; Tian et al., 2016;
Burrello et al., 2019).

In terms of functional metabolism, pathways associated
with bacterial over proliferation and inflammatory response
(e.g., phenylalanine metabolism, bisphenol degradation, fatty
acid biosynthesis) are significantly reduced after FMT
treatment, while the levels of tryptophan metabolism and
amino acid metabolism associated with bacterial
fermentation are significantly increased. Furthermore, FMT
increases the levels of secondary bile acids and short-chain
fatty acid synthesis, which have been demonstrated to be
markedly downregulated in the intestine of patients with
IBD. Notably, levels of both amino acid metabolism and
short-chain fatty acid synthesis mentioned above are
positively correlated with the effectiveness of biologic agents
in IBD (Burrello et al., 2019; Paramsothy et al., 2019).

4.2.1.2 FMT Contributes to the Maintenance of Intestinal
Barrier Function and Acts Synergistically With Biologics
An efficient epithelial barrier consists of physical, cellular, and
chemical components, and its damage leads to increased
epithelial permeability and dysbiosis (Rescigno, 2011).
Among the components of the intestinal epithelial barrier,
the tight junctions between intestinal epithelial cells,
antimicrobial peptides secreted by Paneth cells, and loose
mucus layer composed of mucin glycoproteins which are
secreted by absorptive enterocytes or goblet cells, are
essential for the intestinal mucosal barrier (Daneman and
Rescigno, 2009). In both chronic and acute enteritis mouse
models, the expression of tight junction proteins ZO-1, mucin
genes, and antimicrobial peptide genes was restored to normal
levels after FMT treatment, indicating an improvement in
intestinal barrier function (Burrello et al., 2018; Burrello
et al., 2019).

Correspondingly, biologic agents also have a positive effect
on maintaining intestinal barrier function and promoting
mucosal repair. Anti-TNFα agents maintain the
effectiveness of the intestinal mucosal barrier and promote
mucosal healing by reducing epithelial cell apoptosis,
protecting tight junctions between epithelial cells, inhibiting
intestinal vascular inflammation, and regulating myofibrillar
function (Di Sabatino et al., 2007; Fischer et al., 2013). In
addition, anti-TNFα agents induce the formation of regulatory
macrophages, also known as M2-type macrophages or wound-
healing macrophages, which express the cell surface marker
CD206. This immunosuppressive cell population contributes
to the repair of the intestinal mucosa (Vos et al., 2011; Vos
et al., 2012; Schleier et al., 2020).

Therefore, in view of the common targets in therapeutic
mechanisms, we suggest that the combination of FMT and
biologics could play a synergistic role in mucosal repair and
improve therapeutic efficacy.

4.2.1.3 FMT and Biologic Agents Jointly Promote the
Transformation of the Intestinal Mucosa From Inflammatory
Mode to Anti-Inflammatory Mode
As a major component of the intestinal adaptive immune system,
CD4+ T cells play a key role in orchestrating IBD-related
inflammatory processes. Among CD4+ T cells, the balance
between anti-inflammatory Treg cells and pro-inflammatory
Th17/Th1 cells is closely associated with the progression and
prognosis of IBD (Britton et al., 2019; Lee et al., 2020). Intestinal
Treg cells maintain immune tolerance and suppress effector T
cell-mediated immune injury (Barnes and Powrie, 2009; Honda
and Littman, 2016). The inhibitory cytokine, IL-10 produced by
Treg cells, antagonises the development of colitis (Lord, 2015;
Cook et al., 2019; Wei et al., 2020). In contrast, pathogenic Th17
cells, also known as colitis-causing T cells, can release large
amounts of the pro-inflammatory cytokines IL-17, IL-6, IL-22,
TNF-α, IFN-γ, and GM-CSF (granulocyte-macrophage colony
stimulating factor) after being activated by IL-23 and IL-1β, and
can also help to promote the production of Th1 cells, further
aggravating intestinal inflammation (Harbour et al., 2015; Honda
and Littman, 2016; Jain et al., 2016).

Pro-inflammatory microbes, such as Segmented filamentous
bacteria, Citrobacter rodentium, and Escherichia coli, are known
to promote the production of IL-1β and IL-23 by CX3CR1+

monocytes through upregulation of serum amyloid in the
intestinal epithelium (Bauché et al., 2018; Lee et al., 2020). IL-
1β and IL-23 synergistically lead to further activation of
pathogenic Th17 cells (Coccia et al., 2012; Atarashi et al.,
2015; Lee et al., 2020). Pro-inflammatory microbes can also
activate ILC3 with the aid of IL-1β and IL-23 to produce GM-
CSF and IL-22, further activating pathogenic Th17 cells (Honda
and Littman, 2016). In contrast, therapeutic FMT exogenously
resets disturbed intestinal microecology in the inflammatory
intestinal environment of patients with IBD. Thus, the
abundance of pro-inflammatory bacteria and the frequency of
ILC3 is decreased, thereby the activation of pathogenic Th17 cells
is inhibited, and the production of Th1 cells and related
inflammatory cytokines is reduced (Burrello et al., 2018). In
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addition, FMT also downregulates long-chain fatty acids (LCFA)
in the inflamed intestine, thereby reducing the proliferation and
activation of pathogenic Th17 cells stimulated by LCFA (Honda
and Littman, 2016). Interestingly, various biologic agents also
target the proliferation and activation of Th17/Th1 cells and the
production of inflammatory cytokines. Anti-TNFα agents reduce
the level of the pro-inflammatory cytokine TNFα in the
inflammatory microenvironment by neutralising and inducing
rapid apoptosis of Th1 and Th17 cells through direct, indirect,
and Fc-dependent pathways (Levin et al., 2016). Consistently,
vedolizumab inhibit the recruitment and proliferation of CD4+

T cells (especially Th1 and Th17 cells) by reducing the migration
of T cells into the intestinal lamina propria (Feagan et al., 2013).
Furthermore, ustekinumab directly neutralised the pro-
inflammatory cytokine IL-23, reducing the proliferation and
activation of pathogenic Th17 cells (Ahern et al., 2010)
(Figure 3A).

In addition, FMT and biologics can jointly target the crosstalk
between Th17 cells and neutrophils infiltrating the intestinal
lamina propria to alleviate intestinal inflammation (Pelletier
et al., 2010). In the colonic lamina propria of patients with
IBD, Th17 cells highly express IL-8 and mediate the
recruitment of tissue-infiltrating neutrophils, which have been
proven to be the main producers of IL-23 in the intestine in an IL-
8/CXCR1/CXCR2-dependent manner (Kvedaraite et al., 2016;
Kvedaraite, 2021). These tissue-infiltrating neutrophils, in turn,
present antigens and activate pathogenic Th17 cells with the aid
of IL-23, thereby building a pro-inflammatory microenvironment
and maintaining a sustained inflammatory response in the
intestine (Kvedaraite, 2021). FMT decreased the number of
neutrophils in the mucosal lamina propria, thereby reducing
IL-23 production and antigen presentation to Th17 cells
(Burrello et al., 2018). Similarly, the direct neutralising effect
of ustekinumab, a monoclonal antibody targeting the shared p40
subunit of IL-12 and IL-23, also contributes to the
downregulation of IL-23 and reduces the activation of
pathogenic Th17 cells (Teng et al., 2015; Feagan et al., 2016)
(Figure 3B).

The modulation of Treg cells is another common target of
FMT and biologics. SCFA producers (e.g., Bacteroides fragilis,
Odoribacter splanchnicus, Faecalibacterium prausnitaii, and
indigenous Clostridium) can induce Treg cell production in the
colonic lamina propria (Atarashi et al., 2011; Wei et al., 2020).
Therefore, therapeutic FMT can alleviate colonic inflammation
by increasing the abundance of SCFA-producing bacteria, thus
promoting IL-10 production by Treg (Tian et al., 2016). Likewise,
TNFα-targeting biologics also enhanced the number and function
of Foxp3+ regulatory T cells in the peripheral blood and lamina
propria of the intestinal mucosa during IBD treatment
(Ricciardelli et al., 2008; Boschetti et al., 2011; Li et al., 2015),
having a synergistic effect with FMT (Figure 3C).

Furthermore, professional antigen-presenting cells (APCs) are
essential for the initiation and progression of intestinal
inflammation. APCs promote inflammation by releasing
cytokines upon antigen recognition and trigger a more intense
immune response by presenting antigens and activating Th cells
(Kaser et al., 2010; Neurath, 2014). After therapeutic FMT, the

number of professional APCs (dendritic cells [DCs] and
macrophages) and the expression level of MHC-II on the
APCs were significantly diminished. FMT reversed the
cytokine profile of antigen-presenting cells. Intestinal DCs and
monocytes tend to produce more IL-10, suggesting that FMT
inhibits colitis by downregulating antigen presentation and
promoting the production of IL-10 (Burrello et al., 2018).
Interestingly, two other non-negligible targets of biologic
agents are the modulation of APCs and the induction of
phenotypic switch of M1 to M2 macrophages, thereby
downregulating antigen presentation and promoting IL-10
production (Baldwin et al., 2010; Vos et al., 2011; Billmeier
et al., 2016) (Figure 3D).

Accordingly, through the common targets of pathogenic
Th17/Th1 cells, neutrophils, regulatory T cells and
professional antigen-presenting cells, FMT and biologics can
jointly improve the inflammatory immune environment in the
intestine. Furthermore, the synergy between FMT and biologics
in the treatment of IBD provides a mechanistic basis for the
feasibility of combination therapy.

4.2.2 Advantages and Challenges of FMT Combined
With Biologic Agent Therapy
The vicious circle between gut dysbiosis and the overactive
intestinal mucosal immunity induces uncontrolled intestinal
inflammation. Notably, gut dysbiosis occurs prior to the
clinical and pathological manifestations of IBD, as has been
demonstrated in first-degree relatives of patients with familial
IBD (Jacobs et al., 2016). In the new therapeutic strategy, FMT
directly targets intestinal dysbiosis, which acts in the upstream
stages of IBD pathogenesis, providing a healthier intestinal
ecosystem for biological therapy, thereby helping to maintain
the efficacy of biologic agents and reduce the incidence of
secondary non-response. Meanwhile, the application of
biologic agents improves the inflammatory immune
environment in the gut, providing the necessary
biochemical basis for the colonisation of healthy intestinal
microbiota, which is more conducive to improving the efficacy
of FMT (Chu et al., 2021; Barron and Young, 2022).
Additionally, given the multiple common targets of FMT
and biologics in the treatment of IBD, the synergy between
FMT and biologics jointly improves the therapeutic effect in
patients with IBD and reduce the adverse effects associated
with increased doses of biologics due to the poor response. Of
note, secondary bacterial infections of the intestine, as one of
the adverse effects of biologic agents, can also be prevented by
the transfer of healthy gut microbes, due to the colonisation
resistance provided by the transferred gut microbiota against
pathogens (Shivaji et al., 2019; Alagna et al., 2020; Zhang et al.,
2022). Therefore, compared with monotherapy of biologic
agents, the new combined therapeutic strategy that includes
FMT will largely improve the efficacy of treatment and benefit
patients to a large extent.

Nevertheless, this new combined therapeutic strategy also
faces challenges. As an emerging treatment modality, it
remains difficult to programmatically specify the protocol of
FMT, including the acquisition and preparation of the
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transferred material, etc. The resulting potential instability in the
efficacy of FMT treatment is a source of concern (Danne et al.,
2021). Furthermore, even though large clinical studies have
demonstrated the broad safety of FMT, the possibility remains
that some potentially harmful microorganisms and functions
may be transferred by this treatment modality (Kassam et al.,
2013). In particular, considering the upsurge of antibiotic
resistance, FMT has the potential to mediate the transfer of
antibiotic resistance genes and associated virulence factors to
recipients, leading to some unintended consequences (Chu et al.,
2021; Marcella et al., 2021).

Consequently, as an extremely promising combination
treatment option, the therapeutic strategy of FMT combined
with biologics offers great advantages in the treatment of IBD;
however, there are many challenges (Sorbara and Pamer, 2022).
Larger clinical trials are required to clarify the clinical indications,
treatment regimens, and disease management to avoid
potential risks.

5 CONCLUSION AND PERSPECTIVES

The intestinal microbiota is closely correlated with the
development of IBD and shows significant individual
variations in responses to biologic agents. As mentioned
above, recent studies have validated predictive models
based on gut microbiota, clinical data, and serologic
markers that have a higher accuracy on biologics’
therapeutic efficacy than traditional biomarkers.
Nevertheless, one concern is that the number of such
studies is relatively small. Another issue is the
heterogeneity of the study design. For example, differences
in criteria for defining biological response, length of follow-
up, sample size, race, disease subtype, and type of biologic
agents can all affect the generalisability of predictive models.
Although there are no definitive models of the dominant gut
microbiota that predicts the efficacy of biologics, according to
Figure 1, we conclude that the abundance of Clostridia and its

FIGURE 3 | Common targets of FMT and biologic agents in the regulation of intestinal inflammatory responses. (A) FMT and biologics co-inhibit the activation and
proliferation of pathogenic Th17 and Th1 cells; (B) FMT and biologics co-target the crosstalk between neutrophils and pathogenic Th17 cells; (C) FMT and biologics
jointly promote the proliferation of Foxp3+ Treg cells and the formation of the anti-inflammatory cytokine IL-10; (D) FMT and biologics downregulate the function of helper
T cells through inhibiting antigen presentation by APCs, including macrophages and dendritic cells, thereby suppressing the expansion of the inflammatory
response; Meanwhile, FMT and biologics jointly promote the production of the anti-inflammatory cytokine IL-10 by APC.
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downstream taxa is positively correlated with a good
biological response. In contrast, the abundance of
Proteobacteria and the vast majority of its downstream taxa
are negatively correlated with a good biological response.

Meanwhile, growing evidence shows that a more refined
classification of gut microbes contributes to higher predictive
accuracy. Classification at the class or family level does not
perform as well as classification at the species or genus level.
Therefore, future predictive models should incorporate
information on taxa at species and genus levels. In the future,
a comprehensive model with a higher predictive efficacy will
require the integration of multi-omics information (including
microbiomics, metatranscriptomics, metabolomics, and
proteomics), clinical data, and serological markers from
patients to optimise treatment strategies for IBD and deliver
personalised therapeutic regimens.

By reviewing the common targets of FMT and biologics in the
mechanisms of IBD treatment, we highlighted that the
combination of FMT with biologics was a promising
therapeutic strategy to increase the effectiveness of IBD
treatment and reduce the rate of non-response and adverse
effects of biologics. However, this particular therapy poses
some issues. First, as an emerging therapeutic approach, since
there are no treatment guidelines for FMT, different treatment
strategies, such as the definition of indications, choice of co-
administered biologics, selection of donors, use of antibiotics,
mode and frequency of administration, and preparation and
storage of faecal material, can result in different treatment
outcomes. Additionally, FMT has raised challenges for
regulators. For example, whether faecal suspensions, as a
specific therapeutic material, ought to be regulated as a
medicinal product or only as a medical practice, how to
manage licences related to the production of the material, and

how to regulate the potential transmission of infectious diseases
or other unknown risks related to changes in the microbiota.
Furthermore, more in-depth mechanistic studies are needed to
explore the relationship between gut microbiota and biological
therapy for IBD, which may provide more meaningful
therapeutic insights.

In conclusion, as an emerging research area in IBD, gut
microbiota is closely associated with traditional biological
therapy. In future personalised treatment models of IBD, the
combination of gut microbiota and biologics will show broader
application prospects.
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