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Abstract: The induction of supramolecular chirality from achiral polymers has been widely
investigated in composite systems consisting of a chiral guest, achiral host, and solvents. To further
study and understand the process of chirality transfer from a chiral solvent or chiral molecules
to an achiral polymer backbone or side-chain units, an alternative is to reduce the components in
the supramolecular assembled systems. Herein, achiral side-chain azobenzene (Azo)-containing
polymers, poly(6-[4-(4-methoxyphenylazo) phenoxy] hexyl methacrylate) (PAzoMA), with different
Mns, were synthesized by atom transfer radical polymerization (ATRP). Preferred chirality from
supramolecular assembled trans-Azo units of PAzoMAs is successfully induced solely by the neat
limonene. These aggregates of the polymers in limonene solution were characterized by circular
dichroism (CD), UV-vis spectra, and dynamic light scattering (DLS) under different temperatures.
The temperature plays an important role in the course of chiral induction. Meanwhile, supramolecular
chirality can be constructed in the solid films of the achiral side-chain Azo-containing polymers
that were triggered by limonene vapors. Also, it can be erased after heated above the glass
transition temperature (Tg) of the polymer, and recovered after cooling down in the limonene
vapors. A chiroptical switch can be built by alternately changing the temperature. The solid films
show good chiral memory behaviors. The current results will facilitate studying the mechanism of
chirality transfer induced by chiral solvent and improve potential application possibilities in chiral
film materials.

Keywords: supramolecular chirality; Azo-containing polymers; chiral aggregation; chiral film

1. Introduction

Chirality is a common phenomenon in nature and organisms, such as spiral amino acids,
vines, conches, and even the galactic system [1]. The study of chirality in terms of the elemental
distribution and molecular structure has always attracted the curiosity of scientists [2]. At the
supramolecular level, supramolecular chirality refers to chirality generated by non-covalent interaction
between building units, such as hydrogen bonding [3], π-π stacking [4,5], electrostatic interaction [6],
and host–guest interaction [7]. The production of supramolecular chirality from achiral polymer
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building blocks has very important significance in theoretical research and practical application.
Many strategies, such as chiral liquid-crystal field [8], chiral solvent [9–11], circularly polarized
light (CPL) [12–14], interfacial interaction [15], and gelation [16] have been reported to produce
supramolecular chirality from achiral polymer systems.

The chiral induction of achiral substances by chiral solvent is a flexible and effective method,
which is suitable for organic small molecules [17], oligomers [18], and polymer systems [19,20].
The first example of a chiral-solvation-induced chirality of an achiral polymer was demonstrated by
Green et al. [21]. The dynamically interconverting helical senses can be found in the circular dichroism
(CD) spectrum when dissolving achiral polyisocyanate in several chiral chlorinated solvents. Motivated
by this pioneering study, optically active polymers or polymer aggregates, such as polysilanes [22],
polyfluorenes [23–25], polyacetylenes [26], and azobenzene (Azo)-containing polymers [9,27] have been
shown to achieve chirality in aggregation states induced by chiral solvation. Azo-containing polymers
are very promising materials in the field of photoswitchable molecular systems and liquid crystalline
materials. Due to the dramatic changes in the polarity, shape, and size of the Azo units during the
process of photoisomerization, Azo-containing polymers showed unique behaviors of chiroptical
switching, which was observed by UV-vis and circular dichroism (CD) spectra [28]. In our group,
we have introduced Azo groups into the main chain [9] and side-chain [27] of the achiral polymers,
and successively achieved the supramolecular chirality from the achiral building blocks induced
by chiral limonene. However, this induction and assembly process of main chain Azo-containing
polymers requires a complex system consisting of the good solvent, a chiral solvent, and a weak
solvent. Recently, we further simplified the assembled components of a side-chain Azo-containing
polymer by using limonene as the weak and chiral solvent simultaneously [27,29,30]. On the one
hand, although much effort has been paid to simplifying the assembled components and studying the
inducing mechanism, we still have a problem remaining to be solved of whether the construction of
supramolecular chirality in the achiral side-chain Azo-containing polymer can be achieved by pure
limonene under the controlled temperature. The neat chiral solvent will avoid the interactions between
the other solvents (good and poor) and building blocks.

On the other hand, the chirality transfer and amplification phenomena have been generally
observed in polymer solution [22,31,32]. However, the chiral transfer, chiral switching, and memory of
supramolecular chirality in solid polymer films are more promising in practical applications, such as
chiral nonlinear optics and data storage. Guerra et al. [33] presented that the chiral s-PS (syndiotactic
polystyrene) films can be obtained through inducing by chiral limonene molecules and then replacing
them with their achiral counterparts. The use of circularly polarized light (CPL) has been demonstrated
as a method for the chiral induction [34] and chiral regulation [13] of polymer films. Wu et al. reported
that the photoinduced circular dichroism of polymer liquid crystals on the thin films can be erased by
heating the films above the clearing temperature or by annealing the films in the liquid-crystalline
phase [35]. However, the chiral induction of side-chain Azo-containing polymer films by chiral solvent
vapors and the modulation of chirality by variable temperature was rarely reported.

In this work, we present the construction of supramolecular chirality from the aggregation of an
achiral side-chain Azo-containing polymer in the solution state induced by pure limonene, and in the
solid films triggered by chiral limonene vapor. Through a heating-cooling treatment of the polymer
solution, the chiral aggregation of achiral Azo-containing polymers can be effectively generated. In the
solid film, the chiral limonene vapors can also induce well-organized stacks of Azo units, forming the
supramolecular chirality. Meanwhile, the CD signal of the polymer films can be readily erased after
heating above the glass transition temperature (Tg) of the polymer, and recovered after cooling it down
in the chiral solvent vapors. This regular pattern of chiroptical switch can be repeated effectively at
least five times. Besides, the supramolecular chirality of the polymer film can be memorized well.
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2. Experiment

2.1. Materials

1-Chloro-6-hydroxyhexane (Acros, 95%), (R)-(+)-limonene (1R, TCI, >95%, [α]24
589 = +99.62◦,

TCI Shanghai Development Co., Ltd., Shanghai, China) and (S)-(−)-limonene (1S, TCI, >95%,
[α]24

589 = −97.72◦, TCI Shanghai Development Co., Ltd., Shanghai, China) were used without
further purification. Copper (I) bromide (CuBr, Aldrich, St. Louis, MO, United States, 98%) was
purified with glacial acetic acid and washed with pure ethanol, and then stored under argon before
use. Ethyl 2-bromoisobutyrate (EBiB) (TCI, 98%), N,N,N′,N,′N”-pentamethyldiethylenetriamine
(PMDETA) (Aldrich, St. Louis, MO, United States, 97%), and the monomer, 6-[4-(4-methoxyphenylazo)
phenoxy]hexyl methacrylate (AzoMA6) were synthesized as described previously [36], which was
confirmed by the 1H and 13C NMR data (Figure S1). 1H NMR (CDCl3, 300 MHz), (δ, ppm): 7.87
(m, 4H), 6.99 (m, 2H), 7.26 (m,2H), 6.10 (s, 1H), 5.54 (s, 1H), 4.18 (t, 2H), 4.03 (t, 2H), 3.92 (s, 3H), 1.98
(s, 3H), 1.81 (m, 2H), 1.71 (m, 2H), 1.50 (m, 4H). Elemental analysis, calculated values for C23H28N2O4:
C, 69.68; H, 7.12; N, 7.07. Found: C, 69.32; H, 6.95; N, 7.11.

2.2. Synthesis of Poly(6-[4-(4-methoxyphenylazo) phenoxy] Hexyl Methacrylate (PAzoMA)

AzoMA (0.5 g, 1.26 mmol), EBiB (12.3 mg, 0.063 mmol), PMDETA (10.94 mg, 0.063 mmol),
CuBr (9.05 mg, 0.063 mmol), and THF (1.5 mL) were added to a 5-mL ampoule. Then, the ampoule
was flame-sealed after being deoxygenated with three standard freeze—pump—thaw cycles.
The polymerization under argon atmosphere was carried out at 70 ◦C for 1.5 h. The mixture was
diluted with 1 mL of THF, passing a column of neutral Al2O3, and then precipitated into an excess
of methanol (50 mL) twice. After collection by filtration, the polymer was dried in a vacuum oven
overnight at 30 ◦C (0.348 g, 69.5%). Another polymer with different Mn was prepared by adjusting
the molar ratio of the monomer and initiator with the similar procedures. The molecular weights and
molecular weight distributions of the obtained two polymers are listed in Table 1.

Table 1. Molecular weight characteristics of the Azo-containing polymers.

Entry Ratio a Conv. b (%) Mn(th)
c (g mol−1) Mn(GPC)

d (g mol−1) Mw/Mn
d

PAzoMA1 20:1:1:1 69.5 5500 7400 1.20
PAzoMA2 70:1:1:1 53.4 14,800 12,400 1.14

a Polymerization ratio: [AzoMA]0/[EBiB]0/[CuBr]0/[pentamethyldiethylenetriamine (PMDETA)]0. b Determined
gravimetrically. c Calculated by Mn(th) = ([Monomer]0/[EBiB]0) ×Mw,monomer × Conversion%. d Determined by
gel permeation chromatograph (GPC) according to polymethyl methacrylate(PMMA) standards in THF.

2.3. Preparation of the Optically Active Polymer Aggregates in Solution

A small amount of polymer solid (0.1 mg) was added to 3 mL of (R)-(+)-limonene (1R) in a
quartz cell. The suspension was stirred under 100 ◦C for 1 h to make sure the polymer was dissolved
completely. The concentration of polymer repeating units is 8.42 × 10−5 mol L−1. The optically
active polymer aggregates were prepared after the solution was cooled down to room temperature.
The other polymer aggregates were prepared in a similar way. This yellowish turbid solution of
PAzoMA aggregates was employed for CD/UV-vis measurements.

2.4. Preparation of the Polymer Solid Films

The 10 mg/mL polymer solution was obtained by solving 10 mg of polymer solid in 1 mL of
CHCl3. A thin film sample of PAzoMA was prepared by spin coating about 0.1 mL of the polymer
solution onto a clean quartz plate at a speed of 0.5 rpm for 6 s and a speed of 1.9 rpm for 20 s.
After being dried and annealed under vacuum at 90 ◦C for 12 h to drive off residual solvent, the film
was stored in darkness for further study.
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2.5. Chiral Induction Process of the Films

The films obtained by the above method were measured with UV-vis and CD spectra.
First, the film was fixed in the cell, and suspended above the surface of limonene (0.1 mL).
Then, the vapors of limonene would be produced with the temperature increasing, and the optically
active polymer film was achieved at the same time. The results of chiral assembly were recorded by
UV-vis and CD spectra when the temperature was alternately changed between 70 ◦C and 60 ◦C.

2.6. Characterization

Gel permeation chromatograph (GPC) measurements were conducted on the TOSOH HLC-8320
gel permeation chromatogragh (GPC) (Tokyo, Japan), which was equipped with a refractive index and
UV detectors using two TSKgel SuperMultiporeHZ-N (4.6 × 150 mm, 3.0 µm beads size) columns
(Tokyo, Japan) arranged in a series. It can separate polymers in the molecular weight range of
500–190k Da. THF was used as the eluent with a flow rate of 0.35 mL/min at 40 ◦C. The values
of the average molecular weight (Mn) and molecular weight distribution (Mw/Mn) of the samples
were calculated with polymethyl methacrylate (PMMA) standards. 1H NMR spectra of the polymers
were recorded on a Bruker nuclear magnetic resonance instrument (300 MHz, Brucker, Kalsruhe,
Germany) using CDCl3 as the solvent and tetramethylsilane (TMS) as the internal standard at 25 ◦C.
The UV-vis spectra were recorded on a UV-2600 spectrophotometer (Shimadzu (Nakagyo-ku, Kyoto,
Japan)). The CD spectra were recorded on a JASCO J-815 spectropolarimeter equipped with a
Peltier-controlled housing unit using a SQ-grade cuvette, a single accumulation, a path length of
10 mm, a bandwidth of 2 nm, a scanning rate of 200 nm min−1, and a response time of 1 s. The samples
were measured at different temperatures. The magnitude of the circular polarization at the ground
state was defined as gCD = 2 × (εL − εR)/(εL + εR), where εL and εR denoted the extinction coefficients
for left and right circularly polarized light, respectively. Experimentally, the gCD value was defined
as ∆ε/ε = [ellipticity/32,980]/absorbance at the CD extremum. Elemental analyses (C, H, and N)
were measured with an EA1110 CHNO-S instrument. The thermal behavior and glass transition
temperatures of PAzoMA were measured using a TA-Q100 DSC instrument (New Castle, DE, USA).
Dynamic light scattering (DLS) measurements were performed with a Zetasizer Nano ZS instrument
(Brookhaven, Holtsville, TX, USA) at different temperatures.

3. Results and Discussion

3.1. Synthesis and Characterization of Side-Chain Azo-Containing Polymers

The homopolymers of AzoMA (PAzoMA) (Scheme 1) were prepared by atom transfer radical
polymerization (ATRP) [36] with a controlled molecular weight (Mn) and relatively low molecular
weight distribution (Mw/Mn) (Figure S2). As presented in Table 1, the side-chain Azo-containing
polymers with different Mns (7400 g mol−1 and 12,400 g mol−1) and relative low molecular weight
distribution (Mw/Mn) (1.14 and 1.20) were successfully prepared by changing the molar ratio of the
monomer and initiator during the polymerization process.
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Scheme 1. Illustration of the chemical structures of poly(6-[4-(4-methoxyphenylazo) phenoxy] hexyl
methacrylates) (PAzoMAs), (R)-(+)-limonene (1R) and (S)-(−)-limonene (1S).

3.2. The Chiral Aggregation of the Azo-Containing Polymer in Neat Limonene Solution

As was previously reported, typically a good solvent, chiral solvent, and poor solvent are
required to produce supramolecular chiral aggregation from achiral conjugated polymers [27,29].
Indeed, the chiral-solvation-induced chirality by single solvent can greatly simplify the research
system. In this work, the limonene (1R and 1S in Scheme 1) was simultaneously chosen as the chiral
solvent, poor solvent, and good solvent. The polymer solid can be dissolved in limonene completely
after stirring for 1 h at relatively high temperature (100 ◦C). Then, the supramolecular aggregation
of the polymer occurred after cooling down the solution. The temperature is a very important factor
in the supramolecular assembly of Azo-containing polymers. When the temperature is higher than
70 ◦C, the well-dissolved polymer chains in limonene may result in a relatively weak π-π stacking of
Azo units in polymer side chains. The optically active polymer aggregates would be produced due
to a stronger π–π stacking of Azo units after the temperature drops below 70 ◦C. This result can be
revealed by DLS, UV-vis, and CD spectra.

For the side-chain Azo-containing polymers (PAzoMA1 and PAzoMA2), the UV-vis spectra
(Figure 1b,d and Figure S3) of the polymer aggregates in limonene (1R or 1S) consists of two absorption
bands. The absorption bands ranging from 320 nm to 400 nm are attributed to the π-π* electronic
transition of the trans-Azo, and the others from 400 nm to 500 nm are attributed to the n—π* electronic
transition of the cis-Azo. With the temperature decreasing, absorption of the π-π* band became lower
and wider, indicating that the strong π-π stacking of Azo units in the polymer side chain occurred.

The intense and mirror-image cotton effects can be found in the CD spectrum. The CD signals
are related to the π-π* electronic transition of the trans-Azo, demonstrating that the supramolecular
chirality could be successfully introduced to the side-chain of the Azo-containing polymers by the
neat chiral solvent (limonene). As shown in Figure 1a,c,e,f, with the temperature decreasing from
70 ◦C to 20 ◦C, the CD and gCD values of the aggregates began to gradually increase. The relatively
poor solubility of the polymers in limonene increased the degree of aggregation, which resulted in
the increasing intensity of the CD signals. These results confirm our conjecture. Compared with the
chiral assembly in the mixed solvents [27], the maximum CD and gCD values of the aggregates in
neat limonene are much higher. Furthermore, PAzoMA2 with a high molecular weight gives higher
CD and gCD absolute maximum values (Figure 1e,f), resulting from the much higher degree of chiral
aggregation. The stronger chiral aggregation behavior of PAzoMA2 compared with PAzoMA1 can
be observed in their UV-vis spectra (Figure 1b,d). The relatively lower UV-vis absorption intensity
and wide spectra demonstrated the stronger aggregation by π-π stacking of Azo units in the polymer
side chain.
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Figure 1. The circular dichroism (CD) (a,c), UV-vis spectra (b,d) and maximum CD and gCD values 
(e,f) of the side-chain Azo-containing polymer aggregates with the temperature decreasing from 70 
°C to 20 °C. (a,b,e) stand for PAzoMA1, (c,d,f) stand for PAzoMA2. The concentration of polymer 
repeating units is 8.42 × 10−5 mol L−1. 

The above results can also be proved by dynamic light scattering (DLS). With the temperature 
decreasing from 70 °C to 20 °C, the size of the polymer aggregates becomes bigger, ranging from 0 
nm to 810 nm in R-limonene, and from 0 nm to 784 nm in S-limonene (Figure 2).  

Figure 1. The circular dichroism (CD) (a,c), UV-vis spectra (b,d) and maximum CD and gCD values
(e,f) of the side-chain Azo-containing polymer aggregates with the temperature decreasing from 70 ◦C
to 20 ◦C. (a,b,e) stand for PAzoMA1, (c,d,f) stand for PAzoMA2. The concentration of polymer repeating
units is 8.42 × 10−5 mol L−1.

The above results can also be proved by dynamic light scattering (DLS). With the temperature
decreasing from 70 ◦C to 20 ◦C, the size of the polymer aggregates becomes bigger, ranging from 0 nm
to 810 nm in R-limonene, and from 0 nm to 784 nm in S-limonene (Figure 2).
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Figure 3. Changes in CD spectra (a) and the maximum CD and gCD values (b) of PAzoMA1 films 
during heating to 70 °C and cooling to 60 °C five times. 

Figure 2. The dependence of the PAzoMA1 aggregates’ size on the temperature, which is decreasing
from 70 ◦C to 20 ◦C. These date are taken from Figure S4a,b. The concentration of polymer repeating
units is the same as in Figure 1.

3.3. Supramolecular Chirality of Polymer Solid Films

The liquid-crystalline phase transition of side-chain Azo-containing polymers has been intensively
investigated in many groups [37–39]. According to the DSC results (Figure S5), the glass transition
temperature is around 65 ◦C for both PAzoMA1 and PAzoMA2. In the case of a polymer solid film, a
small amount of 1R or 1S limonene (0.1 mL) was added to the quartz cell. After that, the polymer solid
film was fixed in the cell and suspended above the limonene surface. When 1R was added, the intense
negative CD signal related to the π-π* electronic transition of the trans-Azo chromophore was observed
at 60 ◦C, indicating that the optically active polymer film was successfully produced by limonene
vapor. The absorption of the π-π* band began to decrease in the UV-vis spectra (Figure S6) when the
temperature reached 70 ◦C beyond Tg. The chiral signal in the CD spectra disappeared immediately
at the same time. The reason may be that the chain segment of the polymer would begin to move
randomly after heating above its Tg temperature, which would destroy the well-organized helical π-π
stacking of the Azo units induced by limonene vapor. Similar results were found in the thin films of
achiral liquid crystal polymers induced by CPL [35]. Interestingly, when the polymer films were cooled
to 60 ◦C again, the polymer chains cooled down in the environment of the chiral vapors, and the chiral
aggregates could re-form again. Chiral signals similar to the previous intensity were observed in the
CD spectrum. We successfully built a chiral switch of the polymer solid film by alternately changing
the temperature between 70 ◦C and 60 ◦C. Five switching cycles were tested, and the obvious decline
of the maximum absolute CD amplitude was not found, as presented in Figure 3. Almost intense
mirror-image CD spectra were obtained when 1R was replaced by 1S.
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3.4. Chiral Memory Property of Azo-Containing Polymer Film

Due to the strong molecular interaction occurring in the polymer chains in the solid state,
the polymer films always present a superior chiral memory performance [40]. In this case,
the supramolecular chirality was firstly induced in thin films of the achiral side chain Azo-containing
polymers by limonene vapors. After that, the residual limonene molecular was removed at 40 ◦C
under vacuum for 24 h, and then stored in a fume hood for several months. The content of limonene
was measured by 1H NMR and described in Figure S7. There would be a slight attenuation of the CD
signals in the PAzoMA films at the beginning, and then, the signals could maintain a stable intensity
for several months. The results can be proved in Figure 4.
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3.5. Chiral Amplification

By varying the enantiomeric excess (ee) of chiral limonene, the possibility of chiral amplification
in the aggregation of Azo units were investigated. While keeping the temperature of the system as
a constant (60 ◦C), the linear plot of maximum CD and gCD values (Figure 5) demonstrated that the
chiral aggregation of Azo units was linearly controlled by the respective molar ratio of enantiomers
(1R/1S). No obvious chiral amplification occurred while changing the enantiomeric excess (ee) of
the chiral solvent. A similar result was also found in the polymer solid films. The chiral signals of
the aggregates in the thin films can be adjusted by changing the ee of the chiral limonene vapors.
Similar results were also reported in the limonene-induced supramolecular chirality of π-conjugated
main-chain polymers [9,40] and side-chain polymers [27,29].
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4. Conclusions

In summary, the supramolecular chirality was successfully introduced to achiral side chain
Azo-containing polymers by heating-cooling treatment in pure limonene solution. With the decrease of
temperature, the chiral signals of aggregates tended to increase. Besides, the supramolecular chirality
of the polymer solid films could be induced by limonene vapors. The chiral supramolecular structure
can be destroyed by heating the film above the glass transition temperature (Tg) of the polymer due
to the irregular movements of the polymer chains. Meanwhile, it can be recovered by cooling down
the film in the environment of limonene vapors. This reversible chiral—achiral switching process
can be repeated more than five times. Furthermore, the supramolecular chirality can be perfectly
memorized in the solid state. We successfully achieved the supramolecular chirality of the achiral
side chain Azo-containing polymers in the neat chiral limonene and the thin films induced by chiral
limonene vapor.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4360/10/6/612/s1.
Figure S1: 1H NMR (a) and 13C NMR (b) spectra of AzoMA, Figure S2: GPC curves of PAzoMAs, Figure S3:
UV-vis spectra of Azo-containing polymer aggregates in 1S with the temperature decreasing from 70 ◦C to 20 ◦C.
(a) stands for PAzoMA1 and (b) stands for PAzoMA2, Figure S4: The dependence of PAzoMA1 aggregates size in
limonene under different temperature, Figure S5: DSC heating curves of PAzoMA1 and PAzoMA2, Figure S6:
UV-vis spectra of the polymer films under limonene vapors during the process of changing the temperature,
Figure S7: 1H NMR spectra of the residual limonene on the polymer films after chiral induction (a) and placed
in the fume hood for 45 days (b), Figure S8: Changes in CD and UV-vis spectra of Azo polymer (PAzoMA1)
aggregates in the solution (a) and films (b) with different enantiopurity of limonene.
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