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Simple Summary: Cow-calf operations rely mostly in forage-based systems. Different supplemen-
tation strategies are used by beef producers in order to overcome nutrient deficiencies and achieve
targeted growth or reproductive performances. This study provides information on the impacts of
feeding pregnant replacement heifers with vitamin/mineral and protein/energy supplements on
heifer performance and fetal outcomes. Our study shows that moderate rates of gain (achieved via
protein/energy supplementation) resulted in fetuses with heavier femurs and reduced liver mass
relative to fetal body weight. Moreover, vitamin and mineral supplementation increased fetal liver
mass, and vitamin and mineral supplementation combined with moderate gain treatments resulted
in greater fetal intestinal weights. These findings indicate that replacement heifer nutrition during
early gestation can alter the development of organs in the fetus that are relevant for future offspring
performance. Liver and intestines are key organs related to energy metabolism; therefore, this study
shows that compensatory mechanisms are in place in the developing conceptus that can alter the
growth rate of key metabolic organs possibly in an attempt to increase or decrease energy utilization.

Abstract: Thirty-five crossbred Angus heifers (initial BW = 359.5 ± 7.1 kg) were randomly assigned
to a 2 × 2 factorial design to evaluate effects of vitamin and mineral supplementation [VMSUP;
supplemented (VTM) vs. unsupplemented (NoVTM)] and different rates of gain [GAIN; low gain
(LG), 0.28 kg/d, vs. moderate gain (MG), 0.79 kg/d] during the first 83 d of gestation on dam hormone
and metabolic status, fetal tissue and organ mass, and concentration of glucose and fructose in fetal
fluids. The VMSUP was initiated 71 to 148 d before artificial insemination (AI), allowing time for
mineral status of heifers to be altered in advance of breeding. At AI heifers were assigned their GAIN
treatment. Heifers received treatments until the time of ovariohysterectomy (d 83 ± 0.27 after AI).
Throughout the experiment, serum samples were collected and analyzed for non-esterified fatty acids
(NEFA), progesterone (P4), insulin, and insulin-like growth factor 1 (IGF-1). At ovariohysterectomy,
gravid reproductive tracts were collected, measurements were taken, samples of allantoic (ALF) and
amniotic (AMF) fluids were collected, and fetuses were dissected. By design, MG had greater ADG
compared to LG (0.85 vs. 0.34 ± 0.04 kg/d, respectively; p < 0.01). Concentrations of NEFA were
greater for LG than MG (p = 0.04) and were affected by a VMSUP × day interaction (p < 0.01), with
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greater concentrations for NoVTM on d 83. Insulin was greater for NoVTM than VTM (p = 0.01).
A GAIN × day interaction (p < 0.01) was observed for IGF-1, with greater concentrations for MG
on d 83. At d 83, P4 concentrations were greater for MG than LG (GAIN × day, p < 0.01), and MG
had greater (p < 0.01) corpus luteum weights versus LG. Even though fetal BW was not affected
(p ≥ 0.27), MG fetuses had heavier (p = 0.01) femurs than LG, and VTM fetuses had heavier (p = 0.05)
livers than those from NoVTM. Additionally, fetal liver as a percentage of BW was greater in fetuses
from VTM (P = 0.05; 3.96 ± 0.06% BW) than NoVTM (3.79 ± 0.06% BW), and from LG (p = 0.04;
3.96 ± 0.06% BW) than MG (3.78 ± 0.06% BW). A VMSUP × GAIN interaction was observed for fetal
small intestinal weight (p = 0.03), with VTM-MG being heavier than VTM-LG. Therefore, replacement
heifer nutrition during early gestation can alter the development of organs that are relevant for
future offspring performance. These data imply that compensatory mechanisms are in place in the
developing conceptus that can alter the growth rate of key metabolic organs possibly in an attempt to
increase or decrease energy utilization.

Keywords: beef heifer; energy supplementation; fetal programming; maternal nutrition; vitamin and
mineral supplementation

1. Introduction

Dam nutrition during the early stages of pregnancy may have metabolic and physio-
logical effects on the fetus [1–3], with the potential to alter the developmental trajectory
of offspring later in life [4–8]. Recent studies demonstrate that maternal nutrient restric-
tion (60% of NRC requirements) during the first 50 d of pregnancy affect the transcript
abundance of genes associated with tissue metabolism, accretion, and function in fetal liver,
muscle, and cerebrum [2]. Maternal plane of nutrition and day of gestation have altered
concentrations of key metabolic fuels in allantoic and amniotic fluids, mRNA expression of
utero-placental glucose and cationic AA transporters, and the location and abundance of
these transporters in beef heifer utero-placental tissues [9–11].

To continue investigating the effects of maternal nutrition in fetal development out-
comes, we developed a research model where beef heifers were subjected to a vitamin
and mineral supplementation and two rates of gain achieved via protein/energy supple-
ments (both within the range of gain observed in commercial production systems) during
the first 83 d of gestation. We speculate that strategic supplementation may modulate
rates of gain and by doing so potentially affect offspring growth in utero and postnatally.
Currently, there is a large variation in vitamin/mineral [12] and protein/energy [13,14]
supplementation strategies in beef operations; thus, the beef industry would benefit from
the understanding of the effects that vitamin and mineral supplementation and different
rates of gain have on maternal hormone and metabolite responses during the first trimester
of gestation.

Previously [15], we reported that concentrations of His, Asp, and various neutral
AA were greater in the allantoic fluid from heifers fed a vitamin and mineral supplement,
while concentrations of Arg, Cys, and Asp were increased in the allantoic fluid of heifers
gaining 0.79 kg/d (moderate gain) compared with those on gaining 0.28 kg/d (low gain).
Along with glucose and fructose, amino acids play a critical role for establishment and
maintenance of pregnancy [3]. Glucose is the primary energy substrate for the placenta and
fetus and is essential for normal fetal metabolism and growth [16]. Fructose is the main
carbohydrate in plasma and fetal fluids of mammals and may induce cell proliferation via
activation of the mammalian target of rapamycin pathway [3,17]. Thus, one of the goals
of this study is to investigate how glucose and fructose concentrations in fetal fluids are
affected by nutritional management strategies.

Diniz et al. [18] observed that maternal vitamin and mineral supplementation and
rate of gain affected placental expression of energy metabolism and transport-related genes
using the same subset of animals from our study. Findings of Diniz et al. [18] and Menezes
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et al. [15] suggest that fetal growth may be impacted using our research model. Thus,
a third goal of this study was to evaluate fetal growth and organ mass. Therefore, we
hypothesized that maternal vitamin and mineral supplementation and moderate rates of
gain would positively affect heifer performance, hormonal and metabolic status, and result
in increased concentrations of glucose and fructose in allantoic and amniotic fluids and
increase fetal growth and organ mass.

2. Materials and Methods
2.1. Ethics Statement

All animal procedures were approved by the North Dakota State University Institu-
tional Animal Care and Use Committee (#A19012).

2.2. Animals, Experimental Design, Housing and Diet

Crossbred Angus heifers (n = 72; 11 to 12 months of age, initial BW = 359.5 ± 7.1 kg)
were initially housed at the Central Grasslands Research Extension Center (Streeter, ND),
where they were randomly assigned to one of 2 vitamin and mineral supplementation
treatments [VMSUP; supplemented (VTM, n = 36) vs. unsupplemented (NoVTM, n = 36)],
thus allowing time for mineral status of heifers to be altered in advance of breeding.
Therefore, NoVTM heifers were submitted to a mineral depletion period of at least 71 days,
as explained further in the text. Heifers were group-fed and diets were delivered once
daily via total mixed ration (TMR) and consisted of triticale hay, corn silage, modified
distillers grains plus solubles, ground corn, and if indicated by treatment, vitamin and
mineral premix (delivered at a 0.45 kg•heifer−1•day−1 to target 113 g of product). The
vitamin and mineral premix provided vitamins A, D, and E and macro and trace minerals
to meet 110% of the requirements specified by the NASEM [19] and consisted of ground
corn and a loose mineral supplement (Purina Wind & Rain Storm All-Season 7.5 Complete,
Land O’Lakes, Inc., Arden Hills, MN; Table 1). Heifers in the NoVTM treatment received
the ground corn carrier at 0.45 kg•heifer−1•day−1.

Fifty days after initiation of the VMSUP factor, heifers were transported approximately
227 km and housed at the North Dakota State University Animal Nutrition and Physiology
Center (ANPC; Fargo, ND, USA). At ANPC, heifers were randomly allocated in 12 group-
pens (23.7 m2) with 6 heifers per pen. Therefore, a same pen housed VTM and NoVTM
heifers. Heifers were individually fed daily in an electronic head gate facility (American
Calan; Northwood, NH, USA), and continued to receive their respective VMSUP treatments
until the time of artificial insemination (AI). At this facility, the VTM heifers received a
pelleted vitamin and mineral supplement fed at a 0.45 kg•heifer−1•day−1, consisting of
113 g of the vitamin and mineral supplement and formulated to deliver similar levels
of vitamins and minerals that were fed pre-breeding, while the NoVTM heifers received
a pelleted carrier product fed at a 0.45 kg•heifer−1•day−1 with no added vitamins or
minerals. The duration of time VTM and NoVTM heifers received their treatments varied
according to the AI group they were assigned (i.e., treatments were initiated on the same
calendar day, but AI occurred over seven AI group timepoints due to logistical constraints;
Figure 1). Therefore, the VMSUP factor was initiated 71 to 148 d before AI. The rationale
for the mineral feeding timeline is threefold: (1) because of various mineral stores in the
body, mineral status as a whole takes time to alter; therefore we targeted at least 70 d on
the VMSUP factor to allow time for mineral status to be altered in advance of breeding
so effects would be present on offspring from conception through the gestational target;
(2) this is a production-relevant scenario as producers typically either feed a supplement or
not, and would likely not decide to stop or start feeding a VTM supplement at the time of
breeding; (3) to successfully manage workflow for the experiment we needed to control
the number of heifers bred and tissue collections conducted on a single day. Based on this
rationale, the duration of pre-breeding time on the VTM treatment varied according to their
breeding group with a range of 71 to 148 days before AI. The breeding group was taken
into consideration in our statistical analysis and had no influence in any of the response
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variables. All heifers were subjected to a 7-d CO-Synch + CIDR estrus synchronization
protocol [20], and AI bred to female sexed semen from a single sire.

Table 1. Micronutrient composition of vitamin and mineral (VTM) supplement 1 provided to beef
heifers during the first trimester of gestation; company guaranteed analysis.

Item Assurance Levels

Minerals 1 Min Max

Calcium, g/kg of DM 135.0 162.0
Phosphorus, g/kg of DM 75.0 -

Sodium Chloride, g/kg of DM 180.0 216.0
Magnesium, g/kg of DM 10.0 -
Potassium, g/kg of DM 10.0 -

Manganese, mg/kg of DM 3600.0 -
Cobalt, mg/kg of DM 12.0 -
Copper, mg/kg of DM 1200.0 -
Iodine, mg/kg of DM 60.0 -

Selenium, mg/kg of DM 27.0 -
Zinc, mg/kg of DM 3600.0 -

Vitamins 2, IU/kg of DM

A 661,500.0
D 66,150.0
E 661.5

1 Purina Wind and Rain Storm All Season 7.5 Complete Mineral (Land O’Lakes, Inc., Arden Hills, MN, USA);
Ingredients: Dicalcium Phosphate, Monocalcium Phosphate, Processed Grain By-Products, Plant Protein Prod-
ucts, Calcium Carbonate, Molasses Products, Salt, Mineral Oil, Potassium Chloride, Magnesium Oxide, Ferric
Oxide, Vitamin E Supplement, Vitamin A Supplement, Lignin Sulfonate, Cobalt Carbonate, Manganese Sulfate,
Ethylenediamine Dihydroiodide, Zinc Sulfate, Copper Chloride, Vitamin D3 Supplement, Natural and Artifi-
cial Flavors, Sodium Selenite. Post-breeding, the VTM supplement was delivered as a pelleted product fed at
0.45 kg•heifer−1•day−1 (consisting of 113 g of a mineral and vitamin supplement, formulated to deliver similar
levels of vitamins and minerals that were fed pre-breeding and 337 g of a carrier). 2 Ingredients: Vitamin A
Supplement (proprietary), Vitamin E Supplement (proprietary), Vitamin D3 Supplement (proprietary).
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Figure 1. Feeding timeline for vitamin and mineral supplementation [VMSUP; supplemented (VTM)
vs. unsupplemented (NoVTM)]. AI: Artificial Insemination; ANPC: Animal Nutrition and Physiology
Center (Fargo, ND, USA).

At AI (d 0 of our experiment), heifers were assigned randomly to either LG or MG
treatments—within their respective VMSUP factor—completing the factorial arrangement
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of treatments. Heifers that received a protein/energy supplementation (a proprietary
blend of ground corn, dried distillers grains plus solubles, wheat midds, fish oil, urea, and
ethoxyquin; fed at the rate of 0.58% of BW as-fed daily) were targeted to gain 0.79 kg/d
(MG), while heifers that did not receive the protein/energy supplementation were targeted
to gain 0.28 kg/d (LG). All heifers received a basal diet made up by prairie grass hay,
corn silage, and dried distillers grains plus solubles (Table 2). If indicated by treatment,
supplements were top dressed over the basal diet.

Pregnancy diagnosis was performed 35 days after AI, and fetal sex was determined on
d 65 after AI using transrectal ultrasonography [21]. After pregnancy diagnosis and fetal
sexing, 35 of the 72 heifers originally enrolled were gestating female fetuses and remained
in the experiment, in the following treatment combinations: (1) No vitamin and mineral
supplement, low gain (NoVTM-LG; n = 9); (2) No vitamin and mineral supplement, moder-
ate gain (NoVTM-MG; n = 9); (3) Vitamin and mineral supplement, low gain (VTM-LG;
n = 9); (4) Vitamin and mineral supplement, moderate gain (VTM-MG; n = 8). Heifers were
weighed at weekly intervals and individual feed intake adjusted during the course of the
study to achieve targeted BW gains. The targeted daily gains proposed in our research
model were both within the range observed in normal production scenarios, reflecting
what has been observed in unsupplemented and supplemented grazing beef cattle [22–24].
Another important consideration regarding forage-based production systems is that sea-
sonal variations in forage quantity and quality affect nutrient availability in such a manner
that forage diets may not always meet nutritional requirements, including mineral require-
ments (No-VTM-LG diet, Table 3). In this context, the supplementation strategies used in
this study (VTM and MG) were designed to overcome potential deficiencies and achieve
targeted production goals for growth and reproductive performance of commercial beef
herds. Our treatments were applied until the experiment endpoint of d 83 ± 0.27 after
breeding, when heifers were ovariohysterectomized.

Table 2. Nutrient composition of basal diet and supplements provided to replacement beef heifers
during the first trimester of gestation.

Chemical Composition Basal Diet 1
Supplements

NoVTM 2 VTM 3 Protein/Energy 4

Dry Matter, % 53.0 86.6 89.6 87.7
Ash, % DM 11.5 5.3 25.1 2.4

Crude Protein, % DM 9.9 15.6 14.8 17.5
Neutral Detergent Fiber, % DM 65.9 41.9 27.6 19.4

Ether Extract, % DM 1.5 0 0 9.1
Non-Fiber Carbohydrates, % DM 11.1 37.2 32.5 51.6

Mineral Content
Calcium, g/kg DM 5.74 2.47 50.62 0.30

Phosphorus, g/kg DM 2.05 8.94 22.82 4.59
Sodium, g/kg DM 0.26 0.12 19.44 0.24

Magnesium, g/kg DM 2.83 4.47 5.20 1.96
Potassium, g/kg DM 15.81 14.22 13.15 6.05

Sulfur, g/kg DM 2.25 2.41 4.84 2.57
Manganese, mg/kg DM 121.2 103.9 953.4 26.0

Cobalt, mg/kg DM 0.36 0.14 3.38 0.05
Copper, mg/kg DM 4.8 13.7 285.8 3.6

Selenium, mg/kg DM 0.3 0.4 7.0 0.3
Zinc, mg/kg DM 28.4 130.2 1051.8 35.0

1 Proportion of ingredients: prairie grass hay (55%), corn silage (38%), and dried distillers grains plus solubles
(7%). 2 NoVTM: No vitamin mineral supplement was a pelleted product fed at a 0.45 kg•heifer−1•day−1 with no
added vitamin and mineral supplement. 3 VTM: Vitamin mineral supplement was a pelleted product fed at a
0.45 kg•heifer−1•day−1 (consisting of 113 g of a vitamin and mineral supplement, formulated to deliver similar
levels of vitamins and minerals that were fed pre-breeding and 337 g of a carrier).4 Blend of ground corn, dried
distillers grains plus solubles, wheat midds, fish oil, urea, and ethoxyquin fed at rate to achieve targeted gain of
0.79 kg/d for MG treatment.



Animals 2022, 12, 1757 6 of 18

Table 3. Dietary intake of macro and trace minerals and values recommended by the BCNRM (2016;
Nutrient Requirements of Beef Cattle).

Dietary Treatments BCNRM (2016)
RequirementsComposition NoVTM-LG 1 NoVTM-MG 2 VTM-LG 3 VTM-MG 4

Macrominerals
Ca, g/d 25.70 32.98 48.04 50.42 26.30
P, g/d 12.32 23.57 19.07 28.61 14.71

Mg, g/d 13.94 21.03 15.72 20.40 9.80
K, g/d 73.67 103.82 81.42 98.08 48.99

Na, g/d 1.17 1.93 9.09 9.64 5.72
S, g/d 10.63 18.22 12.78 18.47 12.25

Microminerals
Co, mg/d 1.61 2.12 3.10 3.31 1.22
Cu, mg/d 26.02 38.58 138.34 146.82 81.65
Mn, mg/d 562.73 754.58 967.92 1056.12 326.59
Se, mg/d 1.45 2.38 4.27 4.94 0.82
Zn, mg/d 173.11 273.86 560.82 637.53 244.94

1 NoVTM-LG: Total mixed ration, no vitamin and mineral supplement, low gain (0.28 kg/d). 2 NoVTM-MG: Total
mixed ration, no vitamin and mineral supplement, moderate gain (0.79 kg/d). 3 VTM-LG: Total mixed ration,
vitamin and mineral supplement, low gain (0.28 kg/d). 4 VTM-MG: Total mixed ration, vitamin and mineral
supplement, moderate gain (0.79 kg/d). The total mixed ration was made by prairie grass hay (55%), corn silage
(38%), and dried distillers grains plus solubles (7%). No vitamin mineral supplement (NoVTM) was a pelleted
product fed at a 0.45 kg•heifer−1•day−1 with no added vitamin and mineral supplement. Vitamin mineral
supplement (VTM) was a pelleted product fed at a 0.45 kg•heifer−1•day−1 (consisting of 113 g of a vitamin and
mineral supplement, formulated to deliver similar levels of vitamins and minerals that were fed pre-breeding and
337 g of a carrier). A blend of ground corn, dried distillers grains plus solubles, wheat midds, fish oil, urea, and
ethoxyquin was fed at rate to achieve targeted gain of 0.79 kg/d for moderate gain treatment (MG).

2.3. Feed Analysis

Diet TMR samples were collected weekly throughout the experiment and composited
over the feeding period. The composited sample was dried in a 55 ◦C oven and ground
to pass through a 2 mm screen. Samples were analyzed for dry matter, ash, N (Kjehldahl
method), Ca, P, and ether extract by standard procedures (AOAC, 1990). Crude protein
was determined by multiplying N by 6.25. Neutral detergent fiber and acid detergent fiber
concentrations were determined by the modified method of Van Soest et al. [25] using a
fiber analyzer (Ankom Technology Corp., Fairport, NY, USA). The TMR was also analyzed
for concentrations of Cu, Zn, Mo, Fe, and S using inductively coupled plasma optical
emission spectroscopy and concentrations of Co and Se via inductively coupled plasma
mass spectrometry by the Veterinary Diagnostic Laboratory at Michigan State University.

2.4. Blood Sample Collections and Analysis

Serum samples from the jugular vein were collected into 10 mL serum vacutainer tubes
(Becton Dickinson Co., Franklin Lakes, NJ, USA) at the time of VMSUP factor initiation
(i.e., 71 to 148 d before AI), controlled internal drug release (CIDR) insertion (9 days before
AI), and on d 14, 28, 42, 56, 70, and 83 ± 0.27 after AI to determine concentrations of
glucose, non-esterified fatty acids (NEFA), and P4. Serum samples collected at VMSUP
factor initiation, at the time of CIDR insertion, and at the time of ovariohysterectomy
(d 83 ± 0.27 after breeding) were further analyzed to determine concentrations of insulin
and insulin-like growth factor 1 (IGF-1). All blood samples were collected prior to the
morning feeding, placed on ice, centrifuged at 1500× g at 4 ◦C for 20 min, and stored in
plastic vials at −20 ◦C until further analysis.

Samples were analyzed for glucose and NEFA using the Synergy H1 Microplate
Reader (Biotek, Winooski, VT, USA) with the Infinity Glucose Hexokinase Kit (Thermo
Scientific, Waltham, MA, USA) and NEFA-C Kit (WAKO Chemicals, Inc., Richmond, VA,
USA). The intra- and inter-assay CV were 2.87 and 6.80%, respectively, for glucose and
2.96 and 17.46%, respectively, for NEFA.

Concentrations of P4, insulin [26,27], and IGF-1 [28–30] were analyzed by competitive
chemiluminescent immunoassay using the Immulite 1000 (Siemens, Los Angeles, CA, USA).
A 50 µL sample of maternal serum and all controls were analyzed in duplicate. Lyphochek
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Immunoassay Plus Control Levels 1, 2 and 3 were purchased from Biorad (cat. No 370X) to
provide quality controls for P4 assays. For P4, low, intermediate and high control values
were measured within expected ranges (0.94 ± 0.12, 8.44 ± 0.94, and 19.6 ± 0.54 ng/mL,
respectively). The intra-assay CV was 4.15%, and the inter-assay CVs for the controls were
12.9, 11.2, and 2.8%, respectively. For insulin, low and high controls from Siemens were
utilized to validate the assay (8.03 ± 0.47 and 49.6 ± 1.41 uIU/mL, respectively), and intra-
and inter-assay CVs were 5.13 and 4.33%, respectively. For IGF-1, low and high controls
from Siemens were measured within expected ranges (65.2 ± 2.26 and 204 ± 8.49 ng/mL,
respectively), and the intra-assay CV was 2.59%, and the inter-assay CV was 3.81%.

2.5. Utero-Placental and Fetal Tissues Collection and Analysis

Ovariohysterectomy procedures were conducted at d 83 ± 0.27 of gestation to collect
utero-placental tissues as previously described by McLean et al. [31]. Immediately following
collection, weights of the gravid uterus, ovaries, and CL were recorded. The fetus was
removed, weighed, and the side of the fetus was photographed using Omni ASH Digital
Videoscope (ASH, Kildare, Ireland) system calibrated to take images and measurements
in microns at any magnification. The calibrated ASH images were analyzed using image
analysis software (Image Pro Premier v. 9.3, Media Cybernetics, Rockville, MD, USA):
crown-rump length as the straight line from the top of the head (crown) to the head of the
tail, curved crown-rump length as the line along the body curve from the top of the head
to the head of the tail, eye diameter, nose to poll (crown), body depth at front shoulder
(wither ends), and body depth at the umbilicus (umbilicus to the lower back at the height
of L vertebra).

Subsequently, the fetus was dissected, and the fetal liver, heart, intestine, pancreas,
hindlimb, brain, and ovaries were collected. Fetal organs were individually weighed,
processed, and stored at −80 ◦C for further analysis.

Allantoic (ALF) and amniotic (AMF) fluids were collected using a 22-gauge needle
(Medtronic, Minneapolis, MN, USA) to penetrate the respective fetal membranes, and
fluids were suctioned with a 10 mL syringe [2,15]. Aliquots of the fluids were placed in
2 mL microtubes, snap frozen on dry ice, and stored at −80 ◦C for subsequent glucose and
fructose analyses. Samples were analyzed for glucose using the Synergy H1 Microplate
Reader (Biotek, Winooski, VT, USA) with the Infinity Glucose Hexokinase Kit (Thermo
Scientific, Waltham, MA, USA). To determine fructose concentration, frozen samples of
ALF and AMF were thawed at room temperature, centrifuged for 5 min at 14,000× g and
18 ◦C to remove any debris that would interfere with the assay. The thawed, pre-cleared
ALF supernatants were diluted 1:80 and AMF samples diluted 1:10 with 18 mΩ water. The
EnzyChrom Fructose Assay Kit (EFRU-100; BioAssay Systems, Hayward, CA, USA) was
utilized on a Synergy H1 Microplate Reader (BioTek) at 565 nm and 25 ◦C. Final results
were reported in µmol of fructose. Pooled samples of ALF and AMF were used as controls
(intra-assay CV = 3.40 and 4.44% for ALF and AMF, respectively; inter-assay CV = 16.06%
for ALF and 9.31% for AMF).

2.6. Statistical Analysis

Data were analyzed using the MIXED procedure of SAS 9.4 (SAS Inst. Inc., Cary,
NC, USA). Body weight, blood hormones and metabolites were analyzed as repeated
measures with VMSUP, GAIN, day, and their interactions as fixed effects and heifer as
a random effect. The covariate structures were tested, and the structure with the lowest
Akaike information criterion/Bayesian information criterion was used for all variables
analyzed. Maternal performance, uterine and fetal measurements, and glucose and fructose
concentrations in ALF and AMF were analyzed using the MIXED procedures of SAS with
VMSUP, GAIN, and a VMSUP × GAIN interaction as fixed effects and heifer as a random
effect. Means were separated using the PDIFF procedure of SAS with a Tukey–Kramer
adjustment. Results are presented as least squares means (LSMEANS) with their standard
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errors. For all analyses, heifer was considered the experimental unit and p-values ≤ 0.05
were considered significant.

3. Results
3.1. Performance and Intake

Average daily gain (ADG) was not affected by VMSUP (p = 0.72) or by a VMSUP × GAIN
interaction (p = 0.35; Table 4). As designed, ADG was greater (p < 0.01) for MG heifers
(0.85 ± 0.04 kg/d) than LG heifers (0.34 ± 0.04 kg/d; Table 4). Consequently, MG heifers
were heavier than LG heifers towards the end of the trial, as evidenced by a GAIN × day
interaction (p < 0.01; Figure 2), with a final BW of 426.8 ± 6.1 vs. 387.6 ± 5.7 kg for MG vs.
LG heifers, respectively.

Table 4. Performance and dry matter intake (DMI) of beef heifers during the first trimester of gestation
as influenced by vitamin and mineral supplementation [VMSUP; not supplemented (NoVTM) or
supplemented (VTM)] and two different rates of gain [GAIN; low rate, 0.28 kg/d (LG) or moderate
rate, 0.79 kg/d (MG)].

NoVTM 1 VTM 2 p-Values

Item LG MG 3 LG MG 3 SEM 4 VMSUP GAIN VMSUP × GAIN

Average Daily Gain 5, kg/d 0.35 0.82 0.32 0.88 0.04 0.72 <0.01 0.35
Total Mixed Ration DMI, kg/d 4.24 5.53 4.91 5.22 0.25 0.49 <0.01 0.08
Starch-based protein/energy

supplement DMI, kg/d 6 0.00 1.93 0.00 1.94 0.26 0.79 <0.01 0.81

Total DMI, kg/d 4.63 7.87 5.34 7.57 0.29 0.50 <0.01 0.11
Gain:Feed 0.078 0.105 0.059 0.118 0.009 0.72 < 0.01 0.10

1 NoVTM: No vitamin mineral supplement was a pelleted product fed at a 0.45 kg•heifer−1•day−1 with no
added vitamin and mineral supplement. 2 VTM: Vitamin mineral supplement was a pelleted product fed at a
0.45 kg•heifer−1•day−1 (consisting of 113 g of a vitamin and mineral supplement, formulated to deliver similar
levels of vitamins and minerals that were fed pre-breeding and 337 g of a carrier). 3 Heifers fed a pelleted blend
of ground corn, dried distillers grains plus solubles, wheat midds, fish oil, urea, and ethoxyquin fed at rate to
achieve targeted gain of 0.79 kg/d for MG treatment. 4 NoVTM-LG (n = 9); NoVTM-MG (n = 9); VTM-LG (n = 9);
VTM-MG (n = 8). 5 Calculated from the time of artificial insemination to d 83 of gestation. 6 Arthimetic means
presented for consumption of the protein/energy supplement.

To achieve targeted gains, total dry matter intake (DMI) was greater (p < 0.01) for MG
(7.72 ± 0.21 kg/d) than LG (4.98 ± 0.19 kg/d) heifers (Table 4). Feed efficiency (gain:feed)
was affected by GAIN, with greater values (p < 0.01) for MG than LG heifers (Table 3). Total
DMI, DMI of TMR, and DMI of the protein and energy supplement were not influenced by
VMSUP (p ≥ 0.49) or the VMSUP × GAIN interaction (p ≥ 0.08).

3.2. Blood Hormones and Metabolites

There were no differences in plasma glucose concentrations due to main effects or
interactions (p ≥ 0.08). Concentrations of glucose averaged 3.96 ± 0.15, 4.18 ± 0.14,
3.86 ± 0.19, and 4.25 ± 0.17 mmol/L for NoVTM-LG, NoVTM-MG, VTM-LG, and VTM-
MG, respectively.

Concentrations of NEFA were affected by GAIN (p = 0.04), with lower concentrations
for MG (262.54 ± 15.28 µmol/L) than LG (309.57 ± 17.03 µmol/L) heifers throughout the
experiment. Further, there was a VMSUP × day interaction (p = 0.002) for concentrations
of NEFA, with greater concentrations for NoVTM than VTM heifers (p = 0.02) at d 83 of
gestation (Figure 3).

A GAIN × day interaction (p < 0.01; Figure 4) was observed for concentrations of
P4, with greater concentrations (p = 0.05) for MG than LG heifers on d 83 of gestation
(21.44 ± 1.36 vs. 15.44 ± 1.31 nmol/L, respectively). Concentrations of P4 were not affected
by the main effects of VMSUP (p = 0.86) or GAIN (p = 0.11) nor other interactions (p ≥ 0.18).
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Figure 2. Effect of vitamin and mineral supplementation [VMSUP; supplemented (VTM) vs. unsup-
plemented (NoVTM); from pre-breeding to d 83 of gestation] and two different rates of gain [GAIN;
low gain (LG), 0.28 kg/d, vs. moderate gain (MG), 0.79 kg/d; from breeding to d 83 of gestation] on
beef heifer body weight. Because of the seven breeding groups the heifers were assigned to, the extent
on which VTM heifers received their treatments varied according to their breeding date. Therefore,
the VMSUP factor started within a range of 71 to 148 days before artificial insemination (AI). The AI
was considered the d 0 of the experiment—where heifers were assigned to their GAIN treatments—
completing our factorial design. NoVTM-LG (n = 9): No vitamin and mineral supplement, low gain;
NoVTM-MG (n = 9): No vitamin and mineral supplement, moderate gain; VTM-LG (n = 9): Vitamin
and mineral supplement, low gain; VTM-MG (n = 8): Vitamin and mineral supplement, moderate
gain. A GAIN × day interaction (p < 0.01) was observed for body weight, which was similar between
LG and MG from project initiation until d 70; and was greater (p ≤ 0.04) for MG compared with
LG on d 70 and 83, as indicated by **. Values are least squares means, with error bars depicting
standard error.

Concentrations of insulin in maternal serum were not affected by any of the (p ≥ 0.09;
Table 5) interactions tested nor by the main effect of GAIN (p = 0.16). Concentrations
of insulin increased throughout the experiment (p < 0.01), with greater concentrations
for all groups of heifers at d 83 of gestation (51.07 ± 2.76 pmol/L) compared to samples
collected before VMSUP initiation (26.11 ± 2.76 pmol/L) and at the time of CIDR insertion
(34.29 ± 2.76 pmol/L). Further, a VMSUP effect was observed (p = 0.01), with greater
concentrations for NoVTM (43.16 ± 2.97 pmol/L) than VTM (31.15 ± 3.12 pmol/L) heifers.

A GAIN × day interaction (p < 0.01; Table 5) was observed for concentrations of IGF-1,
with greater concentrations for MG (18.61 ± 0.85 nmol/L) than LG (17.26 ± 0.82 nmol/L)
heifers at d 83 of gestation. Concentrations of IGF-1 were not affected by the main effects of
VMSUP (p = 0.49) or GAIN (p = 0.25) nor any of the other interactions tested (p ≥ 0.30).

3.3. Maternal Reproductive Tract, Fetal Characteristics, and Glucose and Fructose Concentrations
in ALF and AMF on d 83 of Gestation

Gravid and empty uterine weight and mean diameter of the 3 largest placentomes
were not affected by VMSUP (p ≥ 0.35), GAIN (p ≥ 0.43), or their interaction (p ≥ 0.16;
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Table 6). However, CL weight and diameter were influenced by GAIN (p < 0.01 and p = 0.02,
respectively), both being greater for MG than LG heifers.
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Figure 3. Effect of vitamin and mineral supplementation [VMSUP; supplemented (VTM) vs. unsup-
plemented (NoVTM); from pre-breeding to d 83 of gestation] and two different rates of gain [GAIN;
low gain (LG), 0.28 kg/d, vs. moderate gain (MG), 0.79 kg/d; from breeding to d 83 of gestation] on
blood non-esterified fatty acids (NEFA) concentrations. NoVTM-LG (n = 9): No vitamin and mineral
supplement, low gain; NoVTM-MG (n = 9): No vitamin and mineral supplement, moderate gain;
VTM-LG (n = 9): Vitamin and mineral supplement, low gain; VTM-MG (n = 8): Vitamin and mineral
supplement, moderate gain. A VMSUP × Day interaction (p = 0.002) was observed for NEFA, being
similar for NoVTM and VTM from d −9 to 70; and greater (p = 0.02) for VTM than NoVTM on day 83
as indicated by **. Values are least squares means, with error bars depicting standard error.

Fetal BW was not affected by main effects of VMSUP or GAIN (p ≥ 0.27) or their
interaction (p = 0.28; Table 7). However, fetal intestinal weight was affected by a VMSUP
× GAIN interaction (p = 0.03), where intestine from VTM-MG fetuses were heavier than
those from VTM-LG (p = 0.04), with all other treatments being similar (p ≥ 0.08). This effect
was not observed (p ≥ 0.15) when fetal intestinal mass was evaluated as a percentage of
fetal BW. No other fetal organ weights (either absolute mass or as a percentage of fetal BW)
were affected by a VMSUP × GAIN interaction (p ≥ 0.15). However, femur weight was
affected by GAIN, where fetuses from MG had heavier (p = 0.01) femurs than those from
LG. Fetal liver weight was heavier (p = 0.05) for fetuses from VTM than NoVTM when
analyzed as absolute weight, and when analyzed as a percentage of fetal BW. Interestingly,
fetal liver weight as a percentage of fetal BW was greater (p = 0.04) for LG than MG heifers.
Fetal heart, pancreas, hindlimb, brain, and ovaries (either absolute mass or as a percentage
of fetal BW) were not affected by main effects of VMSUP (p ≥ 0.14), GAIN (p ≥ 0.07), or
their interaction (p ≥ 0.08). Fetal body measurements (crown rump length, curved crown
rump length, eye diameter, nose to poll, body depth at front shoulder, and body depth
at umbilicus; Table 6) were not affected by VMSUP (p ≥ 0.19), GAIN (p ≥ 0.20), or their
interaction (p ≥ 0.06).
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Figure 4. Effect of vitamin and mineral supplementation [VMSUP; supplemented (VTM) vs. unsup-
plemented (NoVTM); from pre-breeding to d 83 of gestation] and two different rates of gain [GAIN;
low gain (LG), 0.28 kg/d, vs. moderate gain (MG), 0.79 kg/d; from breeding to d 83 of gestation] on
progesterone (P4) concentrations. NoVTM-LG (n = 9): No vitamin and mineral supplement, low gain;
NoVTM-MG (n = 9): No vitamin and mineral supplement, moderate gain; VTM-LG (n = 9): Vitamin
and mineral supplement, low gain; VTM-MG (n = 8): Vitamin and mineral supplement, moderate
gain. A rate of gain × Day interaction (p = 0.006) was observed for P4 concentrations, which were
similar between LG (low gain, 0.28 kg/d) and MG (moderate gain, 0.79 kg/d) on d 14 to 70; and
were greater (p = 0.05) for MG compared with LG on d 83, as indicated by **. Values are least squares
means, with error bars depicting standard error.

Table 5. Concentrations of insulin and insulin-like growth factor 1 (IGF-1) in serum from beef heifers
as influenced by vitamin and mineral supplementation [VMSUP; not supplemented (NoVTM) or
supplemented (VTM)] and two different rates of gain [GAIN; low rate, 0.28 kg/d (LG) or moderate
rate, 0.79 kg/d (MG)].

Item
NoVTM 1 VTM 2

SEM 4

p-Values

LG MG 3 LG MG 3 Day VMSUP GAIN VMSUP
× GAIN

VMSUP
× Day

GAIN ×
Day

VMSUP ×
GAIN × Day

Insulin, pmol/L
Prior to VMSUP 5 31.07 27.58 29.22 16.56 5.97

<0.01 0.01 0.16 0.36 0.30 0.09 0.74Pre-breeding 6 46.47 36.09 34.00 20.61 5.97
d 83 of gestation 7 54.92 62.86 45.55 40.94 5.97

IGF-1, nmol/L
Prior to VMSUP 5 17.51 20.91 19.24 19.24 1.38

<0.01 0.49 0.25 0.47 0.42 <0.01 0.30Pre-breeding 6 19.17 18.95 21.36 19.06 1.38
d 83 of gestation 7 12.42 b 15.99 a 13.83 b 17.54 a 1.38

1 NoVTM: No vitamin and mineral supplement was a pelleted product fed at a 0.45 kg•heifer−1•day−1 with no
added vitamin and mineral supplement. 2 VTM: Vitamin mineral supplement was a pelleted product fed at a
0.45 kg•heifer−1•day−1 (consisting of 113 g of a mineral and vitamin supplement, formulated to deliver similar
levels of vitamins and minerals that were fed pre-breeding and 337 g of a carrier). 3 Heifers fed a pelleted blend
of ground corn, dried distillers grains plus solubles, wheat midds, fish oil, urea, and ethoxyquin fed at rate to
achieve targeted gain of 0.79 kg/d. 4 NoVTM-LG (n = 9); NoVTM-MG (n = 9); VTM-LG (n = 9); VTM-MG (n = 8).
5 Blood was collected before VMSUP factor initiation (71 to 148 d before artificial insemination). 6 Blood was
collected pre-breeding (at the time of CIDR insertion—9 d prior to artificial insemination). 7 Blood was collected
at the time of ovariohysterectomy (d 83 ± 0.27 after artificial insemination).
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Table 6. Effect of feeding a vitamin and mineral supplement [VMSUP; not supplemented (NoVTM)
or supplemented (VTM)] and two different rates of gain [GAIN; low rate, 0.28 kg/d (LG) or moderate
rate, 0.79 kg/d (MG)] to beef heifers during the first trimester of gestation on dam reproductive tract
characteristics at day 83 ± 0.27 of gestation.

Item
NoVTM 1 VTM 2 p-Values

LG MG 3 LG MG 3 SEM 4 VMSUP GAIN VMSUP × GAIN

Gravid Uterus, g 1,916.9 1,765.4 1,763.5 1,757.0 100.22 0.44 0.43 0.49
Empty Uterus. g 446.78 409.56 435.70 460.20 20.49 0.35 0.75 0.16
Corpus luteum, g 3.89 4.78 3.89 4.93 0.29 0.79 0.003 0.82

Corpus luteum diameter, cm 3.40 3.67 3.35 3.92 0.16 0.55 0.02 0.39
Largest placentomes 5, cm 3.27 3.44 3.76 3.73 0.29 0.21 0.81 0.75

1 NoVTM: No vitamin and mineral supplement was a pelleted product fed at a 0.45 kg•heifer−1•day−1 with no
added vitamin and mineral supplement. 2 VTM: Vitamin mineral supplement was a pelleted product fed at a
0.45 kg•heifer−1•day−1 (consisting of 113 g of a vitamin and mineral supplement, formulated to deliver similar
levels of vitamins and minerals that were fed pre-breeding and 337 g of a carrier). 3 Heifers fed a pelleted blend
of ground corn, dried distillers grains plus solubles, wheat midds, fish oil, urea, and ethoxyquin fed at rate to
achieve targeted gain of 0.79 kg/d. 4 NoVTM-LG (n = 9); NoVTM-MG (n = 9); VTM-LG (n = 9); VTM-MG (n = 8).
5 Mean diameter of 3 largest placentomes in the reproductive tract.

Table 7. Effect of feeding a vitamin and mineral supplement [VMSUP; not supplemented (NoVTM)
or supplemented (VTM)] and two different rates of gain [GAIN; low rate, 0.28 kg/d (LG) or moderate
rate, 0.79 kg/d (MG)] to beef heifers during the first trimester of gestation on fetal and fetal organ
mass and fetal body measurements at d 83 ± 0.27 of gestation.

Item
NoVTM 1 VTM 2 p-Values

LG MG 3 LG MG 3 SEM 4 VMSUP GAIN VMSUP × GAIN

Fetal mass, g
Body 117.46 117.24 116.16 125.78 4.26 0.41 0.27 0.28
Liver 4.50 4.34 4.70 4.90 0.18 0.05 0.90 0.33
Heart 1.02 1.00 1.10 1.07 0.06 0.27 0.66 0.89

Intestine 2.56 ab 2.47 ab 2.42 a 2.87 b 0.11 0.24 0.09 0.03
Pancreas 0.29 0.27 0.27 0.29 0.04 0.96 0.97 0.57
Hindlimb 7.71 7.70 7.51 7.52 0.46 0.69 0.99 0.98

Femur 0.34 0.36 0.35 0.42 0.02 0.08 0.01 0.22
Brain 3.67 3.51 3.60 3.67 0.18 0.84 0.79 0.56

Ovaries 0.06 0.07 0.07 0.06 0.01 0.81 0.74 0.16
Fetal mass, % of fetal BW

Liver 3.85 3.72 4.07 3.85 0.08 0.05 0.04 0.62
Heart 0.86 0.86 0.97 0.86 0.04 0.16 0.20 0.19

Intestine 2.15 2.19 2.13 2.25 0.09 0.86 0.34 0.67
Pancreas 0.27 0.21 0.22 0.22 0.04 0.53 0.46 0.37
Hindlimb 6.59 6.52 6.39 5.93 0.27 0.14 0.33 0.46

Femur 0.26 0.32 0.3 0.33 0.02 0.19 0.07 0.42
Brain 3.15 2.95 3.08 2.91 0.15 0.70 0.22 0.90

Ovaries 0.05 0.06 0.06 0.05 0.01 0.68 0.46 0.08
Measurement, cm

Crown rump length 14.36 14.71 14.41 14.57 0.213 0.83 0.24 0.67
Curved crown-rump length 15.49 15.95 15.85 15.74 0.281 0.81 0.53 0.34

Eye diameter 1.29 1.30 1.28 1.38 0.074 0.64 0.46 0.55
Nose to poll 4.95 4.87 4.96 5.07 0.075 0.19 0.85 0.23

Body depth at front shoulder 4.19 4.09 4.16 4.25 0.065 0.38 0.91 0.15
Body depth at umbilicus 3.59 3.53 3.43 3.69 0.077 0.99 0.20 0.06

ab Means within row lacking common superscript differ (p ≤ 0.05). 1 NoVTM: No vitamin and mineral supple-
ment was a pelleted product fed at a 0.45 kg•heifer−1•day−1 with no added vitamin and mineral supplement.
2 VTM: Vitamin mineral supplement was a pelleted product fed at a 0.45 kg•heifer−1•day−1 (consisting of 113 g
of a vitamin and mineral supplement formulated to deliver similar levels of vitamins and minerals that were
fed pre-breeding and 337 g of a carrier). 3 Heifers fed a pelleted blend of ground corn, dried distillers grains
plus solubles, wheat midds, fish oil, urea, and ethoxyquin fed at rate to achieve targeted gain of 0.79 kg/d.
4 NoVTM-LG (n = 9); NoVTM-MG (n = 9); VTM-LG (n = 9); VTM-MG (n = 8).
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Concentrations of glucose and fructose in ALF and AMF were not affected (p ≥ 0.16
and p ≥ 0.27 for glucose and fructose, respectively) by VMSUP, GAIN, or their interaction.
Concentrations of glucose averaged 2.61 ± 0.11 and 2.13 ± 0.04 mmol/L in ALF and AMF,
respectively; while concentrations of fructose averaged 28.61 ± 1.8 and 4.15 ± 0.14 mmol/L
in ALF and AMF, respectively.

4. Discussion

Our model achieved the proposed divergence in targeted daily gains. For example,
gestating heifers fed the protein and energy supplement (MG) were targeted to gain
0.79 kg/d and had an actual ADG of 0.85 kg/d, whereas unsupplemented heifers (LG) were
targeted to gain 0.28 kg/d and had an actual ADG of 0.34 kg/d. We reported that gestating
heifers grown at a moderate rate of gain had increased concentrations of IGF-1 and P4, lower
concentrations of NEFA throughout the experiment, greater CL weight at d 83 of gestation,
and their fetuses had greater fetal femur weight and reduced liver weight (as a percentage
of BW) compared with heifers grown at a lower rate of gain. We did not observe differences
in concentrations of glucose and fructose in fetal fluids in response to maternal treatments;
however, this study demonstrated that providing a vitamin and mineral supplement
during the first trimester of gestation resulted in greater fetal liver weight, whereas the
interaction between vitamin/mineral and protein/energy supplementation resulted in
greater fetal intestinal weight. Findings from this study indicate that response variables
that diverged in the dam were also experienced in some way by the fetus. Our results may
help to understand how maternal nutritional strategies in early pregnancy can alter the
development of organs that are relevant for future offspring performance.

It is well known that levels of metabolic hormones and metabolic factors are regulated
by nutritional status. For example, key responses such as follicular development, oocyte
quality, maternal-embryo recognition, embryo and fetal development, and pregnancy main-
tenance have been shown to be affected by nutrition, body condition, and metabolic status
of beef heifers and cows [32,33]. In the current experiment, moderate rates of gain during
the first 83 d of gestation resulted in larger and heavier CL and greater concentrations of P4
compared to low rates of gain. In a series of four studies involving ultrasonography and
ovarian dissection in beef cows, Rocha et al. [34] reported that CL weight and CL area are
the variables with the greatest correlation with plasma P4 concentrations. Progesterone is
an essential marker of CL activity and plays a critical role on the establishment and mainte-
nance of pregnancy [35]. Further, P4 has a well-established positive role in uterine function
by regulating endometrial secretions essential for stimulating and mediating conceptus
growth [36] and differentiation throughout early pregnancy in ruminants [34,37]. There-
fore, our findings suggest that the increase in maternal P4 concentrations in response to
moderate maternal rates of gain may have improved the uterine environment by potentially
increasing the flow of nutrients, metabolites, and hormones to the fetus.

Additionally, nutritional plane and rates of gain are associated with IGF-1 levels.
Similar to our study, Rodríguez-Sánchez et al. [38] reported that beef heifers fed diets
formulated for high rates of gain (0.8 kg/d) had greater concentrations of plasma IGF-1
than heifers fed to achieve moderate rates of gain (0.6 kg/d). Noya et al. [33] observed
greater concentrations of IGF-1 in beef cows fed 100% of energy requirements during
the first 82 d of gestation compared with cows fed 85% of energy requirements. These
authors further demonstrated a greater negative correlation between concentrations of
NEFA and IGF-1 [33]. Our data show a similar relationship, with MG heifers having greater
concentrations of IGF-1 and reduced NEFA concentrations compared to LG heifers. An
important consideration is that IGF-1 plays a critical role in fetal growth [39], which was
observed in the current experiment as greater femur weight for fetuses from MG heifers.
This finding of an effect on bone growth suggests a potential for enhanced growth of future
offspring from heifers managed at moderate rates of gain compared with low rates of gain.
Investigation beyond the current evaluation period is warranted to determine whether
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effects of maternal rate of gain during the first trimester of gestation has subsequent impacts
on offspring that extend through gestation to birth and later post-natal periods.

The fact that fetal liver mass (as a % of BW) was increased in fetuses from LG heifers
indicates that the liver grew at a greater rate than that of the overall body during the
first 83 d of gestation. Studies investigating fetal hepatic and small intestinal in vitro
oxygen consumption in pregnant ewes, cows, and their fetuses [40–42] have demonstrated
that both dams and fetal offspring during gestation can modulate maintenance energy
requirements in response to nutrient restriction and realimentation. Even though we did
not work with a nutrient restriction model, our treatments were designed to model growth
trajectories of grazing heifers receiving or not receiving protein and energy supplement
during early gestation. Whole-animal or specific tissue oxygen consumption reflects
energy use and mitochondrial function [1]. Thus, our results may be an indication that
compensatory mechanisms are in place in the developing conceptus that can alter the
growth rate of key metabolic organs possibly in an attempt to enhance utilization of
available nutrients. Research is warranted to determine whether alterations in fetal organ
weight extend postnatally, and whether postnatal effects would result in altered postnatal
metabolic phenotype.

An interesting observation was that heifers receiving VTM had reduced concentrations
of NEFA on d 83 compared with heifers not receiving VTM. Leading up to d 83, heifers
were handled 2 additional days for surgical preparation and were fasted for 24 h, and water
was deprived for 12 h before the d 83 sample collection; therefore, the dramatic increase in
NEFA for all heifers on this day was expected. Such stressors may increase the levels of
catecholamines and glucocorticoids that stimulate lipolysis [43]. Perhaps our observation
indicated that the vitamin and mineral supplementation allowed heifers to better cope
with the stresses of handling and fasting. Further, greater NEFA concentration at d 83
of gestation for NoVTM heifers can be interpreted as an indicator of decreased insulin
sensitivity, which is characterized by increased concentrations of circulating insulin [44].
In fact, during this experiment, NoVTM heifers had greater concentrations of insulin
than VTM heifers. It is important to consider that physical and psychological stressors
can result in oxidative stress [45], that compromises cellular integrity, cellular enzymatic
activities, immune response, hormone production, and ultimately can lead to insulin
resistance [46]. Trace minerals, particularly Se, Zn, Mn, Cu, and Cr, along with vitamin
E, are key components of the cellular antioxidant defense. These minerals are cofactors
of enzymatic reactions that consume reactive oxygen species and/or are present in the
structure of enzymes such as glutathione peroxidase and enzymes of the superoxide
dismutase family that play a significant role as scavengers of free radicals, whereas vitamin
E is the first line of defense against peroxidation of vital phospholipids [47]. Thus, it is
possible that the lower concentrations of NEFA and insulin observed in VTM heifers at
d 83 might be a function of these micronutrients attenuating a stress response that was
manifested by 3 consecutive days of heifers being handled in preparation of surgery on
d 83. Future experiments, therefore, should evaluate biomarkers of oxidative stress and
other indicators of stress response to our VTM treatments.

Other novel finding of the present study was the greater fetal liver weight (absolute
weight and as a percentage of BW) of fetuses from VTM heifers, indicating that a vitamin
and mineral supplementation at prebreeding and early gestation play a role in fetal liver
development. Further, we observed that heifers supplemented with vitamins/minerals and
protein/energy presented greater fetal intestinal mass than those receiving a VTM supple-
ment but not supplemented with protein/energy, implying a greater intestinal functional
area. However, small intestine growth and development is affected not only during organo-
genesis, but also during the perinatal and neonatal periods [48]. Therefore, post-natal
evaluation of intestinal morphometry and capacity of nutrient absorption are warranted.

In a previous study [15] we reported increased concentrations of amino acids in mater-
nal serum and ALF of beef heifers at d 83 of gestation in response to VTM supplementation
and rate of gain of 0.79 kg/d. Amino acids, along with glucose and fructose are key
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metabolic fuels to the fetus [3]; therefore, one of the hypotheses of this study was that a
maternal vitamin and mineral supplementation and moderate rates of gain would result
in increased concentrations of glucose and fructose in ALF and AMF. Contrary to what
we expected, no differences were observed in the concentration of the afore mentioned
metabolites. A recent study [2] showed that glucose concentrations tended to be greater
in ALF of heifers fed a control diet (100% of NRC requirements to gain 0.45 kg/d) when
compared to heifers fed a restricted diet (60% of NRC requirements). Further, data from the
same study [2] demonstrate that glucose and fructose concentrations were greater in AMF
of control than restricted heifers. Therefore, we can speculate that the lack of difference
in glucose and fructose concentrations in both ALF and AMF may be due to an adequate
maternal nutrient supply, since the current experiment did not have a nutrient restricted
diet; and it may further be explained by the fact that glucose and fructose concentrations
are interrelated, since production of the later depends on supply of the former.

5. Conclusions

In summary, vitamin/mineral and protein/energy supplementation of pregnant beef
heifers are advantageous as it overcomes potential mineral deficiencies in forage-based
diets and are a solid strategy to achieve targeted production goals for growth and reproduc-
tive performance of commercial beef herds. In addition, results of this study demonstrate
that (1) moderate rates of gain result in heavier fetal femur weight and reduced fetal liver
proportional mass; (2) vitamin and mineral supplementation results in greater fetal liver
absolute and proportional mass; and (3) vitamin and mineral supplementation combined
with moderate rates of gain resulted in greater fetal intestinal mass than VTM supple-
mentation combined with low rates of gain. These preliminary data are interpreted to
imply that fetuses have the ability to alter the growth rate of key metabolic organs in an
attempt to increase or decrease energy utilization. Further research is necessary to study
energy expenditure of fetal tissues, which could result in the development of nutritional
strategies to improve mitochondrial function and the efficiency of energy utilization in the
future offspring.
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