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Abstract
The two non-nucleoside reverse transcriptase inhibitors (NNRTIs), efavirenz (EFV) and nevirapine (NVP), are currently the core
antiretroviral drugs for treatment of HIV in sub-Saharan Africa including Botswana. The drugs are metabolized by Cytochrome P450
2B6 (CYP2B6) liver enzyme. TheCYP2B6 gene that encodes for metabolism of these drugs is known to be highly polymorphic. One
of the polymorphism in the CYP2B6 gene, 516G>T, particularly the 516T allele, is known to confer poor metabolism of EFV and
NVP. This may lead to high levels of plasma drug concentrations and development of treatment toxicities, like central nervous
system toxicities, and cutaneous and hepatic toxicities, for EFV andNVP, respectively. TheCYP2B6 516G allele on the other hand is
associated with an extensive metabolism of the two NNRTIs drugs. We sought to establish association between possible
developments of NNRTIs toxicities with CYP2B6 516G>T variation in Botswana.
A total of 316 peripheral blood mononuclear cells samples were used in a retrospective view. All the samples were from

participants on EFV/NVP-containing regimen with known toxicity output. TaqMan Real-Time PCR approach was applied for
assessing CYP2B6 516 allele variation in cases with treatment toxicity and those without. Analysis was performed by chi-square
statistics and logistic regression analysis.
The rate of poor metabolizers among participants with toxicity and those without toxicity was 18.4% and 15.1%, respectively.

The CYP2B6 516 genotype distribution comparisons between the participants with toxicity and those without were not statistically
different (chi-square= .326; P= .568).
CYP2B6 516 variation was not associated with NNRTI toxicity. No other factors were associated with toxicity when considering

age, baseline bodymass index, baseline CD4, baseline HIV viral load and adherence. The results were discussed in the context of all
the studies done in Botswana to date.
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Abbreviations: ART = antiretroviral therapy, BMI = body mass index, CNS = central nervous system, CYP2B6 = Cytochrome
P450 2B6, EFV = efavirenz, NNRTI = non-nucleoside reverse transcriptase inhibitor, NVP = nevirapine, SNP = single nucleotide
polymorphism.
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1. Introduction

Botswana, with an overall HIV population prevalence of 19.9%
(range: 18.2–21.0) among adults (15–49years)[1] is one of the
countries with the highest HIV prevalence in the world. The non-
nucleoside reverse transcriptase inhibitors (NNRTIs), efavirenz
(EFV), and nevirapine (NVP), still form an important part of
Botswana’s National HIV treatment program, despite the
introduction of dolutegravir as first line antiretroviral therapy
(ART) regimen since June 2016.[2] NNRTIs are still largely used
for HIV treatment in African nations, including Botswana, with
millions of people in Southern Africa still under NNRTI-based
regimen.[3] ART efficacy largely depends on adequate drug
exposure to suppress viral replication and allow immune system
to recover. However, occurrence of drug toxicity, sub-optimal
patient’s compliance, sub-optimal virologic suppression, incom-
plete immune reconstitution, and/or emergence of drug resis-
tance limit therapeutic outcomes. Among the factors that are
capable of influencing EFV and NVP exposure is the variability
in the gene that encodes the cytochrome P450 (CYP) 2B6
enzyme, that metabolizes both drugs. Studies have shown how
Cytochrome P450 2B6 (CYP2B6) polymorphisms influence
the rate of EFV/NVP clearance in plasma.[4–6] However, the
influence of CYP2B6 genotype on EFV/NVP exposure, and
whether it contributes to prolonged detectable EFV/NVP
concentrations, resistance, and toxicities, has not been investi-
gated to a greater extent among Africans.
The CYP2B6 gene is highly polymorphic, with 3 main single

nucleotide polymorphisms (SNPs) (CYP2B6 516 G>T,CYP2B6
983 T>C, and CYP3B6 785 A>G) driving the prediction of
individual metabolic status when combined in composite
genotypes or haplotypes.[6,7] They have been recognized as
the more important gene variations in studies concerning
NNRTI pharmacogenetics. However, most of the predictions
and associations are due to CYP2B6 516 that has been used as
tag SNP for the CYP2B6 gene in many studies.[4–6,8] Concerning
NNRTI pharmacogenetics, CYP2B6 516G>T is known to
confer poor metabolism of EFV, and it is associated with central
nervous system (CNS) toxicity.[8–11] In fact, data from literature
show that some patients taking EFV-containing ART regimen,
especially non-Africans, may experience CNS toxicities (with or
without virologic failure),[4,5,12,13] being lower in patients with
CYP2B6 516GG genotype,[4] and higher among carriers of the
CYP2B6 516T allele variant.[4,5,8,11] Nevertheless, several
studies in African populations found no association of CYP2B6
516G>T polymorphism with CNS toxicities.[4,9,14,15] With
regard to NVP, there is evidence that CYP2B6 516T containing
genotypes (especially TT) are the genetic predictors of cutaneous
or hepatic NVP toxicity[16,17]; in particular, subjects of African
descent with CYP2B6 516TT genotype are more at risk of
cutaneous toxicity to NVP than individuals of other ethnici-
ties.[17]

To our knowledge, there are few studies to date that have been
done in Botswana that looked at NNRTI metabolism (mainly
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EFV) and/or CYP2B6 variation and/or treatment outcomes,
including toxicity.[7,9,12,13,15,18] The prevalence of CYP2B6
516T allele among HIV-infected adults in Botswana has been
first described by Gross et al,[18] being 36.6%. Although the high
prevalence of slow metabolizers taking EFV-based ART, an
unexpected inverse relationship between EFV metabolism and
EFV-related adverse effects was observed in Botswana, with
lower experience of CNS toxicity among slow EFV metabo-
lizers,[15] similarly to what observed in Africans[14] and Afro-
Americans,[4] but differently from Caucasian and Hispanic
patients.[8,11] Another study from Botswana assessing the
association between CYP2B6 516G>T polymorphism and
CNS toxicity among HIV-infected individuals starting EFV-
based ART regimen, showed that EFV extensive metabolizers
(516GG) were reporting more CNS adverse events after 1month
of ART than slow metabolizers (516TT).[9] Thus, some authors
suggest that the CNS toxicity of EFV in African population
might not be the result of super-therapeutic parent EFV
concentrations alone, but rather due to accumulation of 8-
OH-EFV, the main metabolite of EFV generated by
CYP2B6.[9,19] Furthermore, another study from Botswana
showed that EFV-related adverse events may be transient.[19]

According to this study, lower baseline lymphocyte T-CD4
count and depressive symptoms at baseline were associated to
improved patient’s experience of adverse effects over time (from
month 1–month 6), whereas alcohol consumption was associat-
ed with adverse effects of EFV over time,[19] possibly because of
the impairment of the drug’s hepatic metabolism related to
longitudinal alcohol consumption. A subsequent observational
study in Botswana aiming to assess the association between
CYP2B6 polymorphisms and age to loss of care of patients
taking EFV-based ART showed that, among poor metabolizers,
older age was associated with higher risk of loss of care.[20]

Moreover, poor metabolizer patients aged more than 50years
starting EFV-based ART regimen had a 4-fold higher risk of loss
of care compared to intermediate metabolizers, but neuro-
cognitive toxicity was not associated to this risk.[20] Finally, in
patients from Botswana taking EFV-based regimen CYP2B6
516T allele conferred protection against late virologic failure in
those with initial 6-month viral suppression,[13] and CYP2B6
516G allele was associated with a higher risk of NNRTI
resistance mutations.[12]

Therefore, in these studies from Botswana surprisingly
toxicity seems to be associated to the extensive metabolizer
genotype as compared to poor metabolizer genotypes,[9,13,15]

with CYP2B6 516 polymorphism being the main driver of
metabolic status for NNRTIs.[6] Here we aimed to assess if and
how the CYP2B6 516 G>T impacts NNRTI toxicity in a cohort
of Botswana HIV patients where data on drug toxicity and
CYP2B6 516 genotypes were available.[12,21] Understanding any
possible relationship and/or association between individual
genetic make-up and NNRTI toxicity may help to increase
therapeutic efficacy and ultimately reduce the burden of drug
resistance and deaths.
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2. Methods

2.1. Ethics approval and informed consent

The retrospective study was conducted in accordance to the
guidelines of the Declaration of Helsinki and was approved by
the Ethics committee of Health Research Division Office
(HRDC) of the Botswana Ministry of Health and Wellness.
The approval was done in accordance with the amendments
made to the initial permit of “The host genetics of HIV-1 subtype
C infection progression and treatment in Africa/Gwas on
determinants of HIV-1 subtype C infection” [Reference No:
HPDME 13/18/1 X1 (163)].
Informed consent was obtained from all the study participants

involved. In addition, Botswana-Harvard AIDS Institute Part-
nership, as the data-base owner authorized by HRDC, gave
permission to use its data and samples for the current study.
2.2. Sample population and size

A total of 316 peripheral blood mononuclear cells samples were
used fromtheoriginalTshepo study.[21]TheTshepo studywasa3-
year randomized 3�2�2 factorial design comparing tolerability
and efficacy among 3 NRTI combinations (zidovudine+didano-
sine, zidovudine+ lamivudine, and stavudine+ lamivudine), 2
NNRTI combinations (EFV versus NVP), and 2 adherence
strategies.[21] The studyparticipantswereHIVpositive,>18years
ART naïve Botswana citizens. Samples were stored at –80oC after
collection and processing. Treatment related toxicity was defined
as any first incidence (after 5weeks) of grade 3 or 4 adverse
events.[22] In particular, for EFV they were measured: persistent
CNS toxicity, convulsions, hepatotoxicity and cutaneous hyper-
sensitivity reactions, when reaching grade 3 (severe) or grade 4
(potentially life threatening). For NVP, toxicity included:
hepatotoxicity and cutaneous hypersensitivity reactions, when
reaching grade 3 (severe) or grade 4 (potentially life threatening).
Table 2

Genotype and allelic frequency of CYP2B6 516G>T SNP among
study participants.

516G>T

Table 1

Baseline characteristics of the study population.

Characteristics Total

Participants, n (%) 316 (100%)
Females

∗
, n (%) 200 (64.7%)

Males
∗
, n (%) 109 (35.3%)

Mean age (yrs), n (range) 34.4 (29.5–37.4)
Mean BMI (range) 21.5 (19.0–23.3)
Median CD4 T-cells/mL (IQR) 188.8 (142–231.5)
Median viral load, log10 copies/mL (IQR) 3.16 (0.71–5.19)

BMI=body mass index, IQR= interquartile range.
∗
Seven participants did not have gender assigned (309 instead were used for gender analysis).
2.3. DNA extraction and CYP2B6 genotyping

Genomic DNA was extracted using QIAamp DNA Mini Kits
(Qiagen, Hilden, Germany) according to the manufacturer’s
protocol (Qiagen, Hilden, Germany) from about 200mL of
peripheral blood mononuclear cell’s. DNA concentration was
quantified using a Nanodrop spectrophotometer (NanoDrop
1000, Thermo Scientific, MA). Real Time-PCR was performed
usingABI 7500RT-PCRmachine (Applied Biosys-tems,CA). Pre-
designed TaqMan Drug Metabolism (DME) genotyping assays
were used to genotype c.516G>T. The DME genotyping assays
were ordered by part numbers C_7817765_60 (c.516G>T (SNP
ID: rs3745274)) from Life Technologies (Pty) Ltd. Applied
Biosystems (ABI; Applied Biosystems, CA), 96 microwell plates
were filled with reaction mixture of 11.25mL of diluted DNA
extract, 1.25mL of 20X SNP genotyping assay, and 12.5mL of
TaqMan Universal PCR Master Mix, No AmpErase UNG
following the manufacturer’s plate preparation instructions.
Samples were run in duplicates and each run contained several
negative controls (no template) and a reference sample.
Characteristics GG (%) GT (%) TT (%) f(T)

NNRTI toxicity (n=38) 10 (26.3) 21 (55.3) 7 (18.4) 46.1
Non-NNRTI toxicity (n=278) 100 (36.0) 136 (48.0) 42 (15.1) 39.6
Total (n=316) 110 (34.8) 157 (49.6) 49 (15.5) 40.3

f(T)=allele frequency of the T allele.
NNRTI = non-nucleoside reverse transcriptase inhibitor, SNP = single nucleotide polymorphism.
2.4. Data analysis

Arlequin software (v3.5.2.2) was used to test for Hardy–
Weinberg equilibrium. Chi-square was applied for comparing
genotype distribution among cases with toxicity and cases
3

without. Finally, Binary Logistic Regression analysis (run on
IBM SPSS statistical package, version 20) was applied to find any
association between the dependent variable “toxicity” with the
independent variables (baseline CD4+ T-cell count, baseline viral
load, age, body mass index [BMI], and CYP2B6 516 genotype).

3. Results

3.1. Baseline population demographics

Out of 316 samples, 7 had gender information missing (but were
genotyped) andall the other clinical datawere available.The study
population characteristics at baseline were as follows: mean age
34.4years (range: 29.5–37.4);meanBMI21.5 (range: 19.0–23.3);
medianCD4+T-cell count188.8 (interquartile range: 142–231.5);
and median baseline viral load of 3.16 log10copies/mL (inter-
quartile range: 0.71–5.19). Two hundred (200, 64.7%) partic-
ipants were females and 109 (35.3%) were males. Table 1
summarizes the baseline characteristics of the study population.

3.2. CYP2B6 516 genotype, allele frequencies, and NNRTI
toxicity

In a total of 316 patients, 38 (12.0%) developed treatment
toxicity while 278 (88.0%) did not. Of the 38 who developed
toxicities, 10 (26.3%) were EFV/NVP extensive metabolizers
(516GG), 21 (55.3%) were intermediate metabolizers (516GT),
and 7 (18.4%) poor metabolizers (516TT). The occurrence of
adverse events was higher in individuals with 516GG versus
516TT genotype, but the difference was not statistically
significant (X2= .958, P= .328). The rate of poor metabolizers
on those with toxicity and those without was 18.4% (n=7/38)
and 15.1% (n=42/278), respectively. The 516T allele frequency
between cases who developed toxicity and those who did not
was 46.1% (95% CI: 30.3–61.9) and 39.6% (95% CI: 33.9–
45.3), respectively (Table 2). Finally, Binary Logistic Regression
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Table 3

Binary Logistic Regression analysis on the dependent variable
NNRTIs toxicity.

Factors/independent
variables

OR
(95% CI)

Binary Logistic
Regression – P value

Age 1.02 (0.99–1.05) .189
Baseline BMI 1.03 (0.93–1.13) .611
Baseline_CD4 T-cells 1.00 (0.99–1.00) .713
Baseline_RNA_log10 1.00 (1.00–1.00) .298
CYP2B6_516 1.55 (0.89–2.71) .125
Adherence 0.79 (0.39–1.61) .517

BMI=body mass index, NNRTI = non-nucleoside reverse transcriptase inhibitor.
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analysis revealed no effect of the independent variables tested on
NNRTI toxicity (Table 3).
3.3. Hardy–Weinberg equilibrium test

CYP2B6 516 genotypes were in equilibrium in all the groups
analyzed (EFV/NVP-toxicity, EFV/NVP-non-toxicity and both
combined), (X2= .326, P= .568).
4. Discussions

It has been 2 decades since the effect of individuals’ genetic
profiling on the pharmacokinetics and clinical outcome to
NNRTIs, especially EFV and NVP, was explored.[23–26] Studies
done in Botswana have confirmed a high frequency of CYP2B6
516T allele (36.6%–38.1%) in the country.[7,9,12,13,15,18] The
high prevalence of 516T allele has been reported in other sub-
Saharan African settings like Ghana,[27] Malawi,[28] Mozambi-
que,[29] South Africa,[30–34] and Zimbabwe.[35–38]

Our current analysis did not find any association of CYP2B6
516T allele with treatment toxicity in patients taking NNRTIs.
Toxicity seems to be more associated with the extensive
metabolizer genotypes (CYP2B6 516GG) compared to poor
metabolizer genotypes (CYP2B6 516TT),[9] although our study
did not find any statistical significance when different CYP2B6
516 genotypes (GG, GT, TT) were compared by toxicity. Other
factors like age, low BMI, baseline low lymphocyte T-CD4 did
not predict toxicity in this study (Table 3). Drug-to-drug
interactions, depressive symptoms at baseline, longitudinal
alcohol intake, EFV or NVP plasma exposure, and several
uninvestigated factors, which occur with poor CYP2B6
metabolism,[19,20] may contribute to the transient adverse effect
phenomenon, but they were not analyzed in the current study.
Our findings agree with those findings from most studies

conducted in the African region where no association has been
found between poor NNRTI metabolizers (EFV and NVP) and
toxicity, but are in conflict with studies involving Caucasian and
Hispanic populations.[8,11] A potential explanation for these
conflicting findings includes polymorphisms in genes other than
CYP450 mitigating CNS toxicity in people of African ori-
gin.[27,39] It is also possible that there are other unidentified
variants or polymorphisms that code for metabolizing enzymes
unique to the population given the greater genetic variation in
Africa.[40] For example, Radloff et al[40] found several
polymorphisms at CYP2B6 gene in Rwandese individuals which
have not been reported elsewhere outside Africa but critical to be
studied further. Finally, it is worth to note that Botswana
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population has a very high level of genetic admixture that leads
to different phenotypic outcomes, that may be different from
those experienced in other African settings.[7,41]

The main limitations of this study are as follows: the small
sample size; the use of only CYP2B6 516G>T polymorphism as
proxy of NNRTIs metabolism as many other studies, without
considering the possible implication of other SNPs (i.e.,CYP2B6
983T>C); the retrospective nature of the study without a control
group; the lack of NNRTI plasma exposure measurements; the
fact that we pooled together EFV and NVP therapies in the
search for an association with CYP2B6 516G>T polymor-
phisms, not being able for all subject to retrieve the specific
therapeutic regimen but knowing that they were however using
NNRTIs.[21]
5. Conclusions

To summarize, it is apparent in all the studies on poor EFV
metabolizers in Botswana, and in most studies done in the
region,[4,16] that there is a consistent lack of significant
correlation of the 516T allele with NNRTIs toxicities. There
is need for prospective data to determine whether pre-treatment
genotyping can improve therapeutic efficacy and/or reduce
toxicity.[42] More studies are also needed in analyzing the
CYP2B6 variation to determine if it is necessary to switch poor
metabolizers from NNRTI-based ART, balancing efficacy and
toxicity, considering the transient nature of some adverse events
observed. Furthermore, it is also important to better define the
role of EFV/NVP metabolites in the appearance of NNRTI
toxicity.[9]
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