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An integrated computational and experimental study
to investigate Staphylococcus aureus metabolism
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Staphylococcus aureus is a metabolically versatile pathogen that colonizes nearly all organs of the human body. A detailed and
comprehensive knowledge of staphylococcal metabolism is essential to understand its pathogenesis. To this end, we have
reconstructed and experimentally validated an updated and enhanced genome-scale metabolic model of S. aureus
USA300_FPR3757. The model combined genome annotation data, reaction stoichiometry, and regulation information from
biochemical databases and previous strain-specific models. Reactions in the model were checked and fixed to ensure chemical
balance and thermodynamic consistency. To further refine the model, growth assessment of 1920 nonessential mutants from the
Nebraska Transposon Mutant Library was performed, and metabolite excretion profiles of important mutants in carbon and
nitrogen metabolism were determined. The growth and no-growth inconsistencies between the model predictions and in vivo
essentiality data were resolved using extensive manual curation based on optimization-based reconciliation algorithms. Upon
intensive curation and refinements, the model contains 863 metabolic genes, 1379 metabolites (including 1159 unique
metabolites), and 1545 reactions including transport and exchange reactions. To improve the accuracy and predictability of the
model to environmental changes, condition-specific regulation information curated from the existing knowledgebase was
incorporated. These critical additions improved the model performance significantly in capturing gene essentiality, substrate
utilization, and metabolite production capabilities and increased the ability to generate model-based discoveries of therapeutic
significance. Use of this highly curated model will enhance the functional utility of omics data, and therefore, serve as a resource to
support future investigations of S. aureus and to augment staphylococcal research worldwide.
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INTRODUCTION
S. aureus is a versatile human pathogen that has emerged as one
of the most successful infectious agents of recent times, affecting
approximately 20% of the world’s population.1–3 The incidence of
methicillin resistance at low fitness cost has significantly
contributed to the rise in community-associated methicillin
resistant S. aureus (CA-MRSA) infections, which significantly limit
therapeutic options and increase rates of mortality, morbidity and
costs associated with its treatment.1,4,5 This threat to human
health has resulted in a steady interest and focus on under-
standing how staphylococcal metabolism relates to antibiotic
resistance and pathogenesis. A number of studies have attempted
to explore the metabolic aspects of antimicrobial functionality of
MRSA, including nitric oxide metabolism, oxidative stress, carbon
overflow metabolism, redox imbalance etc.6–11 However, a
complete mechanistic understanding of staphylococcal metabo-
lism is still missing, making the identification of therapeutic
targets challenging.
The increase in knowledge of macromolecular structures,

availability of numerous biochemical database resources,
advances in high-throughput genome sequencing, and increase
in computational efficiency have accelerated the use of in silico
methods for metabolic model development and analysis, strain
design, therapeutic target discovery, and drug development.12–17

There have been a number of attempts to reconstruct the
metabolism of multiple strains of S. aureus using semi-automated
methods.18–22 However, the absence of organism-specific

metabolic functions and the inclusion of genes without any
specified reactions still limit the utility of these models. These
models need to be continually refined and updated to accurately
predict biological phenotypes by addressing these issues, as well
as by reducing metabolic network gaps, elemental imbalance, and
missing physiological information. Since the predictive genome-
scale metabolic models of several microorganisms were useful in
performing in silico gene essentiality and synthetic lethality
analyses and yielded promising results in pinpointing metabolic
bottlenecks and potential drug targets,14,23–26 the potential for
accurately modeling S. aureusmetabolism is immense. To this end,
Seif et al. recently developed an updated genome-scale model of
S. aureus strain JE2, incorporated 3D protein structures, evaluated
gene essentiality predictions against experimental physiological
data, and assessed flux distributions in different media types.21

Their model was informed by multilevel omics data and a
significant step toward deciphering the metabolic differences of
this organism under different environmental conditions. Given the
vast knowledgebase of experimental data, incorporation of the
latest strain-specific annotation information, addition of condition-
specific and mutant-specific regulations, and removal of spurious
functions could result in a refined and more useful metabolic
model for S. aureus USA300_FPR3757.
Several other studies have been dedicated to elucidating the

metabolic aspects of staphylococcal virulence and to pinpoint the
key metabolic “hubs” in carbon and nitrogen metabolism.11,27–32

However, a majority of these studies were focused on specific
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segments of staphylococcal metabolism and overlooked a system-
wide interdependence that drives fitness, metabolic robustness,
virulence, and antimicrobial resistance. Hence, a holistic approach
of in silico genome-scale modeling and in vivo experimentation is
crucial for gaining an improved mechanistic understanding of
staphylococcal metabolism, and thereby, facilitating the develop-
ment of novel therapeutic strategies to combat staphylococcal
infections.
In this study, a comprehensive genome-scale metabolic model

of S. aureus USA300_FPR3757, namely iSA863, was reconstructed
using annotation information from biochemical databases33,34 and
previous strain-specific models,19,20,34 and validated through
experimental observations and published phenotypic data. Strain
USA300 FPR3757 is one of the common MRSA strains with
available genome annotation (GenBank accession number
NC_007793.1) and is closely related to the strain JE2 (with only
11 SNPs between these strains).35 The Nebraska Transposon
Mutant Library (NTML)36 was developed for JE2; however, the S.
aureus USA300 FPR3757 chromosomal genome sequence was
used to map transpositions of bursa aurealis into the genome of S.
aureus JE2, since the annotated genome sequence of strain JE2
was not available at that time. Therefore, the modeling framework
took advantage of the existing knowledgebase. The model
underwent extensive manual curation to ensure chemical and
charge balance, thermodynamic consistency, and biomass pre-
cursor production. To test and inform the model, the fitness level
of 1920 mutants from NTML36 was assessed, and the metabolite
excretion profiles of eight important mutants distributed across
several pathways of the carbon and nitrogen metabolism were
measured. The growth-phenotyping results of the NTML mutants
were utilized via GrowMatch procedure37 to reconcile in silico
versus in vivo growth inconsistencies. Upon incorporating
conditional regulations in the model gleaned from existing
“omics” datasets,30,38,39 the predictive capability of the model in
terms of gene essentiality and metabolite excretions in different
environmental conditions was further improved. Furthermore, the
growth predictions from the model on 69 different carbon sources
were validated against the existing growth experiment.21 Overall,
this model is extensively tested by multiple available and newly
developed experimental datasets on staphylococcal metabolism
and subsequently refined to pave a way forward to advance
system-wide analysis of fitness and virulence.

RESULTS
Preliminary reconstruction utilizing the existing knowledgebase
A collection of 1511 metabolic reactions obtained from a
consensus of recently published strain-specific models19,20 was
assembled into a preliminary model of S. aureus. Out of 842 genes
in the latest strain-specific USA300_FPR3757_uid58555 model by
Bosi et al.,19 109 did not have any reactions associated with them,
which were not included in our model at this stage. Checking
reactions from the S. aureus N315 model iSB61920 against the
annotations of strain USA300_FPR3757 in the KEGG database40

resulted in the inclusion of seven unique reactions to the
preliminary model. In addition, every reaction in the model was
verified for correct gene annotations in the NCBI, KEGG, and
UniProt databases and published resources19,21,40–43 to amend the
model with 90 metabolic reactions and annotate 75 reactions with
correct Gene-Protein-Reaction (GPR) rules.
These amendments resulted in a preliminary model that

contained 858 metabolic genes catalyzing 1608 reactions invol-
ving 1499 metabolites. This model included reactions for central
carbon metabolism, secondary biosynthesis pathway, energy and
cofactor metabolism, lipid synthesis, elongation and degradation,
nucleotide metabolism, amino acid biosynthesis, and degradation.
The protocol outlined by Thiele et al. 201044 was followed when

developing the biomass equation according to experimental
measurements of macromolecular composition22 and transcrip-
tomic data45 and the biomass compositions by previous
models.19–21 Biomass precursors that do not have either experi-
mental measurements or any literature evidence of synthesis in S.
aureus were excluded. For example, S. aureus lacks an identifiable
polyamine biosynthetic pathway and therefore cannot produce
putrescine.28,46 In addition, phosphatidylethanolamine is not
produced in S. aureus.47,48 Therefore, these components are not
included in our biomass equation (see Supplementary Data 1 for
the detailed list of the biomass precursors).

Model curation to ensure chemical balance and thermodynamic
consistency
The preliminary reconstruction underwent extensive manual
curation steps as outlined in the “Methods” section. In total, 197
reactions (excluding the biomass reaction, demand, sink, and
exchange reactions) were found to be imbalanced in terms of
proton, carbon, nitrogen, oxygen, or sulfur. Most of these reactions
(i.e.,182 reactions) were fixed for proton imbalance and four
reactions were fixed for imbalance in other elements (see
Supplementary Data 2 for details). Nonetheless, a few mass- and
charge-imbalanced reactions remained in the model, primarily
due to the presence of macromolecules with unspecified “R”-
groups and gaps in knowledge about the correct reaction
mechanisms. These remaining reaction imbalances are common
in published genome-scale metabolic models,49 and given that
the overall stoichiometry of the reactions involving these
macromolecules is correct, these imbalances do not significantly
affect the performance of the model.
In addition to charge and elemental imbalances, the preliminary

model had 291 reaction fluxes unnecessarily hitting the upper or
lower bounds during a Flux Variability Analysis (FVA) when no
nutrients were provided (see the Methods section). Also, the
inconsistent dissipation of ATP and other cofactors, which was
persistent in earlier models,19 also existed in the preliminary
reconstruction. These two phenomena are observed when the
reaction network contains thermodynamically infeasible cycles (as
defined in the Methods section).50 To resolve these cycles, 42
reactions were made irreversible, and four reactions were reversed
in directionality either when thermodynamic information and
literature evidence were available, or the restrictions assumed did
not conflict with any literature evidence but resolved an infeasible
cycle (details in Supplementary Data 3 and Supplementary Figs.
S1–S3). Furthermore, 72 reactions were turned off either due to
their improper annotations or to remove lumped or duplicate
reactions from the model. For example, the irreversible duplicates
for several reactions including acetolactate synthase, aconitase,
phosphoribosylaminoimidazole carboxylase, alcohol-NAD oxidor-
eductase, arginine deiminase, D-ribitol-5-phosphate NAD 2-oxidor-
eductase, glycerate dehydrogenase, methionine synthase, and
ribokinase were removed. Also, based on available cofactor
specificity information,51,52 reactions such as cytidine kinase
(GTP), glycerol-3-phosphate dehydrogenase (NAD), guanylate
kinase (GMP:dATP), and homoserine dehydrogenase (NADH)
were turned off to ensure correct cofactor usage in these
reactions. Reactions involved in polyamine synthesis and degra-
dation were removed due to the lack of convincing evidence of
polyamine metabolism in S. aureus USA300_FPR3757.28,46 After
these manual curation steps, the number of unbounded reactions
(reaction fluxes hitting either the upper or the lower bound
without any nutrient uptake) was reduced to seven. At this step,
the model was checked for erroneous generation of energetic
cofactors and confirmed that it could not produce unlimited
amount of them without any nutrient input, as described by
Zomorrodi and Maranas53 and followed in previous modeling
studies by us54–58 and other groups.59,60
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The annotation of S. aureus USA300_FPR3757 genome in the
KEGG database was next used to bridge several network gaps in
the model. At this stage, the model contained 528 blocked
reactions compared with 784 in the preliminary reconstruction.
While this was a significant improvement, the model still
contained a greater number of blocked reactions than other
similar-sized models.21 The blocked reactions were not removed
at the current stage because they either contained proper gene
annotation information and their terminal dead-end metabolite
was beyond the scope of the model or no convincing evidence
(e.g., high-score annotations) for filling the gap was available. A
detailed list of the corrections and additions/removals made is
given in Supplementary Data 3. The model reconstruction process,
pathway distribution, and overlap of reactions with other S. aureus
models are shown in Fig. 1 and the comparative model statistics
are presented in Table 1. The model is available in systems-biology
markup language format (SBML level 3 version 1 with fbc version 2)
in Dataset 1. Metabolite InChI Keys, elemental formulas, and
metabolite ID mapping to KEGG and Modelseed databases are
included in Supplementary Data 4.

Identifying essential genes from existing knowledgebase
Disagreement regarding gene essentiality was persistent among
existing datasets.18,61–65 For example, our growth evaluation study
of the viable S. aureus mutants from NTML36 found varying
degrees of growth inhibition (see Supplementary Data 5 for
details), while 41 of them were reported to be essential in other
recent studies.18,61–65 Therefore, the set of essential genes was a
consensus of multiple literature sources18,61–65 and our experi-
ments (see Methods and Supplementary Information 1 for details).
Briefly, the common essential gene set (comprising 319 genes)
from transposon mutagenesis followed by growth experiments by
Valentino et al.62 and Chaudhuri et al.64 was considered to be
essential. Of these genes, the 48 mutants, which were viable in our
growth experiment, were filtered out from the consensus, unless
they were reported to be domain-essential genes (explanation in
Supplementary Information 1). Santiago et al.61 demonstrated that
gene essentiality derived from transposon libraries can be affected
by the high temperatures used to remove the plasmid delivery
vehicle and also by the polar effect in disrupting expression of
essential genes in the vicinity of a nonessential gene. Therefore,
following their results, these false-positive genes (30 in total) were
excluded from the essential gene list. Finally, for the modeling
purpose, only the 167 metabolic genes (excluding 74 non-
metabolic genes) present in the model were considered to be
the core set of essential genes in the current study (see
Supplementary Data 6 for the full list of the essential genes).

Model refinement to reconcile growth and no-growth
inconsistencies
Comparison of essential and nonessential genes between the
experimental (in vivo) and model-based (in silico) gene essentiality
analysis (see Methods section for details) showed some disagree-
ments (Fig. 2a). Correct model predictions for nonessential and
essential genes were denoted by GG and NGNG, while wrong
model predictions for nonessential and essential genes were
denoted by NGG and GNG, respectively, in which the first of the
two terms (“G” or “NG”) corresponds to in silico and the second
term refers to in vivo observations. An optimization-based
procedure called Growmatch was used to reconcile the GNG
inconsistencies by suppressing spurious functionalities and the
NGG inconsistencies by adding misannotated functionalities to
the model.37 The overall impact of applying Growmatch is shown
in Fig. 2b. The specificity increased from 52 to 60.5%, the

Fig. 1 The overall view of the model reconstruction. a The
schematic of the reconstruction and curation process for iSA863.
b Pathway distribution of metabolic reactions. c Overlap of reactions
between recent genome-scale metabolic reconstructions of
S. aureus.
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sensitivity increased from 87 to 89%, the false viability rate
decreased from 48 to 39.5%, and the accuracy increased from 80
to 84%. In comparison, the specificity, sensitivity, false viability
rate, and accuracy of iYS85421 could be calculated to be 50.6, 93.2,
49.4, and 85%, respectively (see Supplementary Data 6). To resolve
the NGG inconsistencies, metabolic reactions were added from
highly curated metabolic models66,67 as well as the Modelseed
database.34 A total of five reactions were added to the model, and
three reactions were allowed to go in the reverse direction
based on literature evidence or thermodynamic information
(detailed procedure outlined in Supplementary Information 1),
which reduced the number of NGGs by 12. It should be noted here
that while Growmatch could suggest multiple solutions to fix an
NGG inconsistency68–71, every suggestion needs to be manually
scrutinized and filtered out if it does not have strong literature
suggestion, indicating a possible gap in the genome annotation,
or worsens the thermodynamic infeasibility in the model. Model
predictions of essential genes were further improved upon the
removal of spurious reactions and genes. To this end, six reactions
that did not have either any gene associated with them (orphan
reactions) or proper gene annotations, were removed from the
model, resulting in an 8% reduction in GNGs. In total, 81 of the
GrowMatch predicted resolution strategies were not accepted
because they resulted in conflicts with correct growth (GG) and
no-growth (NGNG) predictions in the model. The details of the
GrowMatch results are presented in Supplementary Data 6.
It was observed that the majority of the GNG inconsistencies fall

in the category of metal ion/proton antiporters and amino-acid-
tRNA ligases, which indicates that non-S. aureus-specific and/or
incorrectly annotated reactions might be present in the network.
Figure 2c shows an example case of GNG inconsistency in the
Pentose Phosphate Pathway, where erroneous reactions were
present in the model. For example, glucose-6-phosphate isomer-
ase and ribulose phosphate-3 epimerase are both essential genes
(green highlighted genes in Fig. 2c) in S. aureus, while they
were predicted to be nonessential by the model. The reason was
the presence of an alternate pathway to convert glucose-6-
phosphate (G6P) to ribulose-5-phosphate (Ru5P) in the model.
Since literature and database searches failed to identify the
presence of phospho-glucono lactonase in S. aureus, it was
removed, and the model was made consistent with experimental
essentiality prediction of glucose-6-phosphate isomerase and
ribulose phosphate-3-epimerase genes. On the other hand, amino
acid synthases, ATP-binding cassettes, and phosphoribosyltrans-
ferases are found among the NGG inconsistencies, which indicate
possible cases for missing annotations. The details of NGG fixes
made in this work can be found in Supplementary Data 6. It
should be noted that attempting to reconcile every GNG and NGG
inconsistency is out of scope of this work and not tractable with
the existing knowledgebase. Since Growmatch solutions are only
preliminary in silico suggestions, these gene functions need to be

further verified by experimentation to enrich our knowledge
about the correct genome annotation and regulatory effects.

Model validation and refinement
An automated procedure like GrowMatch can significantly
improve the gene essentiality predictions in the model. However,
without extensive validation against experimental data and
manual curation, it is difficult to obtain biologically significant
and meaningful prediction capability from the model. Hence, the
model was validated against multiple experimental observations
from previous studies and results obtained in the current work for
further refinements. In this step, conditional regulations, via a
valve approach72 (see the Methods section for details), were
incorporated into the model to achieve biologically meaningful
distribution of fluxes that sharpened the model predictions of
mutant growth phenotype and metabolite excretion behavior. The
full list of regulations can be found in Supplementary Data 7. A
major regulatory system that was incorporated into the model
was the carbon catabolite repression, which is a well-studied
global regulatory process in low-GC Gram-positive bacteria in the
presence of a preferred carbon source (e.g., glucose) that induces
the repression of genes involved in the metabolism of alternative
carbon sources (e.g., amino acids).30,39 In addition, SrrAB and Rex-
dependent transcriptional regulation are prominent driving forces
of metabolic flux through respiratory metabolism that was
integrated into the model.73–75 Furthermore, mutant-specific
repression of respiration, histidine and ornithine metabolism,
and pyruvate metabolism was imposed on the model for the
menD mutant.38 In addition to the repressions mentioned above,
reactions were added and constrained in flux values and
directionalities as part of the refinement process.

Model validation and refinement: growth phenotype study
The essentiality predictions for 29 amino acid catabolic pathway
genes in the model were validated against the mutant growth
phenotypes evaluated in a previous study.29 The mutants were
grown in a chemically defined medium (CDM) supplemented with
18 amino acids but lacking glucose. That study29 found that 11 of
the mutations did not cause any growth defect, while 11
mutations caused intermediate growth defect and seven muta-
tions were lethal. The model failed to recapitulate growth
phenotype for nine (ald1/ald2—aldehyde dehydrogenase, aspA
—aspartate aminotransferase, gltA—citrate synthase, sdhA—
succinate dehydrogenase, sdaAA/sdaAB—serine dehydratase,
ansA—asparaginase, arcA1/arcA2—arginine deiminase, and
rocF— arginase) out of the 29 mutants, which warranted further
investigation and refinements in the relevant pathways in the
model. The gudB mutant did not appear to be an essential gene in
the model simulation because other genes including D-alanine
transaminase (dat) and aspartate transaminase (aspA) could

Table 1. Comparison of model statistics between recent S. aureus metabolic models.

iSB61920 iSAUSA300_FPR375719 iYS85421 iSA863 (this work)

Genes 619 842a 854 863

Reactions 640 1517 1440 1545

Metabolites 571 1431 1327 1379 (1159 internal)

Imbalanced reactionsb – 490 – 0

Blocked reactions 108 (~175) 784 (~52%) 428 (~30%) 528 (~34%)

Unbounded reactions – 291 (~19%) 53 (~19%) 7 (~0.5%)

aIn total, 732 associated with reactions.
bExcluding reactions with unspecified macromolecular formula.
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convert glutamate to alpha-ketoglutarate. Based on information
about kinetic limitation on alanine uptake76 and the experimen-
tally measured uptake values reported by Seif et al.,21 a tighter
constraint on alanine uptake of 0.4 mmol/gDW.h was imposed in
the model, which resulted in a correct prediction of the
essentiality of the gudB gene. The essentiality of sucC and sucA
genes was ensured in the model by rectifying the direction of the
alternate pathway consisting of succinyldiaminopimelate transa-
minase (dapE) and tetrahydrodipicolinate succinylase (dapD). In
addition to that, the TCA cycle reactions converting citrate to
succinyl-CoA were constrained to allow flux toward the forward
direction only. Two of the gaps in the histidine transport pathway
and proline catabolism were filled during the refinement process
to allow for utilization of these alternate carbon sources in the
absence of glucose. Ornithine–putrescine antiport, lactate dehy-
drogenase (ferricytochrome), malic enzyme (NADP), and succinyl-
diaminopimelate transaminase were removed from the model
due to the lack of evidence in S. aureus. Upon these refinements,
the model was able to correctly predict 24 (out of 29) of the
mutant phenotypes, except gltA, acnA, icd, fumC, and rocF
mutants. In comparison, the previous S. aureus model iYS854
failed to predict the growth phenotype for gudB, ald1, ald2, pyc,
argD, and gltA mutants.21 The model refinements in the central
metabolic pathway in terms of correction of reaction direction-
ality, additions, and deletions are shown in Fig. 3.

Model validation and refinement: metabolite excretion profiles of
mutants
In addition to the model refinements mentioned in the preceding
section, we determined the metabolite excretion profiles of eight
mutants during exponential growth (Table 2) in CDM and CDMG
(CDM media with added glucose) media. The mutants considered
were pyc (pyruvate carboxylase), citZ (citrate synthase), sucA (2-
oxoglutarate dehydrogenase), ackA (acetate kinase), gudB (gluta-
mate dehydrogenase), ndhA (NADH dehydrogenase), menD
(menaquinone biosynthesis protein), and atpA (a subunit of
ATPase). These mutants were selected for their potential in
affecting glycolysis, TCA cycle, gluconeogenesis, electron transport
chain (ETC), cellular redox potential, overflow metabolism, and
fitness, as was evident by the growth inhibition of these mutants
in our experiment. In general, supplementation of glucose (CDMG)
as the primary carbon source resulted in the excretion of acetate
as the major by-product in all mutants (Table 2). In CDM, the ackA,
gudB, ndhA, atpA, and menD mutants displayed delayed growth
kinetics (see Supplementary Fig. S4). Acetate remained a major by-
product of strains in CDM due to amino acid deamination, as
evidenced by ammonia excretion (Table 2). As carbon flux through
the ATP-generating Pta–AckA pathway is significant in S.
aureus,11,29 we also observed the excretion of pyruvate and
redirection of 75% of the carbon flux toward acetoin and α-
ketoglutarate in the ackAmutant (Table 2). Mutations that affected
respiration (ndhA and menD) of S. aureus resulted in increased

Fig. 2 Growth–no-growth (G–NG) prediction matrices and the impact of Growmatch application. a Before reconciliation of growth–no-
growth inconsistency by GrowMatch procedure. b After reconciliation of growth–no-growth inconsistency by GrowMatch procedure. Here,
specificity= #NGNG/(#NGNG+ #GNG), sensitivity or true viable rate (TVR)= #GG/(#GG+ #NGG), false viable rate (FVR)= #GNG/(#GNG+
#NGNG), and accuracy= (#GG+ #NGNG)/(#GG+ #GNG+ #NGG+ #NGNG). c A case study of GNG inconsistency and the corresponding
Growmatch solution.

M. Mazharul Islam et al.

5

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2020)     3 



levels of lactate production to maintain cellular redox when grown
in CDMG (Table 2). The disruption of ATP production due to
mutation of atpA was offset by increased acetate production and
glucose consumption. The increased flux of glucose through the

Pta–AckA pathway to generate acetate likely compensated for the
decrease in ATP production due to a faulty ATPase.
Each of the mutants exhibited a deviation of the metabolic flux

space (defined as the range between the minimum and maximum

Fig. 3 Refinements in the central metabolic pathway of the model iSA863. These include corrections of reaction directionality, additions,
and deletions.
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flux through reactions, see the Methods section for details)
compared with the wild-type strain, as illustrated in Fig. 4. The
redistribution of flux dictates how the different mutants excrete
different metabolites. Among the eight mutants, the model-
predicted excretion patterns for acetate and lactate in sucA and
ackA mutants agreed with the experimental results of decreased
excretion in CDMG media, compared with the wild-type strain. The
Pta–AckA pathway is known to supply a major portion of the ATP
required for growth.27 With the atpA gene turned off in the model,
Pta–AckA pathway supplied most of the ATP demand, which
increased the acetate production in CDMG media for the atpA
mutant compared with the wild type. In CDMG media, the model-
predicted excretion profile for urea in all the mutants matched
with the experimental observations. In CDM media, the model
predictions of higher urea excretion compared with the wild-type
strain agreed with the experimental observations for pyc,
gudB, ndhA, and menD mutants. Similar to the experimental
results, excretion of ammonia was predicted by the model in all
mutants when glucose was absent (CDM media). These correct
predictions can be attributed to the deamination of the amino
acids consumed in CDM media when the cell adapts to amino
acids due to CcpA-mediated control of amino acid metabolism.
The Rex and SrrAB repression on central carbon metabolism
allowed the model to correctly simulate the oxygen deprivation in
the model, which, in turn, resulted in correct predictions of
decreased acetate excretion by the ndhA mutant in both CDM and
CDMG media. Rex and SrrAB-mediated repression of pyruvate
formate lyase (PFLr), alcohol dehydrogenase (ACALD, ALDD2x),
and other pathways downstream of pyruvate shifted carbon flux
away from the acetate production. At the same time, the flux
space for lactate dehydrogenase (LDH) widened, which allowed
for more lactate excretion in the CDMG media. Mutant-specific

regulations and refinements also improved the model’s predictive
capacity for menD and pyc mutants, which are discussed in detail
in Supplementary Information 1. Incorporation of condition-
specific and mutant-specific regulations were important to
capture the biologically meaningful phenotypic behavior, which
is evident from the observation that the unregulated model could
only predict approximately 10 out of 24 cases in CDMG and 16 out
of 24 cases in CDM media, while incorporation of those
regulations resulted in 18 out of 24 correct predictions in CDMG
and 20 out of 24 correct predictions in CDM media.
While the incorporation of the CcpA, Rex, and SrrAB regulations

was critical in capturing the physiological behavior of S. aureus by
the model, it should be noted that there are still gaps in our
knowledge about the quantitative repression effect on the
reaction fluxes in the presence of these regulators. To explore
the quantitative effect of repression on the mutant phenotypes,
different levels of repression (10, 25, 50, and 90% of the maximum
wild-type flux space) were imposed on the model, and metabolite
excretion behavior was observed (data not shown). The different
levels of repression showed varied degrees of agreement with
experimental observation, with the 50% of the wild-type cutoff
preforming the best overall. However, there were specific cases
when the 50% cutoff was not highly predictive. For example, in
CDMG media, ammonia production was not predicted in the
menD, atpA, and sucA mutants by the model with a 50% cutoff,
which was observed experimentally. Upon further investigation, it
was observed that relaxing the repressions (to 90% of the wild-
type flux space), the discrepancies were removed. In addition, a
stronger repression effect (10–25% of wild type) on the reactions
downstream of pyruvate redirected a portion of the carbon flux to
acetolactate and resulted in acetoin excretion, which was not
observed with a more relaxed (50–90% of wild-type) repression

Table 2. Metabolite excretion rates of multiple S. aureus mutants with altered carbon and nitrogen metabolism in CDMG and CDM culture
supernatants (μM/OD600/h).

Strain A-KG Pyruvate Lactate Acetate Acetoin Glucosea Urea Ammonia

CDMG media

WT 10 ± 1 ─ 150 ± 10 1120 ± 50 1 ± 1 3070 ± 164 60 ± 37 20 ± 22

ackA 20 ± 3 150 ± 18 80 ± 9 330 ± 13 170 ± 10 2070 ± 440 70 ± 38 ─
sucA 10 ± 0 ─ 150 ± 12 1110 ± 32 1 ± 2 3520 ± 142 120 ± 5 160 ± 284

gudB 10 ± 0 ─ 140 ± 2 1120 ± 63 ─ 3400 ± 275 70 ± 70 ─
ndhA 10 ± 1 ─ 500 ± 13 620 ± 19 ─ 2240 ± 140 20 ± 19 ─
citZ 10 ± 0 ─ 120 ± 11 1250 ± 9 4 ± 6 3750 ± 199 30 ± 58 ─
pyc ─ ─ 140 ± 10 1220 ± 96 ─ 3320 ± 99 20 ± 34 ─
atpA 10 ± 9 10 ± 13 185 ± 13 1760 ± 16 ─ 2000 ± 627 ─ 10 ± 17

menD ─ 2 ± 4 1300 ± 152 30 ± 59 ─ 500 ± 68 16 ± 22 65 ± 90

CDM media

WT 1 ± 2 ─ ─ 300 ± 15 ─ ─ ─ 790 ± 22

ackA 10 ± 2 ─ ─ ─ ─ ─ 20 ± 19 520 ± 141

sucA 170 ± 3 ─ ─ 290 ± 6 ─ ─ 20 ± 18 570 ± 132

gudB ─ ─ ─ 210 ± 14 1 ± 1 ─ 20 ± 25 420 ± 74

ndhA ─ ─ ─ ─ ─ ─ ─ 710 ± 55

citZ ─ ─ ─ 670 ± 11 1 ± 2 ─ ─ 850 ± 97

pyc ─ ─ ─ ─ ─ ─ 10 ± 9 680 ± 76

atpA ─ ─ ─ ─ ─ ─ 40 ± 14 630 ± 8

menDb ─ ─ ─ ─ ─ ─ ─ ─

Not measured.
aRate of glucose consumption.
bNot determined due to lack of growth of menD mutant in this media.
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effect. In CDMG media, the citZ mutant correctly predicted the
excretion pattern of acetate, because with the reduced flux space
for the TCA cycle reactions, more carbon could be directed to the
Pta–AckA pathway. However, in the CDM media, when amino
acids were the primary source of carbon, deletion of the citZ gene
did change the model-predicted flux space in the Pta–AckA
pathway, and hence could not capture the decrease in acetate
excretion rate. The reason for these inconsistencies could be either
the lack of a complete understanding of the regulatory processes
that affects the relationship between amino acid catabolism, urea
cycle, TCA cycle, and pyruvate metabolism, or the inherent
nonlinearity that exists between gene expressions and flux levels

in some cases (i.e., a limitation of any regulation-incorporating
methods in a metabolic model72), and therefore, warrants further
investigation.

Model validation and refinement: carbon catabolism capacity
In order to further test the accuracy of the model, the growth-
predictive capability of the model was validated against a recent
study of carbon source utilization by S. aureus strain USA300-
TCH1516 by Seif et al.21 Out of the 69 carbon sources tested, the
authors observed growth on 53 metabolites and no growth on 16
metabolites in their BIOLOG experiment. Our model correctly

Fig. 4 Shifts in flux space for 8 mutants in the central carbon and nitrogen metabolic pathway. Every row in the table (inset) denotes a
reaction as identified in the pathway map. The relative shifts compared with the wild-type flux space are color-coded according to the legend
in the figure.
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predicted growth on 41 and no growth on 12 of the carbon
sources, and falsely predicted growth on four and no growth on
12 carbon sources (see Supplementary Data 8 for details). In
comparison, iYS854 correctly predicted growth on 42 and no
growth on five of the carbon sources, and falsely predicted growth
on 11 and no growth on 11 carbon sources. Overall, our model
achieved a specificity of 75%, a precision of 91%, and an accuracy
of 77%, which in general are either at par with or better than
previously developed models,21 and further demonstrates the
improved predictive capability of this new model.

DISCUSSION
In the current study, an updated and comprehensive genome-
scale metabolic model of the methicillin-resistant human patho-
gen S. aureus USA300_FPR3757 was reconstructed from the
previous strain-specific models,19–21 amended using annotations
based on KEGG database,40 and refined and validated based on
published and new experimental results. Strain USA300 FPR3757 is
one of the common MRSA strains with available genome
annotation (GenBank accession number NC_007793.1) and is
closely related to the strain JE2.35 While the Nebraska Transposon
Mutant Library36 was developed for JE2, the S. aureus USA300
FPR3757 chromosomal genome sequence was used to map
transpositions of bursa aurealis into the genome of S. aureus JE2,
since the annotated genome sequence of strain JE2 was not
available at that time. Therefore, we chose to utilize the existing
knowledgebase. Reactions were examined and fixed to ensure
chemical and charge balance and thermodynamic consistencies.
The extensive manual curation performed on the preliminary
reconstruction resulted in improved prediction capabilities and
successful capture of experimentally observed metabolic traits. All
these demonstrate the necessity of exhaustive manual scrutiny
and rectification of automated reconstructions. Further experi-
mental results from gene essentiality, mutant growth, and
metabolite excretion studies enabled high-resolution model
refinements to further enhance the predictive capabilities of the
model. The final genome-scale metabolic reconstruction (iSA863)
is therefore a product of the series of automated and manual
curation steps.
Our growth evaluation experiment revealed varying degrees of

growth inhibition of the NTML mutants compared with the wild-
type strain and identified subtle disagreements in gene essenti-
ality predictions of other studies.18,61–65 Therefore, the true set of
essential genes required further scrutiny, which is why, as a
conservative estimate, we used a consensus set of essential genes
by utilizing the existing knowledgebase and our own experi-
mental findings (more details in Supplementary Information 1).
Moreover, several mutants compromised in growth could be
found in all the different methods, which did not appear to inhibit
growth significantly during model simulations. Instead, the model
either predicted growth at full capacity or became completely
growth-inhibited. This phenomenon suggests that the model has
degeneracy in the flux space that may compensate for lost
functionality by redirecting or shifting metabolic fluxes. This issue
calls for a more rigorous study of the regulatory influences and
necessitates further future studies in enzymatic efficiencies and
kinetics associated with important metabolic pathways. The
growth and no-growth analysis and the resolution of inconsis-
tencies between in silico growth predictions and in vivo results
using the Growmatch algorithm37,77 further reinforces the
importance of the iterative procedure of model refinement using
experimental observations.
The growth-phenotyping studies of mutations in the amino acid

catabolic pathway29 revealed shifts in S. aureus metabolism in the
absence of a preferred carbon source and elucidated the extent of
carbon catabolic repression, which allowed us to make necessary
amendments to the model in terms of correction of reaction

directionality, removal, and addition of reactions, and specifying
cofactor utilization across the central metabolic pathway (see Fig.
3 for details). The change in media components (CDM vs. CDMG)
resulted in a significant redistribution of metabolic flux in the
model, as was evident from the shifts in flux space for different
mutants in the carbon and nitrogen metabolic pathways. These
shifts predicted how inactivation and/or repression of TCA cycle,
respiration, electron transport, and ATP generation could impact
the cellular redox balance, metabolite production, and fitness.
While the model predictions for acetate and lactate production in
the ackA and sucA mutants and ammonia and urea production in
ackA, pyc, gudB, ndhA, and menD mutants matched with
experimental results, other mutants showed deviations in their
metabolite excretion behavior. The prediction capability of the
model was improved upon the addition of regulatory information
obtained from existing “omics” datasets.30,38,39 For example,
incorporation of Rex and SrrAB regulation caused repression on
pyruvate metabolism and alcohol dehydrogenase pathways,
which resulted in correct predictions of acetate excretion by the
ndhA mutant in both CDM and CDMG media, and by the citZ and
pyc mutants in CDMG media. Moreover, imposing mutant-specific
repressions was critical to achieve predictive results for the acetate
and lactate excretion in the menD mutant and ammonia and urea
excretion in the atpA mutant. However, the current knowledge of
the regulatory landscape in S. aureus or the inherent limitation of
existing regulation-incorporating methods is not sufficient to
explain some of the inconsistent metabolite production trends in
the remainder of the mutants, thus, warranting the need for
further investigation. Although the model performed reasonably
well in predicting growth on different nutrient sources, the current
discrepancies are mostly due to the lack of knowledge of either
synthesis routes for several biomass precursors (when it failed to
produce biomass on a few carbon sources such as formate, lysine,
methionine, and valine) or potential redundancies/missing regula-
tions in the model (when it erroneously showed biomass
production on several amino acids such as alanine, proline, and
threonine).
S. aureus remains a significant threat to human health, which

drives a growing number of studies toward understanding how
staphylococcal metabolism relates to antibiotic resistance and
pathogenesis. Very few studies have addressed these interrela-
tionships from a systems-biology perspective, which requires a
predictive in silico metabolic model capable of capturing the
biochemical features of the pathogen. This work addresses these
gaps through the development of a detailed metabolic model
informed not only from existing resources, such as the NTML, in
silico genome sequences, annotation databases, and theoretical
metabolic stoichiometry but also from our own experimental
studies on mutant fitness, gene essentiality, and metabolite
excretion profile. The results presented in this work demonstrate
the predictive capacity of the new genome-scale metabolic
reconstruction of S. aureus USA300_FPR3757, iSA863, in different
environments, utilizing different substrates, and with perturbed
genetic contents, which paves the way for a mechanistic
understanding of S. aureus metabolism. This latest genome-scale
model of S. aureus demonstrates high performance in capturing
gene essentiality, mutant phenotype, and substrate utilization
behavior observed in experiments. However, the accuracy and
prediction capability, as well as the ability to generate model-
based drug-target discoveries, can be further enhanced by
incorporating extensively vetted flux measurements, quantitative
proteomics, and kinetic measurements of metabolic intermedi-
ates. The development of a more accurate systems-level metabolic
model for S. aureus will have a tremendous impact on future
scientific discoveries and will be a valuable resource shared
among the staphylococcal research community for the identifica-
tion and implementation of intervention strategies that are
successful against a wide range of pathogenic strains.
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METHODS
Preliminary model reconstruction and flux balance analysis
The primary reaction set was obtained from the genome-scale metabolic
reconstruction of S. aureus USA300_FPR3757 by Bosi et al.19 Reactions from
the S. aureus N315 model iSB61920 were checked against annotations of S.
aureus USA300_FPR3757 based on the KEGG database40 and merged with
the reaction set to get the preliminary model. Flux balance analysis
(FBA)78–80 was employed during model testing, validation, and analyzing
flux distributions at different stages of the study. For performing FBA, the
reconstruction was represented in a mathematical form of stoichiometric
coefficients (known as stoichiometric matrix or S-matrix), where each
column represents a metabolite and each row signifies a reaction. In
addition to the mass balance constraints,81 environmental constraints
based on nutrient availability, the relational constraint of reaction rates
with concentrations of metabolites, and thermodynamic constraints were
imposed as necessary. The effects of gene expressions were incorporated
as regulatory constraints on the model as the cell adapted to a change in
media or gene knockouts.82 The non-growth-associated ATP maintenance
demand was estimated to be 5.00mmol/gDCW.h in CDM media and
7.91mmol/gDCW.h in CDMG media in this study, according to the
established protocol in the absence of chemostat growth data.44 In CDMG
media, glucose uptake rate was limited to 10mmol/gDW.h with other
nutrients set to be in excess (see Supplementary Data 9 for details). In CDM
media, glucose uptake rate was set to zero.

Rectification of reaction imbalances
To ensure that each of the reactions in the model is chemically balanced,
the metabolite formula and the stoichiometry of the reactions were
checked against biochemical databases.34,40,83,84 For balancing the
reactions imbalanced in protons, the protonation state consistent with
the reaction set in the preliminary model was checked, and additions/
deletions of one or multiple protons or water on either the reactant or the
product side were performed. For the other elements, correct stoichio-
metry was incorporated into the S-matrix. Reactions with the unspecified
macromolecule formula were not rectified.

Identification and elimination of thermodynamically infeasible
cycles
One of the limitations of constraint-based genome-scale models is that the
mass balance constraints only describe the net accumulation or
consumption of metabolites, without restricting the individual reaction
fluxes. Therefore, they have an inherent tendency to ignore the loop low
for electric circuits, which states that there can be no flow through a closed
loop in any network at steady state.50 While biochemical conversion cycles
like TCA or urea cycle are ubiquitous in a metabolic network model, there
can be cycles that do not have any net consumption or production of any
metabolite. Therefore, the overall thermodynamic driving force of these
cycles is zero, implying that no net flux can flow around these cycles.50 It is
important to identify and eliminate these thermodynamically infeasible
cycles (TICs) to achieve sensible and realistic metabolic flux distributions.
To identify thermodynamically infeasible cycles in the model, all the

nutrient uptakes to the cell were turned off, and an optimization
formulation called Flux Variability Analysis (FVA) was used.85 FVA
maximizes and minimizes each of the reaction fluxes subject to mass
balance, environmental, and any artificial (i.e., biomass threshold)
constraints.85 The reaction fluxes which hit either the lower or upper
bounds, are defined as unbounded reactions, and were grouped as a linear
combination of the null basis of their stoichiometric matrix. These groups
are indicative of possible thermodynamically infeasible cycles.53 To
eliminate/destroy the cycles, duplicate reactions were removed, lumped
reactions were turned off, or reactions were selectively turned on/off based
on available cofactor specificity information (see Supplementary Informa-
tion 1 for details).

Simulation software
The General Algebraic Modeling System (GAMS) version 24.7.4 with IBM
CPLEX solver was used to run FBA and FVA, estimate gene essentiality,
calculate metabolite excretion, and run Growmatch algorithm on the
model. For each of the algorithms, the required optimization algorithm
was scripted in GAMS and then run on a Linux-based high-performance
cluster computing system at the University of Nebraska-Lincoln. The model
was parsed from Systems-Biology Markup Language (SBML) level 3 version

1 document using standard programming languages (i.e., Python) to
generate the input files required by GAMS.

Evaluation of growth profiles of mutants in NTML
Pre-cultures of wild-type and isogenic transposon mutant strains were
grown overnight aerobically in 384-well plates containing 100 μL of Tryptic
Soy Broth (TSB)/well with 14mM glucose. The overnight cultures (1 μL)
were seeded into a fresh 384-well plate containing TSB (100 μL/well) using
a solid 384-pin tool (V & P Scientific) and cultured for 24 h at 37 °C under
maximum agitation in a TECAN microplate reader. Preculture ODs were not
specifically standardized due to the large number of mutants in this
collection. Growth was monitored by recording the optical density (OD600)
of cultures for 24 h at 30-min intervals. The area under the growth curve
(AUC) was calculated as a measure of growth for each strain and used for
comparative analyses.

Gene essentiality analyses
Metabolic robustness of an organism in the event of genetic manipulations
is attributed to the essentiality of the respective gene(s) under a specific
nutrient medium or regulatory condition.24 In any metabolic reconstruc-
tion, there are either missing necessary functionalities in the model or
erroneous pathways present in the model, mainly due to missing or wrong
annotation information. To identify these inconsistencies in the model, in
silico essential and nonessential genes were identified by turning off the
reaction(s) catalyzed by the gene following the Boolean logic of the Gene-
Protein-Reaction (GPR) relationships and estimating growth as a result of
the deletion. Isozymes (i.e., proteins/genes with an “OR” relationship) for
essential reactions are not considered as essential, and for reactions
catalyzed by proteins with multiple subunits (i.e., proteins/genes with an
“AND” relationship), each gene responsible for each subunit is considered
essential. A mutant was classified as lethal if its growth rate is below a
preset threshold. Essential genes with the threshold values of 1, 10, 25, and
50% of the wild-type growth rate were estimated. A 1 or 10% threshold did
not have any difference in the number of essential genes, and following
conventions37,56 used in the community, the 10% threshold was used in
this study.
In vivo essential genes were curated from multiple sources,18,61–65 as

explained in detail in Supplementary Information 1. Most of the essential
genes were determined by randomly inserting transposons into S. aureus
and excluding mutations that remained after growing the cells.61,62,64 An
adaptation of data from multiple sources using antisense RNA was also
used to determine essential enzymes and thus essential genes through the
Boolean relationships.18,63,65 Genes reported to be essential in any source
were considered essential unless there was evidence suggesting other-
wise.18,61–65 There were three types of positive evidence. First, mutants
obtained from Nebraska’s Transposon Mutant Library36,86 were not
considered essential unless it was found to be domain-essential.61 This is
because the transposon may have inserted in a nonessential part of the
gene, allowing a partially functional protein to be formed. Second, if the
gene was found to be essential at only 43 °C, then it is evident that the
gene was incorrectly found to be essential in literature because of a high-
temperature plasmid-curing step in the processes used in the other
literature sources.61 Third, if the gene was found to be essential using a
promoterless transposon insert, but not with promoter-containing
methodologies, then the gene is upstream of an essential gene, and
other sources found it to be essential due to polar effects that disrupt
expression.61 The step-by-step methodology used in determining core
essential gene set is illustrated in Supplementary Fig. S5.
Out of the consensus set of the essential genes, 167 metabolic genes

that are present in the iSA863 metabolic model were considered for further
model refinements. The results of the in silico growth estimation were
compared with these experimental evidences, and the genes were
classified based on the matches and mismatches between in silico and
in vivo results. Correct model predictions for nonessential and essential
genes are denoted by GG and NGNG, while wrong model predictions for
nonessential and essential genes are denoted by NGG and GNG,
respectively. GNG inconsistencies imply that the metabolic model
erroneously contains reactions that complement for the lost gene function.
In contrast, NGG inconsistencies are generally indicative of missing or poor
annotations in the model.
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Using GrowMatch to resolve growth and no-growth
inconsistencies
To resolve the growth and no-growth inconsistencies in the model, an
automated procedure called GrowMatch was used.37 GrowMatch tries to
reconcile GNG predictions by suppressing spurious functionalities that
were mistakenly included in the model and NGG predictions by adding
missing functionalities to the model while maintaining the already-
identified correct growth and no-growth predictions.37 Every suggested
GrowMatch modification was filtered for the resolution of conflict
following the procedure of Henry et al. in 2009.67 Details of these cases
can be found in Supplementary Data 6.

Determination of metabolite excretion profiles of mutants
Chemically defined media (CDM) was prepared as previously described by
Hussain, Hastings, and White87 with minor modifications to amino acid
content. Amino acids were diluted to final concentrations in the media from
working stocks, as described by Vitko and Richardson.88 Briefly, the media
contained the following components: Na2HPO4.2H2O, 10 g/L; KH2PO4, 3 g/L;
MgSO4.7H2O, 0.5 g/L biotin, 0.1mg/L; nicotinic acid, 2mg/L; D-pantothenic
acid Ca salt, 2mg/L; pyridoxal, 4mg/L; pyridoxamine dihydrochloride, 4mg/L;
riboflavin, 2mg/L; thiamin hydrochloride, 2mg/L; adenine sulfate, 20mg/L;
guanine hydrochloride, 20mg/L; CaCl2.6H2O, 10mg/L; MnSO4, 5mg/L;
(NH4)2SO4.FeSO4.6H2O, 6mg/L. The individual amino acids were diluted
100-fold into CDM from stock solutions prepared as follows: L-aspartic acid,
15 g/L in 1 N HCl; L-alanine, 10 g/L in dH2O; L-arginine, 10 g/L in 1 N HCl; L-
cystine, 5 g/L in 1 N HCl; glycine, 10 g/L in dH2O; L-glutamic acid, 15 g/L in 1 N
HCl; L-histidine, 10 g/L in 1 N HCl; L-isoleucine, 15 g/L in 1M NH4OH; L-lysine,
10 g/L in 1 N HCl; L-leucine, 15 g/L in 1 N HCl; L-methionine, 10 g/L in 1 N HCl;
L-phenylalanine, 10 g/L in 1M NH4OH; L-proline, 15 g/L in dH2O; L-serine,
10 g/L in dH2O; L-threonine, 15 g/L in dH2O; L-tryptophan, 10 g/L in 1 N HCl; L-
tyrosine, 10 g/L in 1 N HCl; L-valine, 15 g/L in dH2O. In all, 2.5 g/L glucose was
added for CDMG media. Cultures were cultivated in 250-ml flasks with a 10:1
flask:volume ratio and aerated at 250 rpm at 37 °C. To determine the
metabolite excretion profile of various strains, cell-free culture supernatants
were analyzed by HPLC for multiple weak acids, acetoin, and sugars as
previously described. Briefly, the analysis was performed isocratically at
0.5mL/min and 65 °C using a Biorad Aminex HPX-87H cation exchange
column with 0.13 N H2SO4 as the mobile phase. The peaks corresponding to
various metabolites were identified by their retention time obtained by using
genuine standards. Absolute concentrations were determined from calibra-
tion curves specific to each metabolite. The excretion rates were calculated
from the concentration values at two time points (0 and 3 h), and normalizing
the slope against the difference in optical densities corresponding to those
time points (data not shown). Ammonia and urea were measured using a kit
(R-biopharm) according to the manufacturer’s protocol. Since the metabolite
excretion rates are semiquantitative due to only two data points being
considered, a qualitative comparison approach between model predictions
and experimental measurements was employed in this work.

Incorporation of regulation in the model
Regulation information for S. aureus in terms of differential expression of
genes or high/low abundance of the corresponding proteins was
accumulated from multiple sources as listed in Supplementary Data 7.
While there were numerous frameworks developed to regulated metabolic
flux in a genome-scale model previously,72 our condition-specific and
mutant-specific repressions were incorporated using a “valve” approach
similar to several other researchers.89,90 Gene-Protein-Reaction (GPR)
Boolean relationships for each of the genes were used to determine the
corresponding reactions to be regulated in model simulations in different
conditions. If a reaction in catalyzed by multiple isozymes, the reaction was
only suppressed if all the isozymes were downregulated in a certain
condition. For a reaction catalyzed by multiple subunit proteins, it was
suppressed if any of the genes responsible for a subunit was down-
regulated. To simulate the condition- and mutant-specific repressions, the
allowable flux ranges were limited to a fraction of their maximum wild-
type flux range. To assess the effect of the level of repression, we
performed a sensitivity analysis using the repression effect simulating 10,
25, 50, and 90% of maximum wild-type flux space.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
All data generated or analyzed during this study are included in this published article
and its supplementary information files.

CODE AVAILABILITY
All computer codes used to analyze data during this study are available at a public
github repository at https://doi.org/10.5281/zenodo.3518501 under GNU General
Public License v3.0.

Received: 14 May 2019; Accepted: 19 December 2019;

REFERENCES
1. Klevens, R. M. et al. Invasive methicillin-resistant Staphylococcus aureus infections

in the United States. J. Am. Med. Assoc. 298, 1763–1771 (2007).
2. Kluytmans, J., van Belkum, A. & Verbrugh, H. Nasal carriage of Staphylococcus

aureus: epidemiology, underlying mechanisms, and associated risks. Clin. Micro-
biol Rev. 10, 505–520 (1997).

3. Diekema, D. J. et al. Survey of infections due to Staphylococcus species: fre-
quency of occurrence and antimicrobial susceptibility of isolates collected in the
United States, Canada, Latin America, Europe, and the Western Pacific region for
the SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin. Infect. Dis. 32,
S114–S132 (2001).

4. Simons, H. & Alcabes, P. A model for surveillance of methicillin-resistant Sta-
phylococcus aureus. Public Health Rep. 123, 21–29 (2008).

5. Wertheim, H. F. et al. The role of nasal carriage in Staphylococcus aureus infec-
tions. Lancet Infect. Dis. 5, 751–762 (2005).

6. Chaudhari, S. S. et al. Nitrite derived from endogenous bacterial nitric oxide
synthase activity promotes aerobic respiration. Mbio 8, https://doi.org/10.1128/
mBio.00887-17 (2017).

7. Gusarov, I., Shatalin, K., Starodubtseva, M. & Nudler, E. Endogenous nitric oxide
protects bacteria against a wide spectrum of antibiotics. Science 325, 1380–1384
(2009).

8. van Sorge, N. M. et al. Methicillin-resistant Staphylococcus aureus bacterial nitric-
oxide synthase affects antibiotic sensitivity and skin abscess development. J. Biol.
Chem. 288, 6417–6426 (2013).

9. Sapp, A. M. et al. Contribution of the nos-pdt operon to virulence phenotypes in
methicillin-sensitive Staphylococcus aureus. PLoS ONE 9, e108868 (2014).

10. Richardson, A. R., Libby, S. J. & Fang, F. C. A nitric oxide-inducible lactate dehy-
drogenase enables Staphylococcus aureus to resist innate immunity. Science 319,
1672–1676 (2008).

11. Marshall, D. D., Sadykov, M. R., Thomas, V. C., Bayles, K. W. & Powers, R. Redox
imbalance underlies the fitness defect associated with inactivation of the Pta-
AckA pathway in Staphylococcus aureus. J. Proteome Res. 15, 1205–1212 (2016).

12. Raskevicius, V. et al. Genome scale metabolic models as tools for drug design and
personalized medicine. PLoS ONE 13, e0190636 (2018).

13. Bordel, S. Constraint based modeling of metabolism allows finding metabolic
cancer hallmarks and identifying personalized therapeutic windows. Oncotarget
9, 19716–19729 (2018).

14. Zhang, C. & Hua, Q. Applications of genome-scale metabolic models in bio-
technology and systems. Med. Front. Physiol. 6, 413 (2015).

15. Dunphy, L. J. & Papin, J. A. Biomedical applications of genome-scale metabolic
network reconstructions of human pathogens. Curr. Opin. Biotechnol. 51, 70–79
(2017).

16. Agren, R. et al. Identification of anticancer drugs for hepatocellular carcinoma
through personalized genome-scale metabolic modeling. Mol. Syst. Biol. 10, 721
(2014).

17. Mienda, B. S., Salihu, R., Adamu, A. & Idris, S. Genome-scale metabolic models as
platforms for identification of novel genes as antimicrobial drug targets. Future
Microbiol. 13, 455–467 (2018).

18. Lee, D. S. et al. Comparative genome-scale metabolic reconstruction and flux
balance analysis of multiple Staphylococcus aureus genomes identify novel
antimicrobial drug targets. J. Bacteriol. 191, 4015–4024 (2009).

19. Bosi, E. et al. Comparative genome-scale modelling of Staphylococcus aureus
strains identifies strain-specific metabolic capabilities linked to pathogenicity.
Proc. Natl Acad. Sci. USA 113, E3801–E3809 (2016).

20. Becker, S. A. & Palsson, B. O. Genome-scale reconstruction of the metabolic
network in Staphylococcus aureus N315: an initial draft to the two-dimensional
annotation. BMC Microbiol. 5, 8 (2005).

21. Seif, Y. et al. A computational knowledge-base elucidates the response of Sta-
phylococcus aureus to different media types. PLoS Comput. Biol. 15, e1006644
(2019).

M. Mazharul Islam et al.

11

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2020)     3 

https://doi.org/10.5281/zenodo.3518501
https://doi.org/10.1128/mBio.00887-17
https://doi.org/10.1128/mBio.00887-17


22. Heinemann, M., Kummel, A., Ruinatscha, R. & Panke, S. In silico genome-scale
reconstruction and validation of the Staphylococcus aureus metabolic network.
Biotechnol. Bioeng. 92, 850–864 (2005).

23. Joyce, A. R. & Palsson, B. O. Predicting gene essentiality using genome-scale in
silico models. Methods Mol. Biol. 416, 433–457 (2008).

24. Suthers, P. F., Zomorrodi, A. & Maranas, C. D. Genome-scale gene/reaction
essentiality and synthetic lethality analysis. Mol. Syst. Biol. 5, 301 (2009).

25. Kim, T. Y., Kim, H. U. & Lee, S. Y. Metabolite-centric approaches for the discovery
of antibacterials using genome-scale metabolic networks. Metab. Eng. 12,
105–111 (2010).

26. Schiebel, J. et al. Staphylococcus aureus FabI: inhibition, substrate recognition,
and potential implications for in vivo essentiality. Structure 20, 802–813 (2012).

27. Sadykov, M. R. et al. Inactivation of the Pta-AckA pathway causes cell death in
Staphylococcus aureus. J. Bacteriol. 195, 3035–3044 (2013).

28. Harper, L. et al. Staphylococcus aureus responds to the central metabolite pyr-
uvate to regulate virulence. Mbio 9, e02272–17 (2018).

29. Halsey, C. R. et al. Amino acid catabolism in staphylococcus aureus and the
function of carbon catabolite repression. Mbio 8, https://doi.org/10.1128/
mBio.01434-16 (2017).

30. Leiba, J. et al. A novel mode of regulation of the Staphylococcus aureus catabolite
control protein A (CcpA) mediated by Stk1 protein phosphorylation. J. Biol. Chem.
287, 43607–43619 (2012).

31. Thomas, V. C. et al. A central role for carbon-overflow pathways in the modula-
tion of bacterial cell death. PLoS Pathog. 10, e1004205 (2014).

32. Richardson, A. R. Virulence and metabolism. Microbiol Spectr 7, https://doi.org/
10.1128/microbiolspec.GPP3-0011-2018 (2019).

33. Arkin, A. P. et al. KBase: The United States department of energy systems biology
knowledgebase. Nat. Biotechnol. 36, 566–569 (2018).

34. Henry, C. S. et al. High-throughput generation, optimization and analysis of
genome-scale metabolic models. Nat. Biotechnol. 28, 977–982 (2010).

35. Kennedy, A. D. et al. Epidemic community-associated methicillin-resistant Sta-
phylococcus aureus: recent clonal expansion and diversification. Proc. Natl Acad.
Sci. USA 105, 1327–1332 (2008).

36. Fey, P. D. et al. A genetic resource for rapid and comprehensive phenotype
screening of nonessential Staphylococcus aureus genes. Mbio 4, e00537–00512
(2013).

37. Kumar, V. S. & Maranas, C. D. GrowMatch: an automated method for reconciling
in silico/in vivo growth predictions. PLoS Comput. Biol. 5, e1000308 (2009).

38. Kohler, C. et al. A defect in menadione biosynthesis induces global changes in
gene expression in Staphylococcus aureus. J. Bacteriol. 190, 6351–6364 (2008).

39. Seidl, K. et al. Effect of a glucose impulse on the CcpA regulon in Staphylococcus
aureus. BMC Microbiol. 9, 95 (2009).

40. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic
Acids Res. 28, 27–30 (2000).

41. Coordinators, N. R. Database resources of the National Center for Biotechnology
Information. Nucleic Acids Res. https://doi.org/10.1093/nar/gkx1095 (2017).

42. UniProt, C. The Universal Protein Resource (UniProt). Nucleic Acids Res. 35,
D193–D197 (2007).

43. Fuchs, S. et al. AureoWiki The repository of the Staphylococcus aureus research
and annotation community. Int. J. Med. Microbiol. 308, 558–568 (2018).

44. Thiele, I. & Palsson, B. O. A protocol for generating a high-quality genome-scale
metabolic reconstruction. Nat. Protoc. 5, 93–121 (2010).

45. Carvalho, S. M., de Jong, A., Kloosterman, T. G., Kuipers, O. P. & Saraiva, L. M. The
Staphylococcus aureus alpha-Acetolactate Synthase ALS Confers Resistance to
Nitrosative Stress. Front. Microbiol. 8, 1273 (2017).

46. Joshi, G. S., Spontak, J. S., Klapper, D. G. & Richardson, A. R. Arginine catabolic
mobile element encoded speG abrogates the unique hypersensitivity of Sta-
phylococcus aureus to exogenous polyamines. Mol. Microbiol. 82, 9–20 (2011).

47. Oku, Y., Kurokawa, K., Ichihashi, N. & Sekimizu, K. Characterization of the Sta-
phylococcus aureus mprF gene, involved in lysinylation of phosphatidylglycerol.
Microbiology 150, 45–51 (2004).

48. Sohlenkamp, C. & Geiger, O. Bacterial membrane lipids: diversity in structures and
pathways. FEMS Microbiol. Rev. 40, 133–159 (2016).

49. Chan, S. H. J., Cai, J., Wang, L., Simons-Senftle, M. N. & Maranas, C. D. Standar-
dizing biomass reactions and ensuring complete mass balance in genome-scale
metabolic models. Bioinformatics 33, 3603–3609 (2017).

50. Schellenberger, J., Lewis, N. E. & Palsson, B. O. Elimination of thermodynamically
infeasible loops in steady-state metabolic models. Biophys. J. 100, 544–553
(2011).

51. Girish, T. S., Navratna, V. & Gopal, B. Structure and nucleotide specificity of Sta-
phylococcus aureus dihydrodipicolinate reductase (DapB). FEBS Lett. 585,
2561–2567 (2011).

52. Lord, D. M., Baran, A. U., Wood, T. K., Peti, W. & Page, R. BdcA, a protein important
for Escherichia coli biofilm dispersal, is a short-chain dehydrogenase/reductase
that binds specifically to NADPH. PLoS ONE 9, e105751 (2014).

53. Maranas, C. & Zomorrodi, A. Optimization methods in metabolic networks. (Wiley,
2016).

54. Alsiyabi, A., Immethun, C. M. & Saha, R. Modeling the interplay between photo-
synthesis, CO2 fixation, and the quinone pool in a purple non-sulfur bacterium.
Sci. Rep. 9, 12638 (2019).

55. Islam, M. M., Fernando, S. C. & Saha, R. Metabolic modeling elucidates the
transactions in the rumen microbiome and the shifts upon virome interactions.
Front. Microbiol. 10, https://doi.org/10.3389/fmicb.2019.02412 (2019).

56. Saha, R. et al. Reconstruction and comparison of the metabolic potential of
cyanobacteria Cyanothece sp. ATCC 51142 and Synechocystis sp. PCC 6803. PLoS
ONE 7, e48285 (2012).

57. Saha, R., Suthers, P. F. & Maranas, C. D. Zea mays iRS1563: a comprehensive
genome-scale metabolic reconstruction of maize metabolism. PLoS ONE 6,
e21784 (2011).

58. Simons, M. et al. Assessing the metabolic impact of nitrogen availability using a
compartmentalized maize leaf genome-scale model. Plant Physiol. 166,
1659–1674 (2014).

59. Sarkar, D., Mueller, T. J., Liu, D., Pakrasi, H. B. & Maranas, C. D. A diurnal flux
balance model of Synechocystis sp. PCC 6803 metabolism. PLoS Comput. Biol. 15,
e1006692 (2019).

60. Chan, S. H. J., Wang, L., Dash, S. & Maranas, C. D. Accelerating flux balance
calculations in genome-scale metabolic models by localizing the application of
loopless constraints. Bioinformatics 34, 4248–4255 (2018).

61. Santiago, M. et al. A new platform for ultra-high density Staphylococcus aureus
transposon libraries. BMC Genomics 16, 252 (2015).

62. Valentino, M. D. et al. Genes contributing to Staphylococcus aureus fitness in
abscess- and infection-related ecologies. Mbio 5, e01729–01714 (2014).

63. Forsyth, R. A. et al. A genome-wide strategy for the identification of essential
genes in Staphylococcus aureus. Mol. Microbiol. 43, 1387–1400 (2002).

64. Chaudhuri, R. R. et al. Comprehensive identification of essential Staphylococcus
aureus genes using Transposon-Mediated Differential Hybridisation (TMDH). BMC
Genomics 10, 291 (2009).

65. Ji, Y. D. et al. Identification of critical staphylococcal genes using conditional
phenotypes generated by antisense RNA. Science 293, 2266–2269 (2001).

66. Feist, A. M. et al. A genome-scale metabolic reconstruction for Escherichia coli K-
12 MG1655 that accounts for 1260 ORFs and thermodynamic information. Mol.
Syst. Biol. 3, 121 (2007).

67. Henry, C. S., Zinner, J. F., Cohoon, M. P. & Stevens, R. L. iBsu1103: a new genome-
scale metabolic model of Bacillus subtilis based on SEED annotations. Genome
Biol. 10, R69 (2009).

68. Jayasekera, M. M., Saribas, A. S. & Viola, R. E. Enhancement of catalytic activity by
gene truncation: activation of L-aspartase from Escherichia coli. Biochem. Biophys.
Res. Commun. 238, 411–414 (1997).

69. Paulsen, J. & Hustedt, H. Extractive purification of aspartase from Escherichia coli
K12. Methods Enzymol. 228, 590–599 (1994).

70. Whiteman, P., Marks, C. & Freese, E. The sodium effect of Bacillus subtilis growth
on aspartate. J. Gen. Microbiol. 119, 493–504 (1980).

71. El-Gebali, S. et al. The Pfam protein families database in 2019. Nucleic acids Res.
47, D427–D432 (2019).

72. Saha, R., Chowdhury, A. & Maranas, C. D. Recent advances in the reconstruction of
metabolic models and integration of omics data. Curr. Opin. Biotechnol. 29, 39–45
(2014).

73. Kinkel, T. L., Roux, C. M., Dunman, P. M. & Fang, F. C. The Staphylococcus aureus
SrrAB two-component system promotes resistance to nitrosative stress and
hypoxia. Mbio 4, e00696–00613 (2013).

74. Pagels, M. et al. Redox sensing by a Rex-family repressor is involved in the
regulation of anaerobic gene expression in Staphylococcus aureus. Mol. Microbiol.
76, 1142–1161 (2010).

75. Liu, X. et al. Redox-sensing regulator Rex regulates aerobic metabolism, mor-
phological differentiation, and avermectin production in Streptomyces avermi-
tilis. Sci. Rep. 7, 44567 (2017).

76. Piperno, J. R. & Oxender, D. L. Amino acid transport systems in Escherichia coli K-
12. J. Biol. Chem. 243, 5914–5920 (1968).

77. Zomorrodi, A. R. & Maranas, C. D. Improving the iMM904 S. cerevisiae meta-
bolic model using essentiality and synthetic lethality data. BMC Syst. Biol. 4, 178
(2010).

78. Varma, A. & Palsson, B. O. Metabolic capabilities of Escherichia coli: I. synthesis of
biosynthetic precursors and cofactors. J. Theor. Biol. 165, 477–502 (1993).

79. Varma, A. & Palsson, B. O. Stoichiometric flux balance models quantitatively
predict growth and metabolic by-product secretion in wild-type Escherichia coli
W3110. Appl. Environ. Microbiol. 60, 3724–3731 (1994).

80. Oberhardt, M. A., Chavali, A. K. & Papin, J. A. Flux balance analysis: interrogating
genome-scale metabolic networks. Methods Mol. Biol. 500, 61–80 (2009).

81. Orth, J. D., Thiele, I. & Palsson, B. O. What is flux balance analysis? Nat. Biotechnol.
28, 245–248 (2010).

M. Mazharul Islam et al.

12

npj Systems Biology and Applications (2020)     3 Published in partnership with the Systems Biology Institute

https://doi.org/10.1128/mBio.01434-16
https://doi.org/10.1128/mBio.01434-16
https://doi.org/10.1128/microbiolspec.GPP3-0011-2018
https://doi.org/10.1128/microbiolspec.GPP3-0011-2018
https://doi.org/10.1093/nar/gkx1095
https://doi.org/10.3389/fmicb.2019.02412


82. Terzer, M., Maynard, N. D., Covert, M. W. & Stelling, J. Genome-scale metabolic
networks. Wiley Interdiscip. Rev. Syst. Biol. Med. 1, 285–297 (2009).

83. Pence, H. E. & Williams, A. ChemSpider: an online chemical information resource.
J. Chem. Educ. 87, 1123–1124 (2010).

84. Schellenberger, J., Park, J. O., Conrad, T. M. & Palsson, B. O. BiGG: a Biochemical
Genetic and Genomic knowledgebase of large scale metabolic reconstructions.
BMC Bioinform. 11, 213 (2010).

85. Mahadevan, R. & Schilling, C. H. The effects of alternate optimal solutions in
constraint-based genome-scale metabolic models. Metab. Eng. 5, https://doi.org/
10.1016/j.ymben.2003.09.002 (2003).

86. Bae, T., Glass, E. M., Schneewind, O. & Missiakas, D. Generating a collection of
insertion mutations in the Staphylococcus aureus genome using bursa aurealis.
Methods Mol. Biol. 416, 103–116 (2008).

87. Hussain, M., Hastings, J. G. & White, P. J. A chemically defined medium for slime
production by coagulase-negative staphylococci. J. Med. Microbiol. 34, 143–147
(1991).

88. Vitko, N. P. & Richardson, A. R. Laboratory maintenance of methicillin-resistant
Staphylococcus aureus (MRSA). Curr. Protoc. Microbiol. 9, https://doi.org/10.1002/
9780471729259.mc09c02s28 (2013).

89. Colijn, C. et al. Interpreting expression data with metabolic flux models: pre-
dicting Mycobacterium tuberculosis mycolic acid production. PLoS Comput. Biol.
5, e1000489 (2009).

90. Chandrasekaran, S. & Price, N. D. Probabilistic integrative modeling of genome-
scale metabolic and regulatory networks in Escherichia coli and Mycobacterium
tuberculosis. Proc. Natl Acad. Sci. USA 107, 17845–17850 (2010).

ACKNOWLEDGEMENTS
This work was supported by the Nebraska Systems Science Initiative Seed Grant [WBS#
21-3209-0013] to R.S., V.C.T., K.W.B. and P.D.F.; NIH/NIAID P01AI083211 to K.W.B., V.C.T.
and P.D.F.; NIH/NIAID R01AI125588 to V.C.T.

AUTHOR CONTRIBUTIONS
R.S., V.C.T., P.D.F., and K.W.B. conceived the study. R.S. and V.C.T supervised the study. V.
C.T., J.S.A., A.A.A., and C.Z. performed and analyzed the in vivo studies. M.M.I. performed
the in silico experiments and analyses. M.V.B. and M.M.I. developed the required

software programs, models, and graphics. M.M.I., M.V.B., R.S., and V.C.T. wrote the paper.
All authors have reviewed and approved the submission of the paper.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information is available for this paper at https://doi.org/10.1038/
s41540-019-0122-3.

Correspondence and requests for materials should be addressed to V.C.T. or R.S.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2020

M. Mazharul Islam et al.

13

Published in partnership with the Systems Biology Institute npj Systems Biology and Applications (2020)     3 

https://doi.org/10.1016/j.ymben.2003.09.002
https://doi.org/10.1016/j.ymben.2003.09.002
https://doi.org/10.1002/9780471729259.mc09c02s28
https://doi.org/10.1002/9780471729259.mc09c02s28
https://doi.org/10.1038/s41540-019-0122-3
https://doi.org/10.1038/s41540-019-0122-3
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	An integrated computational and experimental study to�investigate Staphylococcus aureus metabolism
	Introduction
	Results
	Preliminary reconstruction utilizing the existing knowledgebase
	Model curation to ensure chemical balance and thermodynamic consistency
	Identifying essential genes from existing knowledgebase
	Model refinement to reconcile growth and no-growth inconsistencies
	Model validation and refinement
	Model validation and refinement: growth phenotype study
	Model validation and refinement: metabolite excretion profiles of mutants
	Model validation and refinement: carbon catabolism capacity

	Discussion
	Methods
	Preliminary model reconstruction and flux balance analysis
	Rectification of reaction imbalances
	Identification and elimination of thermodynamically infeasible cycles
	Simulation software
	Evaluation of growth profiles of mutants in NTML
	Gene essentiality analyses
	Using GrowMatch to resolve growth and no-growth inconsistencies
	Determination of metabolite excretion profiles of mutants
	Incorporation of regulation in the model
	Reporting summary

	References
	References
	References
	Acknowledgements
	Author contributions
	Competing interests
	ADDITIONAL INFORMATION




