
cells

Review

Major Depression: One Brain, One Disease, One Set of
Intertwined Processes

Elena V. Filatova * , Maria I. Shadrina and Petr A. Slominsky

����������
�������

Citation: Filatova, E.V.; Shadrina,

M.I.; Slominsky, P.A. Major

Depression: One Brain, One Disease,

One Set of Intertwined Processes.

Cells 2021, 10, 1283. https://doi.org/

10.3390/cells10061283

Academic Editors:

Agata Faron-Górecka and

Marta Dziedzicka-Wasylewska

Received: 20 April 2021

Accepted: 19 May 2021

Published: 21 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Institute of Molecular Genetics of National Research Centre ”Kurchatov Institute”, 123182 Moscow, Russia;
shadrina@img.msk.ru (M.I.S.); slomin@img.msk.ru (P.A.S.)
* Correspondence: FilatovaEV@img.msk.ru; Tel.: +7-499-196-02-24

Abstract: Major depressive disorder (MDD) is a heterogeneous disease affecting one out of five
individuals and is the leading cause of disability worldwide. Presently, MDD is considered a
multifactorial disease with various causes such as genetic susceptibility, stress, and other pathological
processes. Multiple studies allowed the formulation of several theories attempting to describe the
development of MDD. However, none of these hypotheses are comprehensive because none of them
can explain all cases, mechanisms, and symptoms of MDD. Nevertheless, all of these theories share
some common pathways, which lead us to believe that these hypotheses depict several pieces of the
same big puzzle. Therefore, in this review, we provide a brief description of these theories and their
strengths and weaknesses in an attempt to highlight the common mechanisms and relationships of
all major theories of depression and combine them together to present the current overall picture.
The analysis of all hypotheses suggests that there is interdependence between all the brain structures
and various substances involved in the pathogenesis of MDD, which could be not entirely universal,
but can affect all of the brain regions, to one degree or another, depending on the triggering factor,
which, in turn, could explain the different subtypes of MDD.

Keywords: major depressive disorder; theories of depression; common mechanisms; etiology;
pathogenesis

1. Introduction

Major depressive disorder (MDD) is a heterogeneous disease that affects one out
of five individuals in their lifetime and is the leading cause of disability worldwide [1].
The symptoms of MDD are associated with structural and neurochemical deficits in the
corticolimbic brain regions [2–4]. The behavioral symptoms of depression are extensive,
covering emotional, motivational, cognitive, and physiological domains [4], and include
anhedonia, aberrant reward-associated perception, and memory alterations.

Presently, MDD is considered a multifactorial disease with various causes and triggers
such as genetic susceptibility, stress, and other pathological processes such as inflammation.
For example, in some cases, genetic factors can promote or even trigger the occurrence
of depression [5–9]. Some mutations and polymorphisms can affect the response of re-
ceptors to neurotransmitters or biologically active substances [5,10–13], which, in turn,
could affect the resistance of the brain’s chemical balance to stressors. However, it is not
yet fully elucidated as to which genes or regions of nuclear or mitochondrial DNA or
which types of genetic changes, alone or in combination, can represent reliable genetic
markers of depression [14]. Furthermore, the lack of consistent and reproducible findings in
genome-wide association studies for MDD can at least partly be explained by the fact that
relevant genetic variants confer an increased risk only in the presence of exposure to stres-
sors and other adverse environmental circumstances, i.e., the so-called gene-environment
interaction [15–17]. In addition, genetic effects are not likely stronger than environmental
stressors [15]. Nevertheless, exposure to traumatic or repeated psychosocial and envi-
ronmental stressors clearly can increase vulnerability to MDD or even cause depressive
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symptoms in humans [18–21]. MDD can be spontaneous but often follows a traumatic
emotional experience or can be a symptom of other diseases, most often neurological (e.g.,
stroke, multiple sclerosis, or Parkinson disease) or endocrine (e.g., Cushing’s disease and
hypothyroidism) [22]. MDD can also be triggered or precipitated by pharmacological
agents or drug abuse [23]. These factors may influence both the overall risk of illness and
sensitivity of individuals to environmental adversities. However, in general, the precise
causes and mechanisms involved in the etiopathogenesis of MDD are not fully understood.

Numerous studies have been devoted to investigating the causes of depression from
the point of view of psychology and psychiatry. Several models of depression have been
proposed [24–30], making a tremendous impact on the psychotherapy of MDD. Most of
them were brilliantly reviewed elsewhere [31] and a unified model of depression has been
proposed in an attempt to combine the “clinical, cognitive, biological, and evolutionary”
aspects of the disease [32].

However, to date, the greatest contribution to the understanding of the pathogenetic
mechanisms of MDD has been made by physiological, biochemical, and pharmacological
studies. These studies allowed the formulation of several theories that attempt to describe
the development of MDD on biochemical, cellular, anatomical, and physiological levels.
Such theories include the monoamine hypothesis [33–36], the stress-induced depression hy-
pothesis [37], the cytokine hypothesis [38–43], the neuroinflammation and neuroplasticity
hypothesis [18,44–51], the GABA-glutamate-mediated depression hypothesis [44,52–57],
the circadian hypothesis of depression [6,58–61], and the cholinergic-monoaminergic inter-
action theory [62–64]. Each hypothesis has its strengths and weaknesses, but they cannot
consider and fully describe all the processes and symptoms of MDD (Table 1). Nevertheless,
these theories share some common pathways, which lead us to believe that these hypothe-
ses depict several pieces of the same big puzzle. Therefore, in this review, we provide a
brief description of all these theories and their strengths and weaknesses in an attempt
to highlight the common mechanisms and relationships of all major theories of depres-
sion and combine them together to present the current overall picture of etiopathogenesis
of MDD.

Table 1. The major theories of depression.

Theory Probable Cause Structures Involved
Neuro-Transmitters

and BAS, Which
Levels Are Altered

Weaknesses of
Theory

The monoamine
hypothesis [65]

Genetic vulnerability;
stress;

environmental
vulnerability

Am (BNST a); DPFC,
VOPFC a; LC; RN;

Hipp
NA a; 5-HT a; CRF a

Not all causes and
symptoms are

explained

The hypothesis of
stress-induced
depression [66]

Stress;
genetic susceptibility

HT (SCN a; PVN a);
pituitary gland; adrenal

glands; Am (BNST);
DPFC, VOPFC; Hipp

CRF a; cortisol; AVP a;
ACTH a; Oxn a; BDNF

a

Does not explain all
cases; there is no single

mechanism that
explains all alterations

in HPA axis

The inflamma-
tion/cytokine

hypothesis [39]

Stress;
inflammation;

genetic susceptibility

HT (SCN; PVN);
pituitary gland; adrenal

glands; Am (BNST);
DPFC, VOPFC; Hipp
(microglia activation);

LC; RN

pCk a; cCk a; CRF;
cortisol; AVP;

ACTH; 5-HT; NA;
BDNF

Does not explain all
cases
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Table 1. Cont.

Theory Probable Cause Structures Involved
Neuro-Transmitters

and BAS, Which
Levels Are Altered

Weaknesses of
Theory

The neurotrophic
hypothesis [67]

Stress;
inflammation;

genetic susceptibility

Hipp; PFC; HT (SCN;
PVN); pituitary gland;

adrenal glands; Am
(BNST); LC

cCk; Glu a; GABA a;
CRF; cortisol; AVP;
ACTH; NA; 5-HT;

BDNF

Does not explain all
cases; does not provide
adequate mechanism of
the development of the

disease

The GABA-glutamate-
mediated hypothesis

[56]

Genetic susceptibility;
environmental
vulnerability;

possibly stress

DPFC, VOPFC; LC;
RN; Am (BNST); Hipp Glu; GABA; 5-HT; NA

Does not explain causes
of the disease; does not

provide adequate
mechanism of the

development of the
disease

The circadian
hypothesis [68]

Stress;
continuously

altered/irregular
diurnal cycle;

possibly evening
chronotype;

genetic susceptibility

HT (SCN; PVN);
pituitary gland; adrenal

glands; Am (BNST);
DPFC, VOPFC; Hipp;

LC; RN

Oxn; possibly
melatonin; CRF;

cortisol; AVP; ACTH;
5-HT; NA

Does not explain all
cases; the primary

cause is unclear

a AVP—arginine-vasopressin; ACTH—adrenocorticotropin hormone; Am—amygdala; BAS—biologically active substances; BDNF—brain-
derived neurotrophic factor; BNST—bed nuclei stria terminalis; DPFC—dorsal prefrontal cortex; GABA—gamma-aminobutyric acid;
Glu—glutamate; Hipp—hippocampus; HT—hypothalamus; NA—noradrenalin; 5-HT—serotonin; CRF—corticoliberin; LC—locus ceruleus;
RN—raphe nucleus; SCN—suprachiasmatic nucleus; PVN—paraventricular nucleus; Oxn—orexin; pCk—peripheral pro-inflammatory
cytokines; cCk—central pro-inflammatory cytokines; VOPFC—ventral and orbital prefrontal cortex. The common structures and neuro-
transmitters and BAS are given in bold.

2. The Monoamine Hypothesis

According to the monoamine hypothesis, depressive symptoms [69] occur as a result of
altered levels of monoamine neurotransmitters 5-hydroxytryptamine (5-HT)/serotonin [33,70],
noradrenaline (NA) [33,71,72], and/or dopamine (DA) [8,73–75] (Figure 1). This hypothesis
was developed on the basis of multiple evidence that antidepressant therapies increase the
neurotransmission tone of one or more of these neurotransmitters [65]. However, several stud-
ies demonstrated that the abrupt decrease in the synthesis of 5-HT, DA, or both did not lead to
depression in healthy individuals. These findings indicated that concentrations of serotonin
higher than a certain threshold are requisite for selective serotonin reuptake inhibitors (SSRIs)
in order to be effective antidepressants, leading to the belief that a pronounced depletion of
monoamines is not sufficient to cause depression in healthy adults [65,76].

However, this hypothesis does not explain the causes and all of the symptoms of
depression, the delayed response to drug therapy, and why antidepressants can only
achieve remission, but not complete recovery.

Moreover, there is no clear evidence for one transmitter being central to the etiology
of depression. Numerous data suggest that monoamine neurotransmitters are not the only
biologically active substances involved in MDD etiopathogenesis [22,77].
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Figure 1. The monoamine hypothesis: main brain structures, neurotransmitters, biologically active 
substances, and interactions. BDNF—brain-derived neurotrophic factor; BNST—bed nuclei stria 
terminalis; CRF—corticotropin-releasing factor; DA—dopamine; DPFC—dorsal prefrontal cortex; 
Glu—glutamine; GABA—gamma-aminobutyric acid; HiN—histamine; Hipp—hippocampus; 
HT—hypothalamus; 5-HT—serotonin; LC—locus ceruleus; NA—noradrenaline; NAc—nucleus 
accumbens; Oxn—orexin; SCN—suprachiasmatic nucleus; TMN—tuberomammilar nucleus; RN—
raphe nucleus; PVN—paraventricular nucleus; VOPFC—ventral and orbital prefrontal cortex; 
VTA—ventral tegmental area; -> (arrow): activating effect; -<> (rhombus): a black rhombus—in-
hibitory effect; thick line—effect is increased; thin line—effect is decreased; medium thickness 
line—effect is not changed, or alterations of the effect are unknown; red line—noradrenaline effect; 
blue line—serotonin effect; black line—various neurotransmitters or neuropeptides. 
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3. The Hypothesis of Stress-Induced Depression 
The hypothesis of stress-induced depression was the first hypothesis that aimed to 

explain the possible causes of MDD, which were not clarified by the monoamine hypoth-
esis. This theory postulates that the disorder could be causes by chronic stress, and the 
subsequent malfunctioning of the hypothalamic–pituitary–adrenal (HPA) axis, which is 
one of the most studied pathological pathways of the pathogenesis of depression [78] (Fig-
ure 2). However, the impact of stress depends on the type of the stressing factor, its dura-
tion, its genetic background, and its history of life [79]. It is believed that a prolonged and 

Figure 1. The monoamine hypothesis: main brain structures, neurotransmitters, biologically ac-
tive substances, and interactions. BDNF—brain-derived neurotrophic factor; BNST—bed nuclei
stria terminalis; CRF—corticotropin-releasing factor; DA—dopamine; DPFC—dorsal prefrontal cor-
tex; Glu—glutamine; GABA—gamma-aminobutyric acid; HiN—histamine; Hipp—hippocampus;
HT—hypothalamus; 5-HT—serotonin; LC—locus ceruleus; NA—noradrenaline; NAc—nucleus
accumbens; Oxn—orexin; SCN—suprachiasmatic nucleus; TMN—tuberomammilar nucleus; RN—
raphe nucleus; PVN—paraventricular nucleus; VOPFC—ventral and orbital prefrontal cortex; VTA—
ventral tegmental area; -> (arrow): activating effect; -<> (rhombus): a black rhombus—inhibitory
effect; thick line—effect is increased; thin line—effect is decreased; medium thickness line—effect
is not changed, or alterations of the effect are unknown; red line—noradrenaline effect; blue line—
serotonin effect; black line—various neurotransmitters or neuropeptides.

3. The Hypothesis of Stress-Induced Depression

The hypothesis of stress-induced depression was the first hypothesis that aimed to
explain the possible causes of MDD, which were not clarified by the monoamine hypoth-
esis. This theory postulates that the disorder could be causes by chronic stress, and the
subsequent malfunctioning of the hypothalamic–pituitary–adrenal (HPA) axis, which is
one of the most studied pathological pathways of the pathogenesis of depression [78]
(Figure 2). However, the impact of stress depends on the type of the stressing factor, its
duration, its genetic background, and its history of life [79]. It is believed that a prolonged
and moderate impact of stress could be more dangerous, especially multiple everyday
unpredictable disturbing incidents, compared with a single strong stressful impact. It is
impossible to adapt to these mild stressful incidents, which continuously stimulate the
defense and adaptation mechanisms, leading to their subsequent exhaustion.
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renal gland in Figure 2, is a key player in those mechanisms [80] and causes the secretion 
of glucocorticoid hormones, whose function is to provide adaptation to stressors in both 

Figure 2. The hypothesis of stress-induced depression: main structures, neurotransmitters, bio-
logically active substances, interactions, and external factors. ACTH—adrenocorticotropic hor-
mone; AG—adrenal gland; Am—amygdala; AVP—arginine-vasopressin; BDNF—brain-derived
neurotrophic factor; BNST—bed nuclei stria terminalis; cCk—central pro-inflammatory cytokines;
CoR—cortisol; CRF—corticotropin-releasing factor; DA—dopamine; DPFC—dorsal prefrontal cor-
tex; Glu—glutamine; GABA—gamma-aminobutyric acid; HiN—histamine; Hipp—hippocampus;
HT—hypothalamus; 5-HT—serotonin; Hyp—hypophysis; LC—locus ceruleus; NA—noradrenaline;
NAc—nucleus accumbens; Oxn—orexin; SCN—suprachiasmatic nucleus; TMN—tuberomammilar
nucleus; RN—raphe nucleus; PVN—paraventricular nucleus; VOPFC—ventral and orbital prefrontal
cortex; -> (arrow): activating effect; -<> (rhombus): a black rhombus—inhibitory effect; a white
rhombus: an effect is blocked or ineffective because the receptor is not sensitive; thick line—effect is
increased; thin line—effect is decreased; medium thickness line—effect is not changed or alterations
of the effect are unknown; red line—noradrenaline effect (most of them were omitted to simplify
the figure); blue line—serotonin effect (most of them were omitted to simplify the figure); black
line—various neurotransmitters or neuropeptides; dotted lines—influence of external factors.

The stimulation of the HPA axis, represented by hypophysis, hypothalamus, and
adrenal gland in Figure 2, is a key player in those mechanisms [80] and causes the secretion
of glucocorticoid hormones, whose function is to provide adaptation to stressors in both
the brain and periphery [66]. Glucocorticoids predominantly lead to the redistribution of
energy resources and the restoration or defense of homeostasis after a challenge [81].

The elevated activity of the HPA axis in many cases of depression pointed to the
probable underlying mechanisms of pathogenesis [77,82,83]. The chronic activation of the
HPA axis with continuous stress leads to prolonged alterations in all affected organs and
systems [66,84–86], which results in the adrenal hypertrophy and thymic atrophy associated
with long exposure to corticotropin and elevated glucocorticoid hormone in rats [87]. The
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combined or single action of excess cortisol and proinflammatory agents could be toxic glial
and neuronal cells [65,88,89] and may suppress neurogenesis and neuroplasticity in prefrontal
cortex (PFC) and the hippocampus [16,77,90,91], which, in turn, may result in decreased levels
of Glu [92,93] and gamma-aminobutyric acid (GABA) [65], cognitive decline [94,95], reduced
appetite [8,96], anhedonia [2,97,98], altered cardiovascular tone [99,100], and other symptoms
arising from chemical changes in these structures [33,77,84,101,102].

There is a comprehensive neurobiological model that places the HPA axis at the center
of development of prolonged consequences of early trauma [16,103] and that hyperactivity
of this axis may originate from early life programming [104]. The HPA axis can be sensitized
in utero by smoking, maternal stress, early grave loss, and child abuse, all of which could
result in a development of MDD later in life [103,105]. However, not every case of early
life stress will develop into the disease after new trauma or stress, and not all adults with
depression have had early life stress [106]. Severe depression with the overactive HPA
axis in some patients is characterized by the hypersecretion of cortisol, the enlargement of
pituitary and adrenal glands, and the increased levels of corticotropin-releasing factor (CRF)
in the cerebrospinal fluid (CSF), which represent deficits in negative feedback systems
and/or excessive central stimulation of the secretion of CRF and/or other substances that
promote ACTH secretion [82,101,107]. Overall, numerous studies, reviewed by Willkinson
and Goodyer, suggest that a continuous dysregulation of the HPA axis with a central
deficit of the feedback mechanisms is predominant in depressive disorders [108]. For
example, the increased activity of the HPA system in humans has been associated with
glucocorticoid receptor (GR) resistance, which could be the result of either a decreased
expression or a reduced functionality of GR [109]. Therefore, ineffective cortisol-mediated
negative feedback does not reduce the excessive activity of the HPA axis during chronic
stress. Nevertheless, treatment with antidepressants leads to the normalization of the
levels of cortisol and CRF via an increase in the expression of GRs in brain, which restore
the normal function of the feedback loop [65]. In addition, some data demonstrated the
dependence of neurogenic activity of antidepressants from the functioning of GR in human
hippocampal cells [110].

Moreover, it was previously shown that 5-HT neurons, which densely innervate the
amygdala [111,112], also regulate the HPA [113]. Furthermore, some data point to the
possibility that 5-HT decreases the activity of amygdala and may reduce the learning of
aversive stimuli [33]. 5-HT may participate in the regulation and control of impulsive
behavior [114].

Nevertheless, not all patients with MDD demonstrate an increased function of the
HPA axis (hypercortisolism) or a violation of negative feedback in the axis. Thus, the
pathological changes of the HPA axis, such as hyper- and hypo-cortisolism, can be used
to subtype the disease [103]. However, it remains unclear how hypocortisolism is formed.
Nevertheless, it was suggested that prior trauma, which occurs early in life, may be
associated with the increased inhibition of cortisol secretion [115]. It seems possible that
early-life trauma and continuous stress could elevate the susceptibility of individuals to
stress, which may lead to a shift of their cortisol response to greater suppression, and,
in turn, make them unadaptable to stress factors [103]. Thus, it is possible that multiple
forms of depression with different biochemical profiles exist. Such different subtypes
of depression with different abnormalities of the HPA axis may demonstrate the best
responses to different treatments [108].

4. The Neurotrophic Hypothesis

The neurotrophic hypothesis of depression postulates that a cause and pathogenesis
of depression can be explained by a violation of functioning of the neurotrophic system
of the brain and the fact that antidepressant treatments may partly result in a reversal of
deficiency of this system and lessening of depressive symptoms. The main focus of research
on this hypothesis is directed on brain-derived neurotrophic factor (BDNF) [67], which is
involved in neurogenesis, regulates differentiation and growth of neurons [116–118], as well
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as other regulators of neuroplasticity, which might affect behavior through their control
of neurogenesis. It was suggested that neurogenesis in adults can enhance glucocorticoid-
mediated negative feedback on the HPA axis and facilitate resilience to stress [119]; therefore,
decreased neurogenesis can be the basis for the development of depression-like symptoms in
stressful situations. Indeed, a decrease in BDNF and BDNF pro-peptide levels and expression
of BDNF, BDNF-regulated genes, and tropomyosin receptor kinase B (TrkB) have been
detected in patients with MDD [120–122]. Decreased levels of BDNF and BDNF receptor
were also demonstrated in the hippocampus of patients with depression postmortem [117,
123,124]. Moreover, the ratio between BDNF-TrkB and proBDNF-p75NTR could also be
altered in MDD [22,125]. Furthermore, increased level of cortisol inhibited BDNF, leading to
neurodegeneration and partly to the development of symptoms of depression [117,126,127].

In addition, several studies showed that numerous chronic stressors, including admin-
istration of corticosterone, which induce depressive and anxiety-like behaviors through
the changes in peripheral levels of cortisol and inflammatory mechanisms, can reduce neu-
rogenesis in hippocampus and neuroplasticity in adult animals [16,67,117,128], probably
because the prolonged elevation of levels of cortisol is neurotoxic [95]. Similar histological
and functional neuroimaging studies demonstrated violations in synaptic and structural
plasticity in various brain regions, including hippocampus and the frontal cortex, in patients
with MDD [22,129,130]. Chronic stress leads to reduced spine density in the hippocampus,
medial PFC, and medial amygdala and increased spine density in the basolateral amyg-
dala in animal studies [131,132]. It was suggested that these changes could interfere with
appropriate responses in the brain to adapt to environmental stimuli [133]. On the whole,
distinct initial violations of a complex signaling network, such as dysfunction of the HPA
axis, deficit of neurotrophic factors, altered expression of microRNAs, abnormal regulation
of proinflammatory cytokines, and violated delivery of gastrointestinal signaling peptides
may cause a deficit of neurogenesis and result in a similar phenotype, manifesting as major
mood alteration. Moreover, all of these factors are interconnected on a functional level,
and a primary violation of one of them leads to changes in the others [22,114,128,134].
Therefore, neurogenesis in hippocampus probably plays a part in the normalization of the
HPA tone and the regulation of the adequate response of HPA, most likely via negative
feedback associated with GR [135].

The neurotrophic hypothesis originated from observations that antidepressants might
lessen symptoms of depression by stimulating neurogenesis in adult hippocampus [136]
and increase the numbers of adult-born neurons [137,138], forming synaptic connections
in mice approximately in 4 weeks [117,139]; this in general, correlates with a lot of evi-
dence showing that classical SSRI therapy achieves efficacy in 3–4 weeks. It was shown
that serotonin may positively regulate adult granule cell proliferation and neurogene-
sis [33,47,112,140–142], and both serotonin and BDNF signaling systems participate in
the regulation of neural circuitries, the action of antidepressant, and each other [143,144].
Despite multiple evidence demonstrating stress-induced decrease in neurogenesis, several
studies, reviewed by Hanson et al., have also shown the lack of correlation between stress
and neurogenesis [145]. Therefore, such contradictions suggest that the influence of stress
and antidepressants on neurogenesis does not appear in all cases of depression [145].

Overall, the precise role of neurogenesis and BDNF signaling in the pathogenesis
of MDD, and whether distinct antidepressant medicines directly affect BDNF and/or
serotonin, has not been fully clarified yet [47,119]. Neurogenesis alone cannot explain
the etiopathogenesis of MDD, but it may play a part in the development of behavioral
and cognitive abnormalities characteristic of depression [146]. Moreover, the concept
of a stress-induced inhibition of neurogenesis is probably too reductionistic in entirely
explaining such a complex disorder as depression [147], and, most likely, the inhibition of
neurogenesis contributes to effects of stress in combination with other mechanisms [67].
Hence, as attractive as the feedforward concept may appear, the concept of a stress-induced
suppression of neurogenesis is, as mentioned, most likely too reductionistic in order to
completely explain a disorder as complex as depression [147].
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In general, it can be concluded that these theories are highly intertwined and based on
the same mechanisms that occur in the same organs and tissues (Figures 1 and 2, Table 1).
It should be noted that we deliberately simplified the representation of the reward system
in order to decrease the complexity of the figures. The functioning of the reward system in
MDD is described in detail elsewhere [148–151].

5. The Inflammation/Cytokine Hypothesis

In addition to the previously described processes, other mechanisms of the MDD
etiopathogenesis were proposed. They include inflammation [39] and microglial
cells [1,152–155]. It was suggested that the immune system plays an important role in the
pathogenesis of the disorder, thus formulating the inflammation/cytokine hypothesis, a
simplified scheme, presented in Figure 3. Several clinical and animal studies reported that
proinflammatory cytokines could be involved in the development of MDD [39,40,156–160].
Increased levels of proinflammatory biomarkers, such as tumor necrosis factor-alpha, in-
terleukin (IL)-1, IL-6, and C-reactive protein, were detected in the plasma of patients with
depressive symptoms, compared with healthy individuals [161–163].
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Figure 3. The inflammation/cytokine hypothesis: main structures, neurotransmitters, biologically
active substances, interactions, and external factors. ACTH—adrenocorticotropic hormone; AG—
adrenal gland; Am—amygdala; AVP—arginine-vasopressin; BDNF—brain-derived neurotrophic
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factor; BNST—bed nuclei stria terminalis; cCk—central pro-inflammatory cytokines; CoR—
cortisol; CRF—corticotropin-releasing factor; DA—dopamine; DPFC—dorsal prefrontal cortex;
Glu—glutamine; GABA—gamma-aminobutyric acid; HiN—histamine; Hipp—hippocampus; HT—
hypothalamus; 5-HT—serotonin; Hyp—hypophysis; LC—locus ceruleus; NA—noradrenaline; NAc—
nucleus accumbens; Oxn—orexin; SCN—suprachiasmatic nucleus; TMN—tuberomammilar nucleus;
RN—raphe nucleus; pCk—peripheral pro-inflammatory cytokines; PVN—paraventricular nucleus;
VOPFC—ventral and orbital prefrontal cortex; VTA—ventral tegmental area; -> (arrow): activating
effect; -<> (rhombus): a black rhombus—inhibitory effect; a white rhombus: an effect is blocked or
ineffective because the receptor is not sensitive; thick line—effect is increased; thin line—effect is
decreased; medium thickness line—effect is not changed or alterations of the effect are unknown; red
line—noradrenaline effect (most of them were omitted to simplify the figure); blue line—serotonin
effect (most of them were omitted to simplify the figure); black line—various neurotransmitters or
neuropeptides; dotted lines—influence of external factors.

A connection of MDD with other pathologies, such as arthritis, asthma, coronary artery
disease, diabetes, and obesity, may indicate that inflammation by itself or in conjunction
with stress may cause MDD [39]. Depression associated with inflammation is characterized
by greater persistence and severity and decreased motivation, and it develops later in
life [164–166].

The connection between cytokines and depression is supported, to various degrees
of strength, by the following generalized conclusions: (1) cytokines administered to pa-
tients and laboratory animals induce some symptoms of depression; (2) An activated
macrophage/monocyte response of the immune system and elevated cytokine levels were
detected in some patients with depression; (3) depressive disorders frequently occur in
patients suffering from disorders with an inflammatory component; (4) some stressors
induce increased expression of cytokines in both the periphery and the central nervous
system (CNS); and (5) some antidepressants have anti-inflammatory properties and can
adjust the behavioral responses on an hyperactive immune system [40,156].

Stress may affect cytokines on a genetic level in individuals with a predisposition
to MDD [167]. Various stressors, physical as well as psychological, can activate immune
system throughout the organism and stimulate the release of inflammatory cytokines [168]
that lead to changes of levels of neurotransmitters and behavior [39,40,156–158,169–174].
Chronic stress or prolonged exposure to inflammatory cytokines results in the glucocor-
ticoid resistance, which can lead to an increased predisposition for the release of other
cytokines, such as IL-1beta [175–181]. The mechanisms of this interplay between the CNS
and the organs and tissues have been detected (predominantly in animals) [40,175,182].
Although several studies have shown an interconnection between depression and proin-
flammatory cytokines, no evidence of high sensitivity or specificity of cytokines to MDD
has been found [156]. However, it was reported that antidepressant medicines decrease the
release of proinflammatory cytokines from activated immune cells, inhibit chemotaxis, and
intensify the synthesis of anti-inflammatory cytokines in humans [183].

Inflammatory cytokines such as interferon-alpha can influence systems and processes
that may play an important role in depressogenesis, including the functioning of the frontal
lobe and the anterior cingulate [184,185]; the HPA axis [66,186–192]; the activity of dopaminer-
gic [193–195], serotonergic [157,187,196–204], glutamatergic [173,197,200,205–207], GABA [173],
and noradrenergic systems [208–210]; the proliferation of hippocampal neurons [211], neu-
rotoxicity [200], neuronal damage and loss of neuronal plasticity [197,211–216]; and growth
factors [217–219]. As a result, the multiple evidence of the imbalance between pro- and anti-
inflammatory cytokines leading to the overproduction of neurotoxic metabolites in the brain
served as a basis for the proposal of the neurodegeneration hypothesis of depression [203,220].

Importantly, cytokines are large molecules, and circulating cytokines normally do not
cross the blood–brain barrier (BBB). However, peripheral cytokines can penetrate into the
CNS and activate local immune system by several mechanisms [9,12,162], including (1)
passage through leaky regions in the BBB at circumventricular organs [176,221,222] (this
passage only occurs with a high concentration of peripheral cytokines [173]); (2) active
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uptake mechanisms of cytokines across the BBB [223–226]; (3) local actions at peripheral
vagal nerve afferents that transmit signals of cytokines to the appropriate regions of the
brain, including hypothalamus (HT) and the nucleus of the solitary tract (the so-called
“neural route”) [227–230]; (4) activation of endothelial cells and perivascular macrophages
in the cerebral vasculature to produce local inflammatory mediators such as cytokines,
chemokines, prostaglandin E2 (PGE2), and nitric oxide (NO) [231–234]; and (5) activated
peripheral immune cells, which can be recruited to the brain parenchyma and, in turn,
produce cytokines in the CNS [235,236]. Signals from peripheral cytokine are ampli-
fied in the brain by local inflammatory processes, including pathways of transduction
of inflammatory signals, production of cytokines, and release of PGE2 (see Figure 1 for
inflammatory pathways in the brain in Felger and Lotrich [12]). Endothelial cells and
perivascular macrophages of the brain respond to circulating cytokines by the release
of PGE2 and induction of the expression of cyclooxygenase-2 [237–239]. Cytokines in
the CNS are produced predominantly by microglia but can also be synthesized by as-
trocytes [240,241], neurons [242,243], and oligodendrocytes [244,245]. Chronic immune
activation can transform microglia to synthesize inflammatory mediators that may affect
the systems of brain neurotransmitters and the integrity of neurons [12,246]. Activated
microglia can produce indoleamine-2,3-dioxygenase and kynurenine-3-monooxygenase,
which catabolizes kynurenine [247], inducible nitric oxide synthase [248,249], reactive
oxygen and nitrogen species [250,251], and monocyte chemotactic protein-1/chemokine
(C–C motif) ligand 2 [252], which is involved in attracting immune cells from periphery
into the CNS of mice [235].

In addition, several primary studies and comprehensive reviews (see Table 3 in Liu
et al. [39]) made the assumption that dysregulated oxidative and nitrosative pathways [253],
as well as mitochondrial dysfunction [254] contribute to depression. Many clinical studies
have assessed biomarkers of these pathways in connection with depression [255–258]. Some
findings collectively suggest the existence of a subtype of patients with MDD accompanied
by an elevated inflammatory status that leads to unique variations in both etiopathology
and clinical presentation [39].

6. The Circadian Hypothesis

Although it has been known, since the 1950s, that daily rhythms are disrupted in
patients with MDD [6,259,260], the molecular mechanisms linking mood disorders and
abnormalities in sleep/wake cycles are still not well understood [117,261]. Nonethe-
less, robust evidence corroborates a bidirectional link between sleep disturbances and
depression, with insomnia now recognized as a predisposing factor for developing depres-
sion [6,261,262]. Moreover, it was shown that depression itself can alter sleep structure in
numerous ways [263].

Changes in sleep/wake cycles by itself may initiate manifestations of depression [264,265].
Sleep abnormalities may result in relapse and a decreased response to therapeutic interven-
tions [6]. The co-occurrence of depression and abnormal sleep may represent a physiological
reaction to a more definitive violation of circadian rhythms, i.e., the circadian disruption could
be an antecedent primary condition causing the development of symptoms of depression [266].
Alternatively, sleep disruption and depressive illness may essentially be independent condi-
tions; nonetheless, they may cause reciprocal effects and probably indicate an interference in
the feedback processes usually distinguishing their interplay [6].

The circadian theory of depression proposes that stressful events alter schedules of
sleep, which, in turn, changes diurnal molecular rhythms in cells, resulting in the de-
velopment of mood disorder in vulnerable individuals [68,117]. Considering the fact
that the sleep/wake and circadian rhythms are closely intertwined, it is therefore not
surprising that sleep deprivation therapy (SDT) quickly lessens the intensity of depres-
sive symptoms [117,267]. Previously, it was demonstrated that sleep deprivation affects
brain systems involved in emotion, e.g., amygdala [268]. It was shown that the genes
controlling circadian rhythms in the anterior cingulate cortex are dysregulated in de-
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pression [261], and the neurons in this region increase their activity during sleep and
disengagement from tasks [269,270]. Though not yet demonstrated, it is thought that SDT
resets the aberrant circadian clock in patients with depression, resulting in alleviation of the
symptoms [261,267]. The accumulating clinical evidence highlights potential changes in
the circadian clock gene expression in patients with depression. Though limited in number,
the few studies on SDT with regard to depression/anxiety have been promising.

A phase advance in cortisol rhythm, another symptomatic feature of depression, was
demonstrated in patients with this disorder, especially among those with a melancholic
subtype [6]. Lower blood concentrations of melatonin with pronounced circadian phase
advances in melatonin secretion are also often observed in patients with MDD [6].

It was demonstrated that ventral tegmental area (VTA) DA neurons are key players
in the modulation of behaviors associated with depression [271–273], and it is possible
that aberration in the expression of circadian genes in the VTA may participate in such
behaviors [117] (see also references in Chaudhury et al.). These recent findings also
revealed molecular links between the regulation of mood and the circadian timing system,
which could become a potential target for the treatment of mood disorders associated
with the disturbance of circadian rhythms. The facts that social interaction, a rewarding
phenomenon in social animals, is also controlled by circadian rhythms [274], and that
depression-like behavior results in changes of neural processing in the reward system,
suggest that alterations in the circadian system could lead to abnormal reward processing
in the reward center and subsequent behaviors associated with depression [117].

The disturbance of sleep/wake cycles can also be connected to dysfunction in the
HT (Figure 3 in Saltiel and Silvershein [275]). The state of awakening is regulated by the
sleep/wake switch in HT and monoamine projections from brainstem to the cortex [276].
GABA, histamine, and 5-HT participate in the regulation of normal sleep/wake cycles [275].
Some 5-HT receptors have been associated with circadian rhythm, sleep, and mood [277].
It was established that brain 5-HT synthesis, release, and catabolism are controlled by
a diurnal rhythm, and are closely connected with the suprachiasmatic nucleus [6,261].
Serotonergic neurotransmission affects the phosphorylation of CLOCK proteins, which
represent the molecular oscillator, leading to shifts of phases and involvement of suprachi-
asmatic nucleus activity [261,278].

Disturbances in the functioning of orexinergic-locus coeruleus (LC) (noradrenergic)-
amygdala circuit may be another probable mechanism of pathogenesis of depression [117].
Neural processing of fear learning has recently been shown to pass from the lateral HT
to the amygdala via the LC in rats [279]. Orexin (hypocretin) fibers from the lateral HT
were demonstrated to directly depolarize LC neurons via the rapid corelease of Glu and
orexin, resulting in the activation of N-methyl-D-aspartate (NMDA) and orexin-1 receptors,
respectively [279]. Furthermore, the activation of orexin neurons in LC leads to elevated
noradrenergic signaling via beta-adrenergic receptor in the lateral nucleus of the amygdala,
resulting in the enhanced formation of fear memory [279].

Disturbance of sleep may also be another variable associated with inflammation [280–
282] and subsequent higher risk for depression. Sleep deprivation leads to elevated levels
of proinflammatory cytokines in blood, when compared with undisturbed sleep [12,283].

However, whether abnormal circadian rhythms can cause depression or whether
depression results in the violation of circadian rhythms is still unclear. Nevertheless, there
is substantial evidence, both clinical and observational, that a correlation exists between
the two, and most individuals with depressed mood also experience irregular circadian
rhythm [6]. Thus, circadian dysregulation may be an important pathogenetic component
of MDD. A simplified scheme of the processes involved is presented in Figure 4.
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Figure 4. The circadian hypothesis: main brain structures, neurotransmitters, biologically active
substances, and interactions. Am—amygdala; AVP—arginine-vasopressin; BDNF—brain-derived
neurotrophic factor; BNST—bed nuclei stria terminalis; CRF—corticotropin-releasing factor; DA—
dopamine; DPFC—dorsal prefrontal cortex; Glu—glutamine; GABA—gamma-aminobutyric acid;
HiN—histamine; Hipp—hippocampus; HT—serotonin; Hyp—hypophysis; LC—locus ceruleus; NA—
noradrenaline; NAc—nucleus accumbens; Oxn—orexin; SCN—suprachiasmatic nucleus; TMN—
tuberomammilar nucleus; RN—raphe nucleus; PVN—paraventricular nucleus; VOPFC—ventral and
orbital prefrontal cortex; VTA—ventral tegmental area; -> (arrow): activating effect; -<> (rhombus):
a black rhombus—inhibitory effect; thick line—effect is increased; thin line—effect is decreased;
medium thickness line—effect is not changed or alterations of the effect are unknown; red line—
noradrenaline effect (most of them were omitted to simplify the figure); blue line—serotonin effect
(most of them were omitted to simplify the figure); black line—various neurotransmitters or neu-
ropeptides.

7. The excitatory Neurotransmitters

As mentioned above, the functioning of GABA and Glu systems also appears altered
in depression [56,77]. A simplified scheme is presented in Figure 5. Some studies, reviewed
by Hasler et al., demonstrated abnormally decreased plasma and CSF levels of GABA
in patients with MDD [284]. Possibly, because 5-HT action across discrete 5-HT receptor
subtypes is thought to modulate GABAergic interneurons that influence Glu circuits
involved in cognitive functions [285], the changes in 5-HT levels might result in alterations
in the levels of Glu, which is essential for cognitive processing. Therapeutic agents that
modulate Glu transmission, e.g., memantine and ketamine [286], have demonstrated
antidepressant-like properties [287] to the point that ketamine-based drugs were “approved
by the FDA for treating of treatment-resistant MDD” [288].
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amygdala; AVP—arginine-vasopressin; BDNF—brain-derived neurotrophic factor; BNST—bed nu-
clei stria terminalis; CRF—corticotropin-releasing factor; DA—dopamine; DPFC—dorsal prefrontal
cortex; Glu—glutamine; GABA—gamma-aminobutyric acid; HiN—histamine; Hipp—hippocampus;
HT—hypothalamus; 5-HT—serotonin; NA—noradrenaline; NAc—nucleus accumbens; Oxn—orexin;
SCN—suprachiasmatic nucleus; TMN—tuberomammilar nucleus; RN—raphe nucleus; PVN—
paraventricular nucleus; VOPFC—ventral and orbital prefrontal cortex; VTA—ventral tegmental
area; -> (arrow): activating effect; -<> (rhombus): a black rhombus—inhibitory effect; thick line—the
effect is increased; thin line—the effect is decreased; medium thickness line—the effect is not changed
or alterations of the effect are unknown; blue line—serotonin effect (most of them were omitted to
simplify the figure); black line—various neurotransmitters or neuropeptides.

The increased metabolism in limbic thalamocortical neuronal pathways in depression
most likely means increased glutamatergic transmission in these pathways [77]. Increased
levels of Glu within discrete anatomical circuits may also elucidate the changes precisely
in gray matter in mood disorders [84,289]. Magnetic resonance spectroscopic studies also
showed alterations of levels of Glu (measured together with cerebral glutamine as the
combined “Glx” peak in the magnetic resonance spectroscopic spectra) and GABA in MDD.
These data demonstrate the mixed extra- and intracellular pools of GABA, glutamine, and
Glu, but the intracellular pools dominate overwhelmingly in these spectra [77]. It was
shown that GABA levels were abnormally reduced in the dorsal anterolateral/dorsomedial
PFC and the occipital cortex in patients with MDD [284,290]. The greater part of the
GABA pool is in GABAergic neurons; thus, the decreased levels of GABA in the dorsal
anterolateral PFC are in accordance with the evidence of decreased number of GABAergic
neurons in the BA9 area of brain in MDD [291]. Patients with MDD also demonstrate
decreased levels of Glx in the ventromedial and dorsomedial/dorsal anterolateral regions
of PFC, where neurophysiological and histopathological abnormal changes are detected in
depression [289]. Because the Glx levels demonstrate the glutamine and Glu pools inside
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the cells, the abnormal decrease in Glx levels would be in accordance with the decrease
in glial cells discovered postmortem in the those brain regions in MDD, as glia play a
prominent part in Glu–glutamine cycling [77].

The hypermetabolism that manifests as elevated metabolism of glucose and is asso-
ciated with the reduction of gray matter in certain regions of brain, such as PFC, during
depression, could indicate an important role of excitatory amino acid transmission in the
neuropathology of mood disorders [77].

Changes in the activity of various signaling processes such as BDNF, NMDA, and
mammalian target of rapamycin (mTOR) are possible mechanisms that underlie alterations
of synaptic plasticity leading to depression [292]. For example, it was shown that stress-
induced synaptic deficits in the PFC was accelerated by a primary elevation of Glu release
and decreased Glu uptake resulting in increased Glu excitotoxicity and subsequent neu-
ronal atrophy through dendritic retraction, reduced dendritic arborization, decreased spine
density, and reduced synaptic strength [292]. Such a violation of synaptic connectivity
can potentially result in the decrease in neurotrophic factors such as BDNF, the overall
decrease in NMDA signaling, and the inhibition of mTOR signaling that subsequently
leads to the manifestation of depression-like behavior [48,117,292]. Thus, a possible mech-
anism of turnover of depressive behaviors by ketamine-induced NMDA blockade may
initially involve the inhibition of presynaptic NMDA receptors at GABAergic interneurons
leading to a decrease in inhibitory tone and subsequent net increase in glutamatergic surge,
while the inhibition of excitotoxic, extrasynaptic NMDA receptors on the postsynaptic
neurons increases cell survival. Furthermore, the increased net glutamatergic surge leads
to the increased postsynaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
receptors’ activation of neuroplasticity-related signaling pathways involving BDNF and
mTOR, resulting in overall synaptogenesis and synaptic potentiation [48,117,293–295].

8. Other Systems Contributing to the Pathogenesis of MDD

The cholinergic system is also implicated in the pathogenesis of depression because
it was shown that the muscarinic cholinergic system is overactive or hyperresponsive in
depression [77]. Numerous studies in humans [296,297] as well as animal models [298,299]
indicate that hyperactive cholinergic system can be involved in the pathological process in
depression [64,77,300]. Indeed, cholinergic receptors and neurons connect the septum with
the hippocampus and VTA through interpeduncular nucleus and, thus, participate in the
functioning of the reward system (see Figure 8 in a review by Loonen and Ivanova [149]).
Some data also suggested that the muscarinic receptor system mediates the effects of
cholinergic system on emotional behavior [77]. Some studies even specified that the M2
receptor might regulate mood in depression. Multiple polymorphisms in M2 receptor
gene were linked with increased risk for developing MDD [301,302]. Acetylcholine is
considered to play the central role in sensory and emotional processing; therefore, the
overactive cholinergic system could change signal-to-noise processing, resulting in an
overrepresentation of information laden with emotions and the creation of emotional
processing bias correlated with cognitive deficiency in mood disorders [77].

Furthermore, nicotinic compounds may not only modulate mood and antidepressant
action unidirectionally, but inhibition as well as activation of nicotinic acetylcholine re-
ceptors (nAChRs) may lead to antidepressant effects in different conditions. The nicotinic
compounds affect different receptors, neurotransmitter systems, and brain areas, with
diverse results in individuals experiencing different depressive symptoms or levels of
stress [64]. Smoking is associated with depression, which indicates that smoking, namely
nicotine intake, may affect the mood [303]. Low nicotine levels administered chronically
(for example, by the nicotine patch) may desensitize nAChRs [304,305]; therefore, nAChRs
blockade might be significant in the manifestation of the influence of nicotinic substances
on depressive symptoms. Because acetylcholine is the endogenous neurotransmitter for
nAChRs, and because nicotine affects depression, it can be concluded that the violation of
regulation of the cholinergic system might be one of the triggers of MDD [64,306]. Though
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it has not been clarified how nicotinic substances can act as antidepressant-like agents
yet, changes in the function of nAChR alone or in conjunction with monoamine-based
antidepressants can become a new strategy in the treatment of mood disorders [64].

Decreased neurotransmission of monoamines could lead to the altered response of
second messengers, even when levels of monoamine neurotransmitters are adequate [65].
Indeed, decreased levels of cyclic adenosine monophosphate and inositol were detected in
the brains of patients with depression [307,308].

Histamine as a neurotransmitter also participates in the processes of arousal and
wakefulness [309] and thus could play a role in the pathogenesis of depression, particularly,
in changes of sleep/wake cycles. Histaminergic neurons mainly reside in the tuberomam-
millary nucleus (see Figure 3.24 in von Bohlen Und Halbach and Dermietzel [309]). The
axons of histaminergic neurons reach various regions of the brain, such as the cerebellum,
forebrain, mesencephalon, thalamic areas, nucleus accumbens, bed nuclei stria terminalis,
the cerebral cortex, and hippocampus. However, no changes were found in the expression
of histamine-related genes in depression [310].

9. One set of Intertwined Processes

In summary, many brain structures, neurotransmitters, hormones, and substances
may be involved in the development of MDD. However, none of the hypotheses describing
the development of depression are comprehensive because none of them can explain all
the cases and mechanisms. The analysis of all hypotheses suggests that there is interdepen-
dence between the brain structures and various substances involved in the pathogenesis
of MDD, which could be not entirely universal, but can affect all brain regions, to one
degree or another (Figure 6), depending on the triggering factor, which, in turn, could
explain the different subtypes of MDD. The analysis of reports and reviews presented
above demonstrates that some common brain structures, such as amygdala (mainly BNST),
hippocampus (neurogenesis and neurotrophins), PFC, and hypothalamus, and their in-
teractions through neurotransmitters and biologically active substances (5-HT, NA, CRF)
are characteristic for all theories of pathogenesis of MDD. The only difference between the
theories could be triggering factors in each particular case and the subsequent cascade of
events, which again would occur in those structures described above.

Over the past decades, it has become clear that the roles of stress and inflammation
in the development of MDD are obvious. They can disrupt the chemical balance of a
normal brain function (Figures 3, 4 and 6), as an influence of stress and inflammation
in the form of proinflammatory cytokines and the subsequent chain of events and/or a
destabilizing effect of stress on neurons in the PFC. Most individuals manage to recover
to the normal state after the elimination of stress. However, if a damaging factor is
persistent enough, the chemical balance of a brain shifts to a new self-sustaining state,
which causes the manifestation of depressive symptoms [31]. For example, chronic stress
leads to alterations in PFC and amygdala, shifting the balance of neurotransmitters in
amygdala toward a depressive mood and inhibiting locus ceruleus and raphe nucleus. In
addition, stress alters the levels of central cytokines, which, in turn, disrupt neurogenesis
in hippocampus and initiate the pathological activation of the HPA axis. This axis may
affect processes in suprachiasmatic nucleus and sleep/wake cycles. These processes are
most likely supported and/or amplified with altered or impaired feedback loops from
the affected areas (Figure 6). This new self-sustaining state of the brain in MDD includes
the altered levels of NA and 5-HT in afferents from the LC and RN, respectively, and
the changed levels of neurotransmitters in feedback afferents to the LC and RN [275].
Decreased 5-HT signaling from the RN leads to decreased 5-HT input to various brain
areas such as nucleus accumbens, amygdala, hippocampus, and PFC. Research over the
last 50 years has provided extensive evidence showing that abnormal monoamine neuronal
function is an important underlying pathology in MDD [65]. Imaging studies indicated
that MDD is associated with abnormal metabolism in limbic and paralimbic structures
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of the PFC [71]. This abnormal metabolism is normalized in the amygdala and PFC in
patients showing a persistent antidepressant response [311].
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<> (rhombus): a black rhombus—inhibitory effect; a white rhombus—an effect is blocked or inef-
fective because the receptor is not sensitive; thick line—effect is increased; thin line—effect is de-
creased; medium thickness line—the effect is not changed or alterations of the effect are unknown; 
red line—noradrenaline effect; blue line—serotonin effect; black line—various neurotransmitters 
or neuropeptides; dotted lines—influence of external factors. 

Figure 6. The overall picture of the combined common mechanisms and relationships of all
major theories of depression. ACTH—adrenocorticotropic hormone; AG—adrenal gland; Am—
amygdala; AVP—arginine-vasopressin; BDNF—brain-derived neurotrophic factor; BNST—bed
nuclei stria terminalis; cCk—central pro-inflammatory cytokines; CoR—cortisol; CRF—corticotropin-
releasing factor; DA—dopamine; DPFC—dorsal prefrontal cortex; Glu—glutamine; GABA—gamma-
aminobutyric acid; HiN—histamine; Hipp—hippocampus; HT—hypothalamus; 5-HT—serotonin;
Hyp—hypophysis; LC—locus ceruleus; NA—noradrenaline; NAc—nucleus accumbens; Oxn—
orexin; SCN—suprachiasmatic nucleus; TMN—tuberomammilar nucleus; RN—raphe nucleus; pCk—
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peripheral pro-inflammatory cytokines; PVN—paraventricular nucleus; VOPFC—ventral and orbital
prefrontal cortex; VTA—ventral tegmental area; -> (arrow): activating effect; -<> (rhombus): a black
rhombus—inhibitory effect; a white rhombus—an effect is blocked or ineffective because the receptor
is not sensitive; thick line—effect is increased; thin line—effect is decreased; medium thickness
line—the effect is not changed or alterations of the effect are unknown; red line—noradrenaline
effect; blue line—serotonin effect; black line—various neurotransmitters or neuropeptides; dotted
lines—influence of external factors.

Theoretically, HPA axis hyperactivity and inflammation in adult patients with de-
pression (including responses to trauma in early childhood) might also be a part of the
same pathological process. On the one hand, HPA axis hyperactivity is an indication of
the ineffective action of glucocorticoid hormones, which could result in the activation of
the immune system. On the other hand, inflammation could stimulate the activity of the
HPA axis through a direct action of cytokines on the brain and by inducing glucocorticoid
resistance [104,180,312–314].

In summary, highly complex interactions exist between physiological, functional,
social, and psychological factors [315]. Moreover, the human brain clearly remains plastic,
i.e., responsive to intrinsic and extrinsic stimulation, throughout life, which provides a
good basis for the successful treatment of MDD.

10. Concluding Remarks

On the whole, it is necessary to emphasize that depression is a heterogeneous disorder
that involves a wide range of subtypes (e.g., melancholic, atypical, and psychotic), with
distinct characteristics in terms of symptomatology, neurobiology, and physiological and
endocrine functioning [106]. It is evident from the literature reviewed above that the
multiplicity of symptoms related to depression most likely is the result of aberrations
in different aspects of normal neural functions that can range from the molecular level
up to the neural circuit [117]. There may exist several subtypes of MDD with different
etiopathogenesis [103]. The observation that classical antidepressant medications only
work on a subset of patients indicates that patients with depression express aberration in
different neural processes [117] or, rather, in various parts of the same complex mechanism
consisting of an extensive network of interconnected pathways. It was proposed that CSF
homovanilinic acid, hyper-/hypocortisolism, and CSF cytokines and plasma tryptophan are
possible biomarkers for subtyping MDD and related conditions [103]. This subtyping may
lead to the development of new strategies of treatment, such as DA agonists, antagonists of
CRF/arginine-vasopressin receptors, and anti-inflammatory agents, and their tailor-made
uses [103], as well as, antioxidants, which was demonstrated in a randomized controlled
trial [316]. Characterizing patients with MDD with an underlying elevated inflammatory
profile alone may ultimately help health-care professionals to develop a more effective
personalized treatment plan for treatment-resistant individuals [39,254,288], which can be
based on standardized treatment [317] with modifications based on “results from different
phase clinical trials,” as reviewed by Cai and co-authors [318]. This is also true in the case
of endocrine disturbances such as changes in glutamatergic and GABAergic signaling in
the CNS [288].

A complete baseline assessment of depressive symptoms prior to treatment allows
building a patient-specific profile, which, in turn, may help to develop a more efficient
therapeutic plan. Clarification of the previous history of medication is necessary for
differentiation between unresolved symptoms, current health conditions, and the side
effects of prior treatment. Comprehension of the nature, mechanisms, and degree of
functional impairment can aid physicians in the formulation of more efficient personalized
pharmacotherapy and regimens of treatment for each patient’s unique constellation of
symptoms [275].

Therefore, the future of treatment of depression might consist in the use of combined
strategies in patients who are nonresponsive to traditional monotherapy [64].
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