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Abstract

In Positron Emission Tomography (PET), an optimal estimate of the radioactivity concentration is obtained from the
measured emission data under certain criteria. So far, all the well-known statistical reconstruction algorithms require exactly
known system probability matrix a priori, and the quality of such system model largely determines the quality of the
reconstructed images. In this paper, we propose an algorithm for PET image reconstruction for the real world case where
the PET system model is subject to uncertainties. The method counts PET reconstruction as a regularization problem and
the image estimation is achieved by means of an uncertainty weighted least squares framework. The performance of our
work is evaluated with the Shepp-Logan simulated and real phantom data, which demonstrates significant improvements in
image quality over the least squares reconstruction efforts.
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Introduction

Positron Emission Tomography (PET) is one of the most

important medical imaging modality which provides in vivo

functional information of biological organs. It utilizes the idea of

injecting chemical compounds tagged with positron emitting

isotopes into a body to acquire complete coincidence data, which

records the concentration information of the isotope distributions

at specific locations within the body. The radioactivity images are

then reconstructed based on these photon counting measurements.

The reconstruction of isotope concentration distribution is an

ill-posed inverse problem. Most of current approaches to tackle

this problem can be classified into two general categories, namely

the analytical methods, which rely on the inversion of Radon

transform, and the iterative approaches, which are based on a

statistical description of the physical problem [1–6]. Because of the

random nature of the radioactive disintegration, the tomographic

data are noisy, and therefore it is straight-forward to regard PET

reconstruction as a statistical estimation problem. Such approach-

es, when reconstructing PET images, need to introduce modeling

of the data statistics and to make use of some prior information

about the PET imaging system (often referred to as system

probability matrix, which represents the probability that an

emission event will be detected). For instance, Poisson/Gaussian

assumptions on photon counting measurement data may be

employed to deal with measurement uncertainties, thus constrain-

ing the solution space of reconstruction problem in maximum

likelihood/least squares based frameworks [7–11].

However, so far, the common feature of all statistical-based

methods for PET image reconstruction is that the system response

model is assumed to be exactly known a priori. In real situations,

however, it is almost impossible to have the exact system model

information because real imaging systems are subject to a number

of complicated physical effects (such as positron range, photon

emission angle, detector sensitivity normalization factors, inter-

crystal scatter et al.) [12–14]. On the other hand, it has been

acknowledged that the quality of the system model largely

determines the quality of the final reconstructed images [15–17],

and the importance of incorporating PET system uncertainties

into the reconstruction framework is well recognized yet seldom

addressed [14,14,18–21].

In this paper, we investigate the application of the uncertainty

weighted least squares principle to PET image reconstruction. Our

algorithm, which is based on a min-max formulation, allows the

simultaneous incorporation of system model and measurement

statistical uncertainties, thus providing a more robust and accurate

solution.

Methods

PET System and Measurement Modeling
In the PET measurement, initially, when a positron-emitting

nuclide decays in the body, the nucleus rids of itself of excess

positive charge by emitting a positron, which almost immediately

loses its energy by collisions in the surrounding tissues and then

combines with an electron and annihilates. Two back-to-back

gamma rays of equal energy are then generated. These photon

pairs can be detected externally by two opposite detectors using a

coincidence technique, forming a coincidence event. These

acquired coincidence data record the concentration information

of the isotope distributions at specific locations within the body.
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However, in reality, the coincidence events may also include those

that the two gamma rays originating from two unrelated position

annihilations are detected within the coincidence resolving time

and those that the annihilation photons have an interaction of

Compton scattering and lose their directional and energy

information before they arrive to the detector system. The former

are referred as random coincidences and the latter are called

scattered coincidences. To recover a reasonable image, random

and scattered photon pairs should be subtracted from coincidence

events.

In practice, the emission sinogram data y, collected in 2-D mode,

is a 2-D projection matrix by scanning all detector bins at each

angle. The 2-D projection matrix can be transformed into a 1-D

vector in the lexicographic ordering. So y is a m by 1 vector with

y~fyj Dj~1,:::,mg and m is the total number of bins of the system.

x~fxi Di~1,:::,ng is a n by 1 vector with n the total number of

image voxels, which represents the unknown radioactivity of

emission object in voxel i. The relationship between the projection

data and emission object is given through an affine transform:

yj~
X

i

Djixiznoise ð1Þ

or in matrix form:

y~Dxznoise ð2Þ

where D is the m by n system matrix that gives the probability of a

photon emitted from voxel i being detected in projection bin j. The

value of detection probability matrix D depends on various factors:

such as the geometry of the detection system, detector efficiency,

attenuation effects, dead time correction factors, and the scattering

of photons from one crystal to another.

It is typically difficult or even impossible to obtain an ideal

known D matrix for any real world situation. The errors of system

model are broadly classified into two groups - deterministic and

statistical [12]. The deterministic errors arise because of the well-

known ambiguities (e.g. the geometric ambiguity, attenuation,

positron range) presented in the formulation of the model. The

statistical errors are results of the random nature of photon

detecting, i.e. statistical variations in detector-pair sensitivity,

temporo-spatially variant response of the detector caused by the

combined effects of intercrystal penetration, cross-talk and the

statistical fluctuations in the photomulitplier tube [14,15,21].

Here, the goal of our work is to recover the unknown activity

distribution x based on the noisy measurements y and the system model

D with random errors.

Objective Function Formulation
A way to solve the reconstruction problem is to use the statistical

principles, where the objective function is:

W(x)~L(x,y){bR(x) ð3Þ

with L(x,y) being the log-likelihood, R(x) denoting a regularizing

penalty term and b is a hyperparameter that controls the resolution

of the reconstructed image. Then the focus of PET imaging

becomes to estimate the isotope concentration x from the noisy

measurement data y such that x̂x~argminW(x). Please note here, in

the statistical image reconstruction algorithms, the system matrix D
links a tomographic image with the measurements. While the ideal

D is almost impossible to obtain, the performance of estimators

designed without considering these uncertainties can be severely

degraded and sometimes even unacceptable(such as for small

animal PET imaging). For example, if the actual system matrices

were DzdD, until now, all aforementioned works are based on D
alone, without taking the existence of dD into account. And this

inexactness may seriously affect the accuracy and reliability of the

estimation results. Here, we introduce an uncertainty weighted least

square framework which considers the statistical variations of the

system model D and the measurement data y.

In order to handle the uncertainty issues of the system and the

measurements, a min-max cost function formulation can be

adopted to achieve robust solution [22] for (2):

minxmaxdD,dy½ExE2
QzE(DzdD)x{(yzdy)E2

W � ð4Þ

where the notation ExE2
Q is defined as the square of the weighted

L2 norm of x (by constraints Qw0), i.e. ExE2
Q~xT Qx. W is a

weighting matrix.

Directly solving (4) will take too much storage space and

computational time. Similar to the penalized weighted method

proposed by Fessler [9], we have adopted an iterative algorithm to get

the convergent solution of the uncertainty penalized weighted least

squares (UPWLS, or called robust least squares, RLS) framework

based on state space description of PET imaging. In the following

section, we will derive the UPWLS (RLS) formulation with Table 1

giving the notation of related symbols and abbreviations.

UPWLS Framework for PET Imaging
Deterministic Interpretation of PET Imaging. Here, the

stationary PET inverse problem is considered. In static imaging case

the concentration x is assumed to be nonvarying, which means

_xx~0 ð5Þ

Discretizing it, we have

x(tz1)~x(t)zu(t) ð6Þ

Please note here, x(t) means activity distribution after tth time

(updated) step and u(t) represents the uncertainties of the state

updating process. Together with PET observations, the PET

imaging can thus be interpreted in state space description as:

x(tz1)~x(t)zu(t) ð7Þ

y~Dx(t)zv ð8Þ

where v models the measurement noise. Here we treat u(t) and v(t) as

random variables with mean and covariance matrix as

E½u(t)�~0,E½v(t)�~0, ð9Þ

E½u(t)uT (s)�~Qdts ð10Þ

E½v(t)vT (s)�~Rdts ð11Þ

Uncertain State Space Model for PET imaging. Now, let

us consider the case of uncertainty in matrix D, the state space

A Robust Approach for PET Image Reconstruction
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equations in the subsection above could be rewritten with the

uncertainty item dD as:

x(tz1)~x(t)zu(t) ð12Þ

y~½DzdD�x(t)zv ð13Þ

Here we introduce the norm-bounded uncertainty model [23] for

the system uncertainties as

dD~MDEd ð14Þ

where EDEƒ1 is an arbitrary contraction, fM,Edg are known real

constant matrices of proper dimensions that specify how the

uncertain parameters in D enter the matrix D. The case of

accurate models could be obtained by setting Ed~0.

For above uncertain state space description, once having a priori

estimate x̂x(tDt) together with variance P(tDt) for the state x(t) (x̂x(tDt)
is the estimation of x(t) at step t, with corresponding variances

P(tDt).), and giving measurements y, updating the estimate of state

variable from x̂x(tDt) to x̂x(tDtz1) could be realized by solving

minx(t)maxdy,dD Ex(t){x̂x(tDt)E2

P{1(tDt)zEy{Dx(tz1)E2

R{1

h i
ð15Þ

The estimation criterion is to minimize the worst possible effects of

the disturbances on the signal estimation errors, which ensures

that if the disturbances are small, the estimation errors will be as

small as possible. This characteristic makes the method to be

appropriate for some practical problems that disturbanfces exist in

both system and measurements.

UPWLS Solution for PET Image Reconstruction
To solve the objective function (15), we model uncertainties in

system and measurement with a norm-bounded structure [23] as

½dD,dy�~HD½Ed ,Ey� ð16Þ

where EDEƒ1 is an arbitrary contraction, fH,Ed ,Eyg are known

real constant matrices of proper dimensions that specify how the

uncertain parameters in D enter the matrices D and y.

Table 1. Definitions of symbols and abbreviations.

Symbols

x radioactivity distribution

y emission sinogram data

dy perturbation of sinogram data

m total number of bins in the system

n the total number of image voxels

D system matrix

dD perturbation of system matrix

Q penalty matrix

W weighting matrix

b smoothing parameter

N j neighborhood of the jth pixel

D norm-bounded uncertainties contraction

M,H,Ed ,Ey constant constraint for norm-bounded uncertainties

x(t) state variable in state space model

y measurement variable in state space model

F (t) state transition matrix

u(t) model uncertainties in state space description

v(t) measurement noise in state space description

Quu(t) covariance of model uncertainty u(t)

R covariance of measurement noise v(t)

R covariance of time-independent measurement noise v

Abbreviations

PET Positron Emission Tomography

PWLS Penalized Weighted Least Squares

UPWLS Uncertainty Penalized Weighted Least Squares

SOR Successive Over-Relaxation

CG Conjugate Gradient

FBP Filtered Backprojection

EM Expectation Maximization

doi:10.1371/journal.pone.0032224.t001
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Consider about the min-max cost function (15), by setting a

corresponding relationship as

x/ x(t){x̂x(tDt)½ �

y/y{Dx̂x(tDt)

D/D

W/R{1

dy/{MDEdx̂x(tDt)

dD/MDEd

H/M

Ed/Ed

Ey/{Edx̂x(tDt)

D/D ð17Þ

it is easy to get the objective function:

minxmaxEyEƒEEd x{EyE ExE2

P{1(tDt)zEDx{yzHyE2
W

h i
ð18Þ

Which is just the equivalent form of (4) under the uncertainty

model (16). Here Hy is defined as

Hy~dDx{dy~HD(Edx{Ey) ð19Þ

According to the result published in 2001 [22], we can obtain the

following unique solution for (18) by solving:

½P̂P{1(tDt)zDT ŴWD�x̂x~½DT ŴWyzl̂lET
d Ey� ð20Þ

P̂P{1(tDt) and ŴW could be defined as

P̂P{1(tDt)~P{1(tDt)zl̂lET
d Ed

ŴW~WzWH(l̂lI{HT WH){1HT W ð21Þ

where parameter l̂l could be calculated by minimizing G(l)
defined in Appendix S1 over the interval l[(ll ,?) (further detail

about how to define G(l) and how to decide l̂l will be given in

Appendix S1) with

ll~EMR{1ME ð22Þ

In practice, we can choose a reasonable approximation for l̂l,

which is to set it equal to a multiple of its low bound ll as [22]

l̂l~
(1za)ll if ll=0

0 otherwise
ð23Þ

where aw0 is designed by the user, that could be chosen to be

time variant as well.

For any determined l̂l with the corresponding relationship in

equation (17), if let R̂R~ŴW{1~R{l̂l{1MMT , equation (20)

could be written as

P{1(tjt)zl̂lET
d EdzDT R̂R{1D

h i
x̂x(tjtz1){x̂x(tjt)½ �~

DT R̂R{1 y{Dx̂x(tjt)½ �{l̂lET
d Edx̂x(tjt)

ð24Þ

By setting

P̂P{1(tDt)~P{1(tDt)zl̂lET
d Ed ð25Þ

P{1(tz1Dtz1)~P̂P{1(tDt)zDT R̂R{1D ð26Þ

e(tz1)~y{Dx̂x(tDt) ð27Þ

P(tz1)~P̂P(tDt) ð28Þ

and let

x̂x(tz1)~ I{l̂lP(tz1Dtz1)ET
d Ed

h i
x̂x(tDt) ð29Þ

we can get

x̂x(tDtz1)~P(tz1Dtz1)DT R̂R{1e(tz1)zx̂x(tz1) ð30Þ

Further more, we can obtain a form for iteration of P(tz1Dtz1) if

let

Re(tz1)~ R̂RzDP(tz1)DT
� �{1 ð31Þ

that is

P(tz1Dtz1)~ P{1(tz1)zDT R̂R{1D
� �{1 ð32Þ

~P(tz1){P(tz1)DT R{1
e (tz1)DP(tz1) ð33Þ

According to the conclusions above, an iterative process of

UPWLS estimation for the state space based PET reconstruction

would be summarized as(Please see Appendix S2 for a brief

derivation):

A Robust Approach for PET Image Reconstruction
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Given the uncertain model:

x(tz1)~x(t)zu(t)

y~½DzdD�x(t)zv

dD~MDEd

with known D, M, Ed and covariance matrix R, as defined in

(12)–(14).

Initialization: with given initial state estimation x̂x(0) ( the

initial activity distributions are zero or set to the results from

filtered back projection method for faster convergence), covariance

matrix P(0) and measurement y(0), here, P(0) is initialized with

the inversion of penalty term Q, the initial penalty Q we used is a

simple quadratic smoothness penalty. Set a to get

l̂l~(1za)EMR{1ME and calculate R̂R~R{l̂l{1MMT , then

make initialization according to (32)

P(0D0)~ P{1(0)zDT R̂R{1D
� �{1 ð34Þ

x̂x(0D0)~x̂x(0)zP(0D0)DT R̂R{1e(0) ð35Þ

e(0)~y ð36Þ

Update step from a priori estimation x̂x(tDt) and P(tDt):

x̂x(tz1)~ I{l̂lP(tz1Dtz1)ET
d Ed

h i
x̂x(tDt) ð37Þ

with

P(tz1Dtz1)~ P{1(tDt)zl̂lET
d EdzDT R̂R{1D

h i{1

ð38Þ

Figure 1. Digital Shepp-Logan phantom used in the experi-
ments.
doi:10.1371/journal.pone.0032224.g001

Figure 2. From top to bottom: The mean of Shepp-Logan
phantom images reconstructed based on noisy system matrix
with relative error 0%, 3%, 6%, 9%, 12%, and 15%. (From left to
right: EM results, PWLS results, UPWLS results.).
doi:10.1371/journal.pone.0032224.g002
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R̂R~R{l̂l{1MMT ð39Þ

Correction step with given measurement y:

e(tz1)~y{Dx̂x(tz1) ð40Þ

x̂x(tz1Dtz1)~x̂x(tz1)zP(tz1Dtz1)DT R̂R{1e(tz1) ð41Þ

Results and Discussion

Digital Phantom Data
The well-known and widely used Shepp-Logan synthetic emission

phantom (Fig. 1) with known radioactivity concentrations has been

used to evaluate our algorithm. To generate realistic data, we simulate

the emission coincidence events during prompt windows and delayed

Figure 3. Horizontal profiles through sample mean of estimators based on noisy system matrix with relative error 0%, 3%, 6%, 9%,
12% and 15%.
doi:10.1371/journal.pone.0032224.g003

Table 2. Comparative studies of estimated activity
distribution on synthetic data.

Noise
Level EM PWLS+CG UPWLS

0% 0.18961+0.38458 0.22543+0.40019 0.31124+0.53637

3% 0.35910+0.61881 0.34407+0.58749 0.32570+0.54911

6% 0.51466+0.85399 0.59663+0.94242 0.38493+0.62611

9% 0.61897+1.01270 0.74372+1.15510 0.48881+0.75809

12% 0.69197+1.12480 0.82508+1.28050 0.58294+0.89329

15% 0.74476+1.20850 0.87524+1.35990 0.66465+1.01970

Each data cell represents reconstruction error: bias + std.
doi:10.1371/journal.pone.0032224.t002

A Robust Approach for PET Image Reconstruction
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windows respectively. The prompt data has to be modified to subtract

the effects of the random events. Taking these effects into account, the

measured sinogram y is created based on the equation:

yprompt~Poissonfytruez60%:ytruez20%:ytrueg

ydelay~Poissonf60%:ytrueg

y~yprompt{ydelay

Here, we model the random and scatter events to be uniform field of 60

percents and 20 percents respectively. yprompt is the number of

coincident photon pairs collected in the prompt windows, while ydelay is

the number of coincident photon pairs collected in the delay windows.

The total photon counts are set to be 100K. Then we generate 50

realizations of pseudorandom emission measurements independently.

In order to investigate how the noise in the system matrix affects the

reconstructed image, we generate a noisy system matrix D through

changing the factors related to attenuation effects with the mean

relative error in the range of 0%–15%, where the error is defined by

error~
1

Np{1

X
(Dnoise{Dtrue)2

� �0:5

ð42Þ

with Np is the total number of pixels. Finally, each noisy sinogram is

reconstructed with three different algorithms: the popular EM and

PWLS+CG (where the penalty term is a commonly used standard

quadratic smoothing penalty) [9], and the proposed UPWLS method.

These processes are executed iteratively until it meets the convergence

criterion, which is defined by two consecutive normalized errors

x(tz1) and x(t) through Ex(tz1){x(t)Evz with z being a small

constant, and x defines the normalized error between the estimated

and the exact value with

x~
1

N

PN
i~1

DJt
i{Jr

i D
2

PN
i~1

DJt
i D

2

0
BBB@

1
CCCA

0:5

ð43Þ

whereJt
i is the estimated value,Jr

i is the corresponding true value, and

i indicates the pixel.

The images of the mean pixel values obtained by the three

algorithms (EM [7], PWLS+CG [9,10], UPWLS) based on noisy

system matrix are shown in Fig. 2, while the horizontal profiles of

the 18th row through the sample mean are plotted in Fig. 3. The

figures show obviously that the PWLS+CG results have large bias,

while the UPWLS framework seems free of such a bias.

A detailed statistical analysis on the estimation results against

the ground truth phantom map is performed. Let Np be the total

number of pixels and x̂xi be the final reconstruction result of pixel i

respectively, and xm be the mean value of the ground truth

through all the pixels, then we have the following error definitions:

bias~
1

Np

X
i

(x̂xi{xm) ð44Þ

std~
1

Np{1

X
i

(x̂xi{xm)2

 !0:5

ð45Þ

The bias and variance of errors are averaged over the 50

reconstructions to give the estimates bias and variance at different

noise levels which are summarized in Table 2. EM and PWLS

perform well in noise-free case, but degradation of the image

quality is observed in the noisy system model. The UPWLS

framework results demonstrate the bias and standard variation

remain more stable over the changing system matrix, which can be

observed more clearly by percentage. For example, the bias is

improved by 25.21% and 35.48% in average over EM and PWLS

algorithms, and the standard deviation is improved by 26.63% and

23.56% in average over EM and PWLS algorithms, respectively,

for the case with model error of 6%. Overall, these figures and

results illustrate that it is possible that small noise errors lead to

large estimation errors for traditional methods. On the other hand,

very stable results are obtained with UPWLS framework, showing

its desired robustness for real-world problems.

Real Phantom Data
The real data set used in this study was acquired on Hamamatsu

SHR-22000 scanner [24] using a 6-spheres phantom, which is

Figure 4. The geometry of real phantom, emission sinogram obtained by the SHR-22000.
doi:10.1371/journal.pone.0032224.g004

A Robust Approach for PET Image Reconstruction
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Figure 5. The reconstructed radioactivity map using the EM(top), PWLS(middle), and UPWLS(bottom) method in 4 iterations (left)
and 12 iterations(right).
doi:10.1371/journal.pone.0032224.g005

Figure 6. Vertical profiles through reconstructed images: 4 iterations (left) and 12 iterations(right).
doi:10.1371/journal.pone.0032224.g006

A Robust Approach for PET Image Reconstruction
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usually employed to measure the recovery coefficients. The SHR-

22000 scanner is designed as a whole body imaging system. It has

a 838mm detector ring diameter with a patient aperture of

600mm, an axial field of view (FOV) of 224mm, operates in 2D or

3D mode. For the phantom, there are six circular regions of

different diameters. These sphere objects have diameters of 37mm,

28mm, 22mm, 17mm, 13mm, 10mm and are inserted in a circular

cylinder with diameter of 200mm corresponding to a volume of

9300ml, as shown in Fig. 4. The phantom filled with pure water

was located at the center of both transaxial and axial FOV in the

scanner using the patient bed. Transmission data were acquired in

2-D and prompt-delayed coincidence model using rotating 68Ge
rod sources with total activity around 148MBq. A long blank scan

was first acquired for 60 minutes. We injected F-18 concentration

with initial activity of 107.92 kBq/ml into the six spheres. A 120-

minutes scan was then performed. Fig. 4 shows the sinograms

obtained from the emission scan. Here, system matrix Dij is

computed by with a single ray approximation model, which can be

approximately viewed as the length of intersection between the jth
pixel and the ith projection ray, i.e. Dij~lij . Longer lij indicates

larger detection sensitivity.The random events have been removed

by utilizing delayed window coincidence technique. Conventional

EM methods, PWLS and our algorithm as described in the

previous section have been applied to recover images from the

noisy data as shown in Fig. 5. Along with the vertical profiles (34#
col), as shown in Fig. 6, it is evident that UPWLS results are faster,

more stable, and can achieve more robust convergence of the

estimates. Since PWLS converges more slowly, a longer

computation time is thus expected. In a further quantitative

analysis of the algorithms, the mean concentration values with

standard derivation of the estimates are summarized in Table 3. It

can seen that the variance performance for the UPWLS is better

than EM, while the mean performance is slightly worse. Two

reasons lead to such result: (1) The parameters used in UPWLS are

not yet optimal; (2) The UPWLS does not incorporate the Poisson

model of the measurement data while EM does.

Discussion
There are many different approaches for PET image recon-

struction from projections, most of which are based on exactly

known system model or system matrix. Several attempts were

made to tackle this problem based on a specific type of modelling

error, such as positron range, non-colinearity of the photon pair,

and depth of interaction effect et al. Unlike these existing efforts

that are limited to single type of modelling error, we propose an

UPWLS method to handle statistical uncertainties of the system.

The P (0), Ed , and R matrices that are used in the UPWLS

framework are chosen according to the confidence measurements

on state x, system model and measurement noise respectively. For

example, if we know that the noise in the system model is smaller

than the measurement noise, we should make the Ed matrix

smaller than the R matrix, which de-emphasizes the importance of

the uncertainties of system model relative to the measurement

noise. Further, we believe that any prior knowledge of the system

model and measurement data should enable us to achieve higher

estimation efficiency and more robust results.

In our current implementation, the parameters are set to some

empirically fixed values in all experiments: H~1,Ed~

diagf0:5|10{4g: Ideally, these parameters could be adaptively

updated during the estimation process. The simulation experi-

ments are designed to show the robustness and accuracy of the

proposed method, and the physical phantom experiment is used to

show its efficiency and accuracy for the real world problem.

Overall, our experiment results reveal that it is possible that small

noise errors in system matrix may lead to large estimation errors

for exactly known model-based schemes, while the UPWLS

framework produces consistent results even with highly noisy

system matrix, which promises robustness for real-world problems.

On the other hand, current methods requires huge storage and

expensive computation as today’s PET scanners have a large set of

detector pairs and the inversion of the system matrix. With the

method mentioned in the Appendix S3, we are able to get the

inversions faster and more accurate. Furthermore, another fast

algorithm, called fast state space filter has been developed. The

most interesting thing is that our framework naturally allows the

combination of the reconstruction process with the data

acquisition task.

As a continuation of this work, based on the tracer kinematics

equation coming from compartment model, we can recover

dynamic changes of tracer density in a continuous time domain for

dynamic PET with an uncertain system model.

Detailed investigations on these issues are underway.

Conclusion
In this paper, we have developed an uncertainty weighted least

squares framework for the estimation of activity distribution from

PET measured data. The approach enables us to incorporate the

system uncertainties into PET image reconstruction, thus

providing more robust and stable results. Analytical and

experimental results with Shepp-Logan simulation phantom data

and real PET measurements demonstrate the power of the

proposed method.

Supporting Information

Appendix S1 Derivations for UPWLS solution.

(PDF)

Appendix S2 The iterative expression for state variable
and variance.

(PDF)

Appendix S3 Inversion of a large sparse matrix -
GMRES(Generalized Minimal Residual) method.

(PDF)

Acknowledgments

We thank the 973 program of China (2010CB732504) and the Department

of Science and Technology of Zhejiang Province(2010C33026) for their

support.

Author Contributions

Conceived and designed the experiments: HL PS. Performed the

experiments: HL SW YT FG. Analyzed the data: SW YT FG. Contributed

reagents/materials/analysis tools: ZH WC. Wrote the paper: HL ZH WC.

Table 3. Quantitative values measured from the six-sphere
phantom.

True
value(kBq/
ml) EM (kBq/ml)

PWLS+CG (kBq/
ml) UPWLS (kBq/ml)

107.92 114.18+12.42 120.04+14.74 116.91+9.31

doi:10.1371/journal.pone.0032224.t003
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