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Abstract: Hypertension is an antecedent to cardiac disorders. According to the World Health
Organization (WHO), the number of people affected with hypertension will reach around 1.56 billion
by 2025. Early detection of hypertension is imperative to prevent the complications caused by
cardiac abnormalities. Hypertension usually possesses no apparent detectable symptoms; hence,
the control rate is significantly low. Computer-aided diagnosis based on machine learning and
signal analysis has recently been applied to identify biomarkers for the accurate prediction of
hypertension. This research proposes a new expert hypertension detection system (EHDS) from pulse
plethysmograph (PuPG) signals for the categorization of normal and hypertension. The PuPG signal
data set, including rich information of cardiac activity, was acquired from healthy and hypertensive
subjects. The raw PuPG signals were preprocessed through empirical mode decomposition (EMD)
by decomposing a signal into its constituent components. A combination of multi-domain features
was extracted from the preprocessed PuPG signal. The features exhibiting high discriminative
characteristics were selected and reduced through a proposed hybrid feature selection and reduction
(HFSR) scheme. Selected features were subjected to various classification methods in a comparative
fashion in which the best performance of 99.4% accuracy, 99.6% sensitivity, and 99.2% specificity
was achieved through weighted k-nearest neighbor (KNN-W). The performance of the proposed
EHDS was thoroughly assessed by tenfold cross-validation. The proposed EHDS achieved better
detection performance in comparison to other electrocardiogram (ECG) and photoplethysmograph
(PPG)-based methods.

Keywords: pulse plethysmograph; biomedical signal processing; feature extraction; machine learning;
feature selection and reduction; empirical mode decomposition; discrete wavelet transform; hypertension

1. Introduction

Hypertension, also known as high blood pressure, is one of the most common risk
factor for cardiovascular disease (CVD) [1]. It is a very common condition in which a large
amount of force from the blood pushes on the walls of the arteries leading towards heart
diseases [2]. The main risk factors for hypertension include age, genetics, gender, lack of
physical activity, bad diet practices, high cholesterol, excessive salt consumption, less in-
take of vegetables and fruit, smoking, obesity, family history, and other diseases such
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as kidney disease or diabetes [3]. According to the World Health Organization (WHO)
statistics, 1.13 million of the world population suffers from hypertension, and more men
are affected than women. One out of every four men suffers from high blood pressure
issues [3]. It is a silent killer that affects the most significant tissues of the human body [4].
Indeed, many people are not aware they have hypertension [5]. In the US, an estimated
13 million people are unaware of their condition [6], while in China, 59% of people with
hypertension are unaware of their condition [5]. In Pakistan, 18% of the adults are affected
by hypertension, and 33% of the adults above the age of 45 were affected according to the
National Health Survey Pakistan [7]. Prevalence rates of hypertension based on genetic
and ethnic variations ranges from about 29% for Asians, 45% for black men, and around
46.3% for women [8].

Table 1 describes a blood pressure ranges of normal and hypertension in terms of
systolic and diastolic pressures. Some of the common symptoms of hypertension in-
clude headaches, dizziness, migraine, lightheadedness, changes in vision, or fainting
episodes [9]. Hypertension serves as the first step towards CVDs, but the most chronic
effect of unchecked hypertension is stroke, which can lead to permanent paralysis of certain
body parts. Prolonged and undetected hypertension can be fatal; therefore, its detection in
the preliminary stages is crucial.

Table 1. Categorization of blood pressure.

Class Systolic (mmHg) Diastolic (mmHg)

Optimal Less than 120 Less than 80
Normal 120 to 129 80 to 84

High Normal 130 to 139 85 to 89
Hypertension More than or equal to 140 More than or equal to 90

Moreover, the world is currently suffering from the outbreak of a pandemic COVID-
19 caused by the coronavirus SARS-CoV-2. It was reported that there are some specific
comorbidities associated with a high risk of infection and increased severity of lung in-
jury. Most of the common comorbidities in COVID-19 patients are hypertension (30%),
cardiovascular disease (8%), and diabetes (19%) [10]. Therefore, it is not entirely surpris-
ing that the COVID-19 patients experiencing worst complications are hypertensive since
hypertension is most frequent in older people and these elderlies are particularly at risk
of being infected by a coronavirus [11]. Given the above information and statistics, it is
clear that we need a technique for recognizing hypertension as early as possible to avoid
significant damage to one’s body.

Various techniques including physiological signals such as electrocardiogram (ECG)
and photoplethymograph (PPG) are currently being used to detect hypertension. De-
tection of hypertension from PPG signals (MIMIC database) using continuous wavelet
transform (CWT) and the GoogLeNet deep learning model [12] achieved an F1 score of
92.55%. This work relies on a deep learning model so it requires high processing power,
large scale data sets, and more training time. The authors of [13] proposed a method based
on pulse arrival time (PAT) features extracted from PPG and ECG signals. The k-nearest
neighbor (KNN) classification method was employed to predict hypertension with an
F1 score of 94.84%. The research achieved acceptable results but missing consideration
of preprocessing the PPG signals as PPG suffers from motion artifacts and variation in
light intensity. Identification of hypertension [14] from heart rate variability (HRV) signals
yielded an accuracy of 85.47% using standard deviation of all NN intervals and multiple
instance learning (MIL). However, HRV feature extraction for long-term data requires
significant processing resources. A model [15] to detect hypertension obtained 93.33%
accuracy using Savitzky–Golay filtering (SGF), entropy features extracted from ECG, and a
support vector machine (SVM) classifier. The method achieved a considerable performance
on a comparatively small data set consisting of 48 participants.
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In [16], the authors proposed a hypertension detection framework based on five
principal components extracted from HRV signals to achieve the highest accuracy of
85.5% with quadratic discriminant analysis (QDA). Rajput et al. [17] proposed a scheme
to identify the low and high risk of hypertension. The scheme yielded classification
accuracy 100% using optimal orthogonal wavelet filter back (OWFB), log, and fractal
dimension features extracted from ECG. Despite promising results, this work suffers
from a data imbalance problem. The authors in [18] proposed a method to detect ECG
hypertensive signals using empirical mode decomposition (EMD) for preprocessing of the
signals, yielding an accuracy of 97.7% through the KNN classifier. The extracted features
were selected physically, making this process laborious. The method was only trained
on a small data set. A system to detect hypertension using morphological descriptors
derived from PPG with 92.31% accuracy is discussed in [19]. Identification of hypertension
patients from ballistocardiograms (BCG) is presented in [20]. The system achieved a mean
accuracy of 84.4% using class association rules (CAR) classifier and morphological features.
The BCG signals were collected from patients lying on a smart mattress which has a
limited availability.

Medical devices in hospitals can easily get affected by electromagnetic interference
(EMI) in a complex electromagnetic environment [21,22]. ECG signals are usually affected
by the EMI and preconditioning circuits. Changes in temperature and ambient lighting
conditions impact the PPG signal acquisition. PPG signal acquisition is exposed to motion
artifacts as well [23]. The frequency of the PPG signal is about 1–3 Hz [24], so it also
requires a high order filter for signal denoising. The motivation behind this research was
to investigate the feasibility of a new signal modality, i.e., pulse plethysmograph (PuPG).
In contrast to PPG that uses light to detect the volume of blood flow in the finger, the PuPG
senses the pressure changes in blood flow.

1.1. Main Contributions

In this research, novel PuPG signals were used to design the hypertension
detection system. The PuPG signal includes considerable cardiac health characteristic
information [25–27]. The PuPG signals are recently being used for emotions classifica-
tion [28] and biometric systems [29] as well. The main contributions of this work are listed
as follows:

• This is the first study that used PuPG-based signals for the detection of hypertension.
• To accurately detect the hypertension pattern, we extract a large number of multi-

domain features from preprocessed PuPG signals through discrete wavelet transform
(DWT) and EMD.

• To reduce the feature dimensions and redundancy while improving the discriminative
power of features, we proposed a hybrid feature selection and reduction (HFSR)
scheme.

• The proposed expert hypertension detection system (EHDS) comprises preprocessing
through EMD, followed by the feature extraction, kernel principal component analysis
(KPCA), and weighted k-nearest neighbor (KNN-W) classifier, achieved an accuracy
of 99.4%, sensitivity of 99.6%, and specificity of 99.4%.

The rest of this paper is structured as follows: Section 2 gives details about the materi-
als used in this study. Section 3 describes the details about the methods. Next, we present the
results in Sections 4 and 5 discuss the proposed method and its comparative analysis.
Section 6 concludes this research paper.

2. Materials
2.1. Data Acquisition

In this study, a portable pulse plethysmograph (PuPG) sensor PTN-104 (NISensors,
iWorx Systems Inc., Dover, UK) in combination with NI myDAQ (National Instruments
Corporation, Austin, TX, USA) was used for PuPG data acquisition. PTN-104 sensor
is attached to the index finger of the subject to convert pulse pressure into an electrical
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voltage signal. The real-time integral of its output signal produces the same volume pulse
signal as the expensive infrared PPG sensor. The PTN-104 is a rugged non-magnetic
accelerometer, which is made up of piezoelectric material. IX-myDAQ (National In-
struments Corporation, Austin, TX, USA) is a breakout board used for connecting the
PTN-104 sensor and myDAQ (National Instruments Corporation, Austin, TX, USA) for
data acquisition via mini DIN7 port. NI myDAQ is a low-cost data acquisition tool that
converts analog signals to digital format and allows the users to analyze real-time data
in NI LabVIEW software (National Instruments Corporation, Austin, TX, USA) on PC.
The sampling frequency was set to be 1 kHz for PuPG data acquisition.

It is very essential to highlight the difference between PPG and PuPG signals and
sensors. Both of them operate on completely different principles with different input
parameters. Table 2 presents a comparison between various properties of both sensors such
as input parameters, working principles, and the impact of noise on a signal acquisition.
Figure 1 illustrates the output signals acquired from both sensors. It was observed that
the PuPG signal carries more information as compared to the PPG signal since multiple
frequencies contribute towards the dicrotic notch for PuPG.

Table 2. Difference between PPG and PuPG data acquisition.

Type Photoplethysmograph (PPG) Sensor Pulse Plethysmograph (PuPG) Sensor

Input signal Optical signal Pressure changes

Phenomenon
Blood volumetric changes are detected
by measuring the amount of light
transmitted or reflected by the sensor.

Blood volumetric changes are detected by the
piezoelectric material of the sensor as pressure
changes when the blood volume changes.

Noise Impact

Light signal can be easily impacted by
any external light changes.

Piezoelectric material based sensors are normaly
temperature sensitive.

Dirty hand can distort the light
intensities.

Dirty hands or foreign material on hand or fingers
does not have significant impact.

(a) Photoplethysmograph signal (b) Pulse Plethysmograph signal

Figure 1. Visual comparison of Photoplethysmograph (PPG) and Pulse Plethysmograph (PuPG) signals.

2.2. Data Set Description

Raw PuPG signals were acquired from the subjects. The data acquisition was carried
out for developing a two-class data bank; one was hypertension and the other normal.
A total of 700 signals were collected from hypertension subjects and 709 signals from
normal subjects, with a timestamp of 10 s per signal and a sampling frequency of 1000 Hz.
Subjects were advised to keep calm and remain static during data acquisition activity.
Informed consent was obtained from all participants included in the research. Recording
activity was performed between breakfast and lunch time. None of the involved subjects
were smokers or diabetic. Table 3 shows the details of the subjects and the acquired
data for this study. Figure 2 shows a comparison of raw PuPG signals collected from a
normal subject and a subject suffering from hypertension. Sometimes acquired signals



Sensors 2021, 21, 247 5 of 32

(both normal and hypertension) were affected by the circuit noise. The noise/power line
distortion incurred due the embedded electronics of data acquisition setup can be seen as a
sinusoidal oscillatory component (50 Hz) in the normal PuPG Hat of Figure 2.

Table 3. Summary of the self-collected PuPG data set.

Data Class Subjects Age Group Samples

Hypertension Male: 29 Male: 40–76 700
Female: 27 Female: 39–59

Normal Male: 35 Male: 21–63 709
Female: 30 Female: 20–59

Overall 121 20–76 1409

Figure 2. Raw PuPG signals of Normal and Hypertension classes.

3. Methods
3.1. Design of the Study

The proposed methodology in this research adopts the machine learning paradigm
shown in Figure 3. It consists of four main stages, namely (i) preprocessing; (ii) feature
extraction; (iii) hybrid feature selection and reduction, and (iv) classification. These stages
are separated through a dotted line in Figure 3. Each step is elaborated in detail in
forthcoming sections. This research adopts a comparative approach between two pattern
analysis frameworks, i.e., method I and method II. Method I is comprised of discrete
wavelet transform (DWT)-based preprocessing while method II adopts empirical mode
decomposition (EMD) for signal denoising. The rest of the framework for both methods
is the same. The feature values extracted, reduced feature vectors, and the performance
of the classifiers vary for both methods due to the difference in preprocessing methods.
All experiments were performed on MATLAB 2018a (The MathWorks, Inc., Natick, MA,
USA) running on a personal computer with Core i7 (Intel Corporation, Santa Clara, CA,
USA) processors and 32 GB RAM.
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Figure 3. Overall flow chart of the proposed design methodology for detection of hypertension
through pulse plethysmograph signals.

1. Preprocessing: It removes the irrelevant information and artifacts from the acquired
PuPG signal data of normal and hypertension classes. Method I employs discrete
wavelet transform (DWT) for signal denoising through frequency and mean relative
energy-based criteria. Method II adopts empirical mode decomposition (EMD) for
noise elimination through analysis of mean frequencies and energies of individual
signal components extracted from normal and hypertension classes.

2. Feature extraction: It extracts a combination of 102 features from preprocessed PuPG
through DWT and EMD separately. These include time, frequency, spectral, texture,
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and cepstral features. The difference between signal classes is best captured through
the extraction of a wide range of informative features.

3. Feature selection and reduction: This step eliminates features with redundant infor-
mation through a hybrid feature selection and reduction (HFSR) method that is a com-
bination of multiple feature ranking and transformation schemes. A high-dimensional
feature vector is reduced through a new strategy of the averaging outcome of seven
feature ranking methods, thus providing more reliable results. Next, we employed
kernel principal component analysis (KPCA) to further decrease the feature dimen-
sion and represent significant information in fewer parameters. Extracted features
in both method I and II are fed to the HFSR scheme to reduce the dimension of the
resultant feature vector.

4. Classification:The final feature vectors extracted in both methods I and II of hyperten-
sion and normal classes are fed to a range of different classifiers, i.e, support vector
machines (SVM), k-nearest neighbors (KNN), ensemble methods, decision trees (DT),
and logistic regression (LR). Classification performance of both methods is evaluated
through a baseline tenfold cross-validation strategy and compared with 5-, 15-, 20-,
and 25-fold cross-validation.

3.2. Preprocessing

The acquired PuPG data were contaminated with noise and artifacts and include
redundant information (Figure 2). These noise components needs to be eliminated for a
robust performance of the proposed system. Therefore, we employed DWT and EMD-based
preprocessing for signal denoising. Later on, we compared the preprocessing performance
of both methods.

3.2.1. Discrete Wavelet Transform

The discrete wavelet transform (DWT) is a widely applied approach in biomedical
signal processing applications [30–32]. DWT decomposes a signal into different resolutions
by using a combination of high-pass and low-pass filters. Figure 4 illustrates the complete
process of wavelet-based denoising [33] adopted in this research. Numerous filter coeffi-
cients have been developed for diverse types of signal analysis applications—for instance,
Daubechies, Symlets, and Coiflets coefficients, etc.

In this study, we employed the Symlet wavelet due to its similarity with the shape
of the PuPG signal under consideration [34,35]. Symlet wavelet yields the best results as
compared to others due to its resemblances with the morphological characteristics of the
PuPG signal.

Table 4 exhibits information about decomposition levels, frequency ranges, and mean
relative energies of normal and hypertension data classes of PuPG signals. It can be
observed that D1, D2, D3, and D4 signal components have high frequency range and
include low mean relative energies; therefore, these components were eliminated while
reconstructing a denoised signal. This is also endorsed by the fact that the PuPG signal has
a very low frequency (normally less than 60 Hz). Figure 5 provides a graphical illustration
of wavelet decomposition for normal and hypertension PuPG signals. Figure 6 presents
the denoised signal generated as a result of applying DWT. High frequency noise visible in
raw PuPG signal (Figure 2) is eliminated in the denoised version.
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Figure 4. Wavelet-based denoising.

Table 4. Comparison of mean relative energies and frequency ranges of various decomposition levels
for Normal and Hypertension classes.

Decomposition Levels Frequency Range (Hz)
Mean Relative Energy (%)

Normal Hypertension

D1 250–500 0.07% 0.59%
D2 122–256 0.09% 0.32%
D3 61.1–128 0.19% 0.35%
D4 30.6–63.9 0.46% 0.49%
D5 15.3–31.9 1.93% 3.10%
D6 7.65–16 14.77% 13.31%
D7 3.84–7.97 31.03% 21.49%
D8 1.94–3.99 29.11% 19.05%
D9 1.03–1.99 21.11% 26.77%
D10 0.594–0.958 0.16% 7.65%
A10 0–0.431 1.08% 6.88%
A4 0–31.2 99.19% 98.26%
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Figure 5. Wavelet decomposition of raw PuPG signals.
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Figure 6. Denoised version of PuPG signal for Normal and Hypertension through DWT.

3.2.2. Empirical Mode Decomposition

EMD is an adaptive method that derives fundamental functions directly from the
data [36]. EMD does not require any previously known value of the signal for its com-
putation. The principal task for computing EMD of a given signal is to empirically de-
termine the intrinsic oscillatory components through their particular time scales in a sig-
nal and subsequently disintegrate the signal into intrinsic mode functions (IMFs) [37].
Therefore, EMD provides remarkably better results for nonlinear and non-stationary
biomedical signals.

Selection criteria of IMF have to satisfy two conditions;

• In the entire signal, the total number of local extrema and zero crossings must be equal
to each other or differ by a maximum one.

• The average of the envelopes computed through local minima and local maxima must
be zero.

The systematic approach to disintegrate the signal into its IMFs is known as the
“sifting” process, explained in Figure 7.

The basic objective of applying EMD for preprocessing the PuPG signal was to decom-
pose the distorted signal into its constituent IMFs as depicted in Figure 8. Considering the
fact that some IMFs carry discriminative and characteristic information about various data
classes while others include redundant and noisy content, the determination of the proper
number of IMFs is a crucial step towards creating an effective signal denoising strategy.

It is perceived from Figure 8 and Table 5 that the first IMF includes mainly high-
frequency content. Table 5 provides mean frequency and energy information of each IMF
for normal and hypertension data classes of the PuPG signal. The first IMF also holds very
little mean relative energy components for both classes, i.e., 0.00% and 1.02% for normal
and hypertension classes, respectively. Therefore, it was discarded while reconstructing
the denoised signal. All other IMFs and residual signals were added to form a denoised
version of the PuPG signal. Figure 9 illustrates the PuPG signal denoised through the EMD
process for normal and hypertension data. It is clear that high frequency noise that was
visible in raw PuPG signal (Figure 2) is eliminated now.
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Figure 7. EMD algorithm (flow chart).

Table 5. Comparison of mean relative energies and frequency ranges of various intrinsic mode functions (EMD) for Normal
and Hypertension classes. Bold font indicates the selected components.

Components
Normal Hypertension

Mean Frequency Range (Hz) Mean Relative Energy (%) Mean Frequency Range (Hz) Mean Relative Energy (%)

IMF1 103–483 0.00 86.5–484 1.02
IMF2 11.3–60.2 0.14 40.7–219 0.35
IMF3 3.09–14 30.34 3.3–61 2.04
IMF4 2.99–12.2 4.97 3.34–23.3 6.65
IMF5 1.28–10 22.76 2.98–11.4 14.95

Residual 0.129–5.55 41.78 0.0197–4.33 74.99
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Figure 8. EMD decomposition of raw PuPG signals.
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Figure 9. Preprocessed signal using EMD.

3.3. Feature Extraction

The objective of the feature extraction stage is to extract significant features from the
biomedical signals of various classes that contributes towards an effective classification
performance. In this study, a total of 102 features were separately computed from the
PuPG signal denoised through DWT and EMD. Table 6 lists all the extracted features along
with their statistical measures of mean and standard deviation (STD) for method I (DWT)
and method II (EMD). We extracted time domain [38–45], spectral [46,47], fractal and
chaos [48,49], chroma [50,51], cepstral [52], and texture features [53] and analyzed them sta-
tistically.

Table 6. Statistical data of all extracted features for both methods.

Method I Method II

Feature
Normal Hypertension Normal Hypertension

Mean STD Mean STD Mean STD Mean STD

Mean 0.008 0.027 0.017 0.031 0.001 0.049 0.013 0.053
Standard Deviation 0.253 0.032 0.250 0.046 0.254 0.032 0.248 0.045

Skewness −1.959 0.522 −2.144 0.651 −1.997 0.576 −2.220 0.641
Kurtosis 6.993 1.499 8.083 3.864 7.139 1.688 8.297 3.944

Peak to Peak Value 1.380 0.199 1.398 0.140 1.377 0.178 1.375 0.144
Root Mean Square 0.255 0.033 0.252 0.047 0.258 0.038 0.254 0.046

Crest Factor 1.659 0.939 1.635 0.381 1.587 0.991 1.523 0.536
Shape Factor 1.484 0.134 1.458 0.159 1.522 0.163 1.465 0.167

Impulse Factor 2.435 1.297 2.382 0.593 2.371 1.376 2.171 0.632
Margin Factor 15.22 14.64 15.12 7.27 15.16 15.56 13.39 6.45

Energy 389.6 209.7 437.4 207.6 393.9 207.4 448.5 222.5
Peak to RMS Value 3.894 0.623 4.094 0.991 3.921 0.663 4.108 1.102

Root Sum of Squares 18.933 5.600 20.292 5.089 19.069 5.525 20.480 5.412
Shannon Energy 549.7 312.3 618.2 279.7 526.6 295.8 686.5 414.4

Log Energy −27,888 15,515 −34,569 18,644 −28,509 16,289 −32,613 16,387
Mean Absolute Deviation 0.169 0.026 0.169 0.043 0.169 0.028 0.168 0.043

Median Absolute Deviation 0.074 0.026 0.071 0.030 0.071 0.033 0.059 0.024
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Table 6. Cont.

Method I Method II

Feature
Normal Hypertension Normal Hypertension

Mean STD Mean STD Mean STD Mean STD

Average Frequency 0.002 0.001 0.001 0.001 0.002 0.003 0.002 0.002
Jitter 137.1 180.9 85.5 150.4 159.0 248.8 52.0 95.8

Spectral Mean 3.144 5.928 0.771 1.960 8.623 15.700 2.764 6.372
Spectral Standard Deviation 3.401 4.833 1.549 3.463 7.571 11.498 3.031 6.016

Spectral Skewness 2.361 1.496 3.763 1.295 0.996 1.360 1.797 1.908
Specral Kurtosis 11.331 8.235 20.190 9.589 5.588 4.947 10.564 8.751

Spectral Centroid 9.442 0.202 9.915 1.481 9.771 1.576 10.768 2.216
Spectral Flux 0.008 0.002 0.008 0.002 0.008 0.002 0.008 0.002

Spectral Roll-off 91.699 1.010 96.587 8.383 97.036 10.371 136.257 44.372
Spectral Flatness 0.025 0.014 0.051 0.035 0.063 0.065 0.171 0.138

Spectral Crest 0.642 0.012 0.621 0.040 0.631 0.030 0.593 0.059
Spectral Decrease −4.333 0.228 −4.013 0.658 −4.169 0.538 −3.656 0.830

Spectral Slope −0.023 0.003 −0.023 0.003 −0.024 0.003 −0.023 0.005
Spectral Spread 18.505 0.199 19.029 1.178 19.328 1.617 23.521 5.818
Mean Frequency 4.347 0.949 4.999 3.451 4.989 3.063 6.446 4.440

Median Frequency 3.574 0.803 2.972 0.880 3.811 3.573 2.846 0.753
Spurious-free Dynamic Range 3.073 6.019 2.196 2.107 3.163 6.451 2.056 1.812

Signal to Noise Distortion −0.885 6.041 −2.036 3.101 −0.755 6.819 −2.097 3.030
Total Harmonic Distortions −2.376 5.452 −0.938 4.964 −3.144 6.562 −0.396 4.110

1st Coeffient of MFCC −44.99 0.37 −44.716 0.512 −44.84 0.60 −44.45 0.80
2nd Coeffient of MFCC 6.268 0.523 6.661 0.714 6.480 0.846 7.028 1.122
3rd Coeffient of MFCC 5.976 0.499 6.350 0.683 6.169 0.802 6.690 1.066
4th Coeffient of MFCC 5.508 0.462 5.851 0.634 5.671 0.733 6.148 0.976
1st Coeffient of GFCC −7.183 0.430 −6.762 0.610 −7.027 0.793 −6.220 1.266
2nd Coeffient of GFCC 1.844 0.063 1.869 0.071 1.522 0.419 1.119 0.574
3rd Coeffient of GFCC 0.553 0.138 0.367 0.269 0.643 0.105 0.492 0.206
4th Coeffient of GFCC 0.301 0.024 0.266 0.033 0.392 0.109 0.408 0.109

1st Coefficient of Chroma Vector 0.383 0.235 0.750 0.501 0.653 0.532 2.126 1.930
2nd Coefficient of Chroma Vector 0.416 0.258 0.773 0.518 0.663 0.546 2.130 1.948
3rd Coefficient of Chroma Vector 0.433 0.269 0.842 0.575 0.742 0.672 2.129 2.144
4th Coefficient of Chroma Vector 0.623 0.378 1.297 0.942 0.700 0.568 2.011 2.046
5th Coefficient of Chroma Vector 0.564 0.337 1.212 0.872 0.691 0.534 2.044 1.935
6th Coefficient of Chroma Vector 0.527 0.320 1.230 0.987 0.748 0.563 2.227 2.267
7th Coefficient of Chroma Vector 0.483 0.296 1.069 0.760 0.705 0.524 2.107 1.893
8th Coefficient of Chroma Vector 0.451 0.279 0.982 0.696 0.686 0.528 2.071 1.863
9th Coefficient of Chroma Vector 0.429 0.268 0.908 0.638 0.679 0.529 2.099 1.929
10th Coefficient of Chroma Vector 0.400 0.251 0.878 0.609 0.651 0.537 2.087 1.848
11th Coefficient of Chroma Vector 0.373 0.232 0.776 0.537 0.668 0.522 2.106 1.954
12th Coefficient of Chroma Vector 0.348 0.225 0.705 0.474 0.622 0.522 2.078 1.890
Enhanced Mean Absolute Value 0.297 0.039 0.302 0.055 0.294 0.052 0.301 0.049

Enhanced Wavelength 236.4 133.5 413.7 319.8 284.3 198.6 665.7 515.0
Wavelength 36.83 21.94 85.59 96.94 54.42 46.94 193.47 186.80

Slope Sign Change 45.1 86.9 508.4 549.0 1039.5 1657.6 3463.1 2792.1
Average Amplitude Change 0.006 0.003 0.010 0.009 0.009 0.009 0.021 0.018

Difference Absolute Std. Dev. 0.009 0.003 0.013 0.010 0.014 0.010 0.027 0.021
Log Detector 0.108 0.030 0.118 0.037 0.107 0.043 0.117 0.036

Modified Mean Absolute Value 0.130 0.025 0.133 0.034 0.130 0.033 0.132 0.030
Modified Mean Absolute Value 2 0.083 0.022 0.089 0.026 0.084 0.027 0.087 0.020

Pulse Percentage Rate 0.939 0.029 0.953 0.027 0.937 0.045 0.957 0.035
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Table 6. Cont.

Method I Method II

Feature
Normal Hypertension Normal Hypertension

Mean STD Mean STD Mean STD Mean STD

Simple Square Integral 389.6 209.7 437.4 207.6 393.9 207.4 448.5 222.5
Willison Amplitude 1153.6 765.6 2670.8 2603.9 1836.0 1707.6 4551.3 3502.4

Maximum Fractal Length −0.463 0.384 −0.136 0.740 −0.174 0.594 0.428 1.121
Root Squared Zero Order Moment 2.592 0.032 2.600 0.026 2.593 0.031 2.601 0.028
Root Squared 2nd Order Moment 2.068 0.066 2.036 0.062 1.984 0.115 1.913 0.130
Root Squared 4th Order Moment 2.045 0.077 2.001 0.078 1.891 0.159 1.794 0.205

Sparseness 0.535 0.064 0.582 0.086 0.655 0.137 0.747 0.188
Irregularity Factor −0.464 0.037 −0.445 0.047 −0.446 0.058 −0.406 0.061

Waveform Length Ratio −0.065 0.703 −0.354 0.230 −0.648 0.604 −0.721 0.727
Complexity 0.502 0.222 0.706 0.253 0.897 0.524 1.314 0.515

Mobility 0.038 0.011 0.057 0.038 0.055 0.035 0.115 0.079
Higuchi’s Fractal Dimension 1.054 0.052 1.149 0.119 1.183 0.240 1.490 0.401

Katz Fractal Dimension 1.000 0.000 1.000 0.000 1.000 0.000 1.000 0.000
Lyapunov Exponent 437.4 49.5 394.8 49.3 362.9 78.8 239.1 92.2

Approximate Entropy 0.104 0.049 0.155 0.134 0.127 0.080 0.316 0.312
Correlation Dimension 1.687 0.168 1.733 0.191 1.676 0.202 1.731 0.300
1st Coefficient of LTP 259.6 128.8 291.5 122.1 259.6 128.8 291.5 122.1
2nd Coefficient of LTP 40.790 30.943 56.809 35.998 40.790 30.943 56.809 35.998
3rd Coefficient of LTP 24.574 23.717 41.723 32.083 24.574 23.717 41.723 32.083
4th Coefficient of LTP 16.381 15.761 30.738 22.667 16.381 15.761 30.738 22.667
5th Coefficient of LTP 18.472 15.755 33.411 24.881 18.472 15.755 33.411 24.881
6th Coefficient of LTP 25.205 21.607 45.518 33.715 25.205 21.607 45.518 33.715
7th Coefficient of LTP 17.699 16.352 29.035 22.609 17.699 16.352 29.035 22.609
8th Coefficient of LTP 26.261 23.075 39.645 28.386 26.261 23.075 39.645 28.386
9th Coefficient of LTP 47.483 32.844 58.163 35.132 47.483 32.844 58.163 35.132
10th Coefficient of LTP 207.278 94.769 201.809 72.537 207.278 94.769 201.809 72.537
11th Coefficient of LTP 269.5 137.7 302.1 121.7 269.5 137.70 302.1 121.7
12th Coefficient of LTP 41.733 31.354 59.773 38.092 41.733 31.354 59.773 38.092
13th Coefficient of LTP 24.006 23.096 41.071 31.294 24.006 23.096 41.071 31.294
14th Coefficient of LTP 16.784 15.900 30.199 23.471 16.784 15.900 30.199 23.471
15th Coefficient of LTP 18.506 15.140 33.390 25.583 18.506 15.140 33.390 25.583
16th Coefficient of LTP 26.148 22.755 44.177 31.682 26.148 22.755 44.177 31.682
17th Coefficient of LTP 16.898 16.559 30.149 21.910 16.898 16.559 30.149 21.910
18th Coefficient of LTP 25.790 22.892 39.312 26.784 25.790 22.892 39.312 26.784
19th Coefficient of LTP 46.534 33.045 56.298 33.647 46.534 33.045 56.298 33.647
20th Coefficient of LTP 197.773 85.090 191.858 74.487 197.773 85.090 191.858 74.487

These features were subjected to the feature selection step (HFSR) to recognize
the features with maximum discriminative content among normal and hypertension classes.

3.4. Hybrid Feature Selection and Reduction

Feature selection is one of the key steps in the modern pattern recognition and machine
learning paradigms. The extracted features may include redundant information and
irrelevant and noisy parameters. A two-stage hybrid feature selection and reduction
(HFSR) strategy was designed to select and transform the best distinctive features as shown
in Figure 10. The first stage ranks the input features through seven different methods and
the second stage transforms the selected ranked features to further reduce dimensionality.
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Figure 10. Block diagram (feature selection and reduction method).

3.4.1. Feature Selection Scheme

Feature selection routines serve to enhance the performance of classifiers by re-
ducing the feature dimensions as well as decreasing the computational time [54,55].
Feature selection methods are categorized as filter methods and wrapper methods. Filter
type feature selection methods employ feature ranking techniques based on the applied
statistical measure for selecting a suitable feature. In wrapper type feature selection tech-
niques, a feature subset is selected recursively based on the overall model performance.
The selection criterion computes the variation in model performance that decides the
addition or removal of a feature from the subset.

To address the limitations of individual feature selection approaches, we employed a
hybrid scheme of feature selection by combining seven feature ranking methods through
a voting strategy. Figure 10 illustrates the hybrid scheme of feature selection and reduc-
tion. In this scheme, seven state-of-the-art feature ranking techniques, namely student
t-test (TT), Kullback–Leibler distance (KLD) [56], Bhattacharya distance (BD) [57], Mann–
Whitney’s test (MWT), ReliefF (RRF) [58], minimum redundancy maximum relevance
(MRMR) [59,60], and receiver operating characteristic curve (ROC) were employed to rank
the feature individually. Ranking assigned to each feature by all feature ranking methods
is combined to calculate the mean rank (MR) value. A threshold is applied to MR value for
feature selection.

Table 7 provides the sorted lists of the best forty features with the highest MR values
for method I (features extracted from signal preprocessed through DWT). Rank assigned
to individual features by each ranking method is also computed. The top 24 features are
highlighted in Table 6 were forwarded to the next stage. It was perceived that if a feature
ranking method assigns a high rank to a particular feature that failed to get high scores
from other methods, it gets rejected due to the hybrid scheme of feature selection. For
instance, consider the Root Sum of Squares feature that received the rank value of 99 from
the ROC method, but gets scores of 53, 49, 52, 18, 58, and 72 from TT, KLD, BD, MWT,
MRMR, and RRF, respectively. It achieved an MR value of 57.29 that is below the selection
criterion, so it was rejected from the final feature vector of 1 × 24 dimensions. Table 8 enlists
the top forty features with the highest MR values for method II, i.e., features extracted from
the signal preprocessed through EMD. The rank value assigned by an individual feature
ranking method to a specific feature can be examined. One to one comparison of the top
ten MR values of method I in Table 7 and method II in Table 8 reveals that the magnitude
of MR values of method II (81–70) is higher than that for method I (73–67).
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Table 7. List of features extracted for method I and sorted with respect to mean rank (MR) value. Bold font indicates the top
24 ranked features.

Feature TT KLD BD ROC MWT MRMR RRF MR

3rd Coefficient of LTP 12 93 93 83 32 102 98 73.29
6th Coefficient of Chroma Vector 38 98 76 79 78 94 49 73.14
Lyapunov Exponent 93 92 92 70 81 10 70 72.57
Sparseness 70 90 90 30 62 79 84 72.14
Jitter 78 58 58 74 77 85 74 72.00
9th Coefficient of LTP 57 83 83 75 82 92 24 70.86
Spectral Decrease 62 28 61 85 75 93 83 69.57
4th Coefficient of MFCC 96 41 41 95 40 72 99 69.14
Irregularity 35 94 100 57 88 90 13 68.14
1st Coeffient of MFCC 99 23 23 100 37 96 97 67.86
Waveform Length Ratio 13 100 94 91 9 100 66 67.57
3rd Coeffient of MFCC 79 97 97 84 39 55 17 66.86
1st Coefficient of Chroma Vector 71 86 86 98 26 48 53 66.86
Spectral Roll-off 81 43 79 66 56 59 81 66.43
Spectral Crest 61 80 60 26 92 71 75 66.43
6th Coefficient of Chroma Vector 100 76 99 31 61 45 52 66.29
7th Coefficient of Chroma Vector 37 99 98 1 96 42 86 65.57
Median Frequency 88 35 78 71 102 78 2 64.86
2nd Coefficient of Chroma Vector 89 7 96 89 41 81 51 64.86
Spectral Centroid 76 79 43 39 86 69 58 64.29
Difference Absolute Std. Dev. Value 84 38 37 81 79 63 64 63.71
Shape Factor 59 53 53 54 72 80 73 63.43
Spectral Mean 43 77 77 96 46 40 61 62.86
Simple Square Integral 4 72 72 22 89 89 92 62.86
3rd Coefficient of GFCC 95 29 88 94 34 53 45 62.57
4th Coefficient of Chroma Vector 40 96 30 87 85 52 47 62.43
Root Mean Square 45 56 56 77 43 87 69 61.86
Signal to Noise Distortion 97 69 69 47 74 31 42 61.29
9th Coefficient of Chroma Vector 72 12 95 88 27 76 57 61.00
Mean Absolute Deviation 58 48 48 49 76 82 62 60.43
Root Squared 2nd Order Moment 91 82 71 8 59 20 91 60.29
Root Squared 4th Order Moment 101 71 82 82 4 66 14 60.00
10th Coefficient of Chroma Vector 36 95 85 28 73 41 56 59.14
12th Coefficient of Chroma Vector 90 89 89 59 10 37 38 58.86
1st Coefficient of GFCC 69 87 87 61 66 38 3 58.71
Mean 80 26 26 80 80 68 44 57.71
Enhanced Mean Absolute Value 21 73 73 62 58 54 63 57.71
Root Sum of Squares 53 49 52 99 18 58 72 57.29
2nd Coefficient of LTP 82 70 70 35 36 12 95 57.14
Katz Fractal Dimension 67 3 3 67 90 75 90 56.43
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Table 8. List of features extracted for method II and sorted with respect to MR value. Bold font indicates the top 24 ranked
features.

Feature TT KLD BD ROC MWT MRMR RRF MR

7th Coefficient of Chroma Vector 100 98 98 26 96 97 55 81.43
4th Coefficient of Chroma Vector 89 96 76 73 85 52 96 81.00
Mobility 93 64 64 67 68 91 95 77.43
Spectral Centroid 68 78 78 77 45 98 88 76.00
Enhanced Mean Absolute Value 71 95 95 28 98 56 87 75.71
9th Coefficient of LTP 64 101 101 64 93 79 19 74.43
1st Coefficient of GFCC 95 35 97 98 38 99 54 73.71
7th Coefficient of LTP 57 93 93 57 101 24 89 73.43
Slope Sign Change 74 73 89 79 89 89 13 72.29
Maximum Fractal Length 3 72 74 91 90 90 70 70.00
3rd Coefficient of MFCC 38 97 22 95 102 80 53 69.57
6th Coefficient of Chroma Vector 69 80 96 90 27 68 56 69.43
8th Coefficient of Chroma Vector 61 99 99 69 66 49 40 69.00
Enhanced Wavelength 81 85 85 68 94 16 50 68.43
Pulse Percentage Rate 4 94 100 42 73 76 77 66.57
Root Squared Zero Order Moment 63 84 84 30 69 72 46 64.00
Crest Factor 51 68 68 80 72 32 72 63.29
Modified Mean Absolute Value 2 42 90 90 7 88 64 62 63.29
Spectral Crest 87 58 45 40 47 85 75 62.43
2nd Coeffient of MFCC 37 69 69 84 77 48 51 62.14
1st Coeffient of MFCC 77 9 9 100 99 38 102 62.00
Average Frequency 80 29 54 47 54 86 82 61.71
4th Coefficient of LTP 34 65 65 65 42 74 84 61.29
Willison Amplitude 91 74 72 15 16 77 83 61.14
Spectral Spread 99 47 58 85 60 9 68 60.86
3rd Coefficient of LTP 65 91 91 5 65 2 101 60.00
Root Squared 4th Order Moment 70 66 71 14 97 62 36 59.43
Lyapunov Exponent 32 63 63 8 62 81 100 58.43
2nd Coeffient of GFCC 40 87 87 89 40 50 14 58.14
3rd Coeffient of GFCC 73 22 10 66 39 96 99 57.86
Correlation Dimension 14 70 70 101 57 1 91 57.71
Root Squared 2nd Order Moment 101 5 66 36 31 100 61 57.14
5th Coefficient of Chroma Vector 20 76 80 97 4 36 86 57.00
2nd Coefficient of Chroma Vector 75 41 41 88 78 73 2 56.86
11th Coefficient of Chroma Vector 66 39 39 74 95 47 37 56.71
Log Energy 45 75 52 53 19 88 60 56.00
10th Coefficient of Chroma Vector 90 38 38 19 100 69 38 56.00
5th Coefficient of LTP 8 82 82 83 5 101 30 55.86
1st Coefficient of LTP 11 92 92 24 83 57 31 55.71

3.4.2. Feature Reduction Using Kernel PCA

PCA applies orthogonal transformation to transform a group of likely correlated
features into a set of linearly independent features known as principal components.
These principal components represent the normalized linear combinations of the orig-
inal features. It includes information about the most powerful variations present in the
data set. The first principal component holds maximum variance information of the
data set.

Kernel PCA (KPCA) [61,62] enhances the original PCA to non-linear data distribution
problems through a kernel function. A kernel function projects low-dimensional feature
data to a higher-dimensional feature space, where it becomes linearly separable [63].
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The previous stage of hybrid feature selection reduced the feature dimensions to
1 × 24 which are fed to KPCA to further decrease dimensions for both methods I and II.
Components of KPCA were selected recursively based on the classification performance
through tenfold cross-validation. Separate sets of 5, 7, 10, 12, 15, and 17 components were
picked for methods I and II to investigate the classification performance for differentiating
normal and hypertension signal classes of PuPG signals.

3.5. Classification

To perform the classification of normal and hypertension classes of PuPG signal data
set, this study employed a range of classification methods through tenfold cross-validation
schemes. The classification methods opted in this study were SVM-Linear (SVM-L),
SVM-Quadratic (SVM-Q), SVM-Cubic (SVM-C), SVM-Fine Gaussian (SVM-FG), SVM-
Medium Gaussian (SVM-MG), KNN-Fine (KNN-F), KNN-Medium (KNN-M), KNN-Cosine
distance (KNN-Cos), KNN-Cubic (KNN-C), KNN-Weighted (KNN-W), Decision Trees (DT),
Linear Discriminant (LD), Logistic Regression (LR), Gaussian Naive Baise (NBG), Kernel
Naive Baise (NBK), Ensemble Boosted Trees (Eboost), Ensemble Bagged Trees (EBT),
Ensemble Subspace Discriminant (ESD), and Ensemble Subspace KNN (ESKNN). The
tenfold cross-validation was also compared with 5-, 15-, and 20-fold cross-validation
and 80–20% and 75–25% train-test experiments. All experiments were implemented on
MATLAB 2018a on a personal computer with Core i7 with 32 GB RAM.

4. Results

In this study, the PuPG signal data set comprising two classes (Normal and Hyper-
tension) was first preprocessed through DWT and EMD to develop methods I and II
respectively. We obtained 102 features for each method, i.e., DWT and EMD. These features
were subjected to the HFSR framework to reduce the computational complexity and feature
vector dimensions. Standard statistical parameters of Accuracy (Acc), Sensitivity (Sen),
Specificity (Sp), and Error rate (Err) were used to measure the classification performance.

4.1. Method I

In this research, a comparative analysis was performed via preprocessing the PuPG
signal through DWT and EMD. This section presents the results yielded by preprocessing
through DWT and succeeding processes of feature extraction, selection, and classification.
Various feature sets, namely S1, S2, S3, S4, S5, and S6 were formed by randomly choosing
5, 7, 10, 12, 15, and 17 transformed features. These feature components were fed to
several classification methods to examine the diagnostic performance through tenfold cross-
validation. Table 9 presents consolidated result analysis of various classification methods
for features sets S1 (5 components), S2 (7 components), and S3 (10 components). Table 10
illustrates comprehensive analysis of classification performance over different classifiers for
feature sets S4 (12 components), S5 (15 components), and S6 (17 components). As expressed
in Table 10, Ensemble Subspace KNN classifier scores highest average accuracy of 98.4%,
for 12 feature components, i.e., S4 feature set.

Figure 11 shows the performance in terms of accuracy for different feature sets in
various classifiers for distinguishing normal and hypertension classes using PuPG signals.
Figure 12 demonstrates the specificity performance of several classifiers for various features
sets from DWT based preprocessing method. Figure 13 presents a graphical comparison of
the sensitivity performance of several classifiers for different feature combinations.

NBG classifier achieves highest specificity performance of 100% for feature sets S3,
S4, S5, and S6 (Figure 12), but it reaches maximum sensitivities of 26%, 26%, 32%, and 34%
for the same feature sets (Figure 13); therefore, it results in significant reduction of overall
classifier accuracy of NBG. The sensitivity performance is 100% for several classifiers
(LD, LR, NBG, SVM-FG, SVM-MG, EBT) for feature set S1 (Figure 13), but the specificity
performance is comparatively low.
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Table 9. Consolidated result analysis of feature sets (S1, S2, S3) for method I with various classifiers.

Classifier
S1 (5 Components) S2 (7 Components) S3 (10 Components)

Acc Sp Sen Err Acc Sp Sen Err Acc Sp Sen Err

DT 0.874 0.89 0.89 0.126 0.924 0.92 0.93 0.076 0.934 0.94 0.93 0.066
LD 0.688 0.3 1 0.312 0.688 0.3 1 0.312 0.669 0.3 0.97 0.331
LR 0.688 0.3 1 0.312 0.688 0.3 1 0.312 0.688 0.3 1 0.312

NBG 0.688 0.3 1 0.312 0.688 0.3 1 0.312 0.59 1 0.26 0.41
NBK 0.804 0.91 0.72 0.196 0.83 0.92 0.76 0.17 0.893 0.91 0.88 0.107

SVM-L 0.479 0.56 0.41 0.521 0.587 0.11 0.97 0.413 0.498 0.37 0.6 0.502
SVM-Q 0.527 0.65 0.43 0.473 0.527 0.08 0.89 0.473 0.546 0.41 0.65 0.454
SVM-C 0.47 0.4 0.53 0.53 0.555 0.03 0.98 0.445 0.524 0 0.94 0.476

SVM-FG 0.688 0.3 1 0.312 0.688 0.30 1 0.312 0.688 0.3 1 0.312
SVM-MG 0.688 0.3 1 0.312 0.688 0.30 1 0.312 0.688 0.3 1 0.312
KNN-F 0.937 0.9 0.97 0.063 0.972 0.96 0.98 0.028 0.984 0.97 0.99 0.016
KNN-M 0.792 0.68 0.88 0.208 0.864 0.81 0.91 0.136 0.905 0.86 0.94 0.095

KNN-Cos 0.685 0.3 0.99 0.315 0.681 0.3 0.99 0.319 0.685 0.3 0.99 0.315
KNN-C 0.672 0.68 0.66 0.328 0.871 0.83 0.9 0.129 0.896 0.84 0.94 0.104
KNN-W 0.921 0.88 0.95 0.079 0.965 0.96 0.97 0.035 0.978 0.97 0.98 0.022
Eboost 0.918 0.89 0.94 0.082 0.864 0.74 0.96 0.136 0.555 0 1 0.445

EBT 0.688 0.3 1 0.312 0.972 0.95 0.99 0.028 0.943 0.93 0.95 0.057
ESD 0.94 0.92 0.95 0.06 0.688 0.3 1 0.312 0.681 0.3 0.99 0.319

ESKNN 0.915 0.91 0.91 0.085 0.984 0.98 0.99 0.016 0.981 0.97 0.99 0.019

Table 10. Consolidated result analysis of feature sets (S4, S5, S6) for method I with various classifiers. Bold font indicates
best results.

Classifier
S4 (12 Components) S5 (15 Components) S6 (17 Components)

Acc Sp Sen Err Acc Sp Sen Err Acc Sp Sen Err

DT 0.959 0.96 0.96 0.041 0.959 0.94 0.98 0.041 0.972 0.96 98 0.028
LD 0.581 0.3 0.99 0.419 0.662 0.3 0.95 0.338 0.691 0.32 0.99 0.309
LR 0.688 0.3 1 0.312 0.688 0.3 1 0.312 0.675 0.35 0.94 0.325

NBG 0.59 1 0.26 0.41 0.625 1 0.32 0.375 0.631 1 0.34 0.369
NBK 0.868 0.85 0.89 0.132 0.877 0.92 0.84 0.123 0.88 0.91 0.95 0.12

SVM-L 0.524 0.26 0.74 0.476 0.543 0.12 0.88 0.457 0.536 0.07 0.91 0.464
SVM-Q 0.552 0.22 0.82 0.448 0.536 0.33 0.7 0.464 0.546 0.02 0.97 0.454
SVM-C 0.524 0.8 0.88 0.476 0.517 0 0.93 0.483 0.514 0.05 0.89 0.486

SVM-FG 0.688 0.3 1 0.312 0.688 0.3 1 0.312 0.7 0.33 1 0.3
SVM-MG 0.665 0.3 1 0.335 0.688 0.3 1 0.312 0.694 0.31 1 0.306
KNN-F 0.981 0.97 0.99 0.019 0.975 0.97 0.98 0.025 0.915 0.88 0.94 0.085
KNN-M 0.918 0.85 0.97 0.082 0.912 0.85 0.96 0.088 0.659 0.7 0.63 0.341

KNN-Cos 0.688 0.3 1 0.312 0.688 0.3 1 0.312 0.685 0.3 0.99 0.315
KNN-C 0.905 0.85 0.95 0.095 0.909 0.85 0.95 0.091 0.909 0.89 0.93 0.091
KNN-W 0.981 0.98 0.98 0.019 0.975 0.97 0.98 0.025 0.978 0.97 0.98 0.022
Eboost 0.555 0 1 0.445 0.555 0 1 0.445 0.555 0 1 0.445

EBT 0.965 0.94 0.98 0.035 0.972 0.97 0.97 0.028 0.94 0.92 0.95 0.06
ESD 0.688 0.3 1 0.312 0.666 0.3 0.96 0.334 0.681 0.3 0.99 0.319

ESKNN 0.984 0.97 0.99 0.016 0.975 0.97 0.98 0.025 0.981 0.99 0.99 0.019
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Figure 11. Performance of accuracy for different feature sets in various classifiers for PuPG signal through method I.

Figure 12. Performance of sensitivity for different feature sets in various classifiers for PuPG signal through method I.

Figure 13. Performance of specificity for different feature sets in various classifiers for PuPG signal through method I.
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Figure 14 shows the classification performance results in the form of a confusion
matrix for best configurations such as ESKNN classifier with S4 (12 feature components).
The sensitivity of classification is 99%, which means that out of 700 PuPG signals of hyper-
tension, 693 were correctly predicted as hypertension data class while testing,
whereas only seven were misclassified as healthy class. The classifier achieved a 98%
specificity performance. Out of 709 healthy PuPG signal samples, 695 were accurately
predicted as healthy class, whereas the remaining 14 signals were misclassified.

(a) Confusion matrix in terms of numbers (b) Confusion matrix in terms of percentage

Figure 14. Confusion matrix for method I.

Table 11 includes the extensive experimentation results to avoid the classifier overfit-
ting. The selected configuration was tested through 5-, 10-, 15-, and 20-fold cross-validation
and 20% and 25% train-test holdout validations.

Table 11. Validation of the selected scheme of method I.

Evaluation Classes Accuracy True Positive Rate False Negative Rate

5-Fold Cross-Validation
Healthy

0.983
0.98 0.02

Hypertension 0.99 0.01

10-Fold Cross-Validation
Healthy

0.984
0.98 0.02

Hypertension 0.99 0.01

15-Fold Cross-Validation
Healthy

0.984
0.98 0.02

Hypertension 0.99 0.01

20-Fold Cross-Validation
Healthy

0.984
0.98 0.02

Hypertension 0.99 0.01

20% Hold Out Validation
Healthy

0.978
1 0

Hypertension 0.94 0.06

25% Hold Out Validation
Healthy

0.989
0.98 0.02

Hypertension 1 0

4.2. Method II

This section is primarily focused on the second method that is under discussion for
this research. It encompasses the results of the classification of the features extracted after
the preprocessing of the PuPG signal via EMD. A certain number of feature sets were
chosen that were the result of the HFSR. The feature sets comprising of 5, 7, 10, 12, 15,
and 17 transformed features were chosen and named S1, S2, S3, S4, S5, and S6, respectively.
These feature components were fed to a various number of classifiers for classification and
their performance was tested through tenfold cross-validation.
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Table 12 depicts the results obtained after the classification of the feature set
S1 (5 components), S2 (7 components), and S3 (10 components) on using a selection of vari-
ous classifiers. Table 13 shows the outcomes of various classification techniques applied on
feature sets S4 (12 components), S5 (15 components), and S6 (17 components). Analysis of
both Tables 12 and 13 show that a maximum average accuracy using the least number of
features is 99.4%. This accuracy is the result of the weighted KNN classification method
applied on the feature set S1.

Table 12. Feature analysis table (S1, S2, S3) for method II. Bold font indicates the best results.

Classifier
S1 (5 Components) S2 (7 Components) S3 (10 Components)

Acc Sp Sen Err Acc Sp Sen Err Acc Sp Sen Err

DT 0.974 0.98 0.97 0.026 0.983 0.98 0.99 0.017 0.989 0.98 0.99 0.011
LD 0.619 0.24 1 0.381 0.619 0.24 1 0.381 0.568 0.24 0.9 0.432
LR 0.679 0.97 0.39 0.321 0.679 0.97 0.39 0.321 0.679 0.97 0.39 0.321

NBG 0.619 0.24 1 0.381 0.619 0.24 1 0.381 0.268 1 0.26 0.732
NBK 0.946 0.97 0.92 0.054 0.946 0.98 0.91 0.054 0.94 0.97 0.91 0.06

SVM-L 0.48 0.49 0.47 0.52 0.497 0.59 0.41 0.503 0.523 0.52 0.53 0.477
SVM-Q 0.51 0.53 0.5 0.49 0.511 0.24 0.78 0.489 0.497 0.46 0.53 0.503
SVM-C 0.49 0.3 0.69 0.51 0.491 0.22 0.77 0.509 0.491 0.23 0.76 0.509

SVM-FG 0.668 1 0.34 0.332 0.662 1 0.32 0.338 0.665 0.99 0.34 0.335
SVM-MG 0.619 0.24 1 0.381 0.614 0.51 0.72 0.386 0.597 0.73 0.46 0.403
KNN-F 0.99 0.99 0 0.01 0.893 0.98 0.984 0.107 0.991 0.99 0.99 0.009
KNN-M 0.957 0.93 0.98 0.043 0.969 0.95 0.99 0.031 0.972 0.95 0.99 0.028

KNN-Cos 0.631 0.27 0.99 0.369 0.639 0.3 0.98 0.361 0.636 0.3 0.98 0.364
KNN-C 0.957 0.93 0.98 0.043 0.966 0.94 0.99 0.034 0.969 0.94 0.99 0.031
KNN-W 0.994 0.992 0.996 0.006 0.986 0.94 0.99 0.014 0.992 0.99 0.99 0.008
Eboost 0.489 0.39 0.59 0.511 0.489 0.39 0.59 0.511 0.489 0.39 0.59 0.511

EBT 0.98 0.97 0.99 0.02 0.986 0.98 0.99 0.014 0.986 0.98 0.99 0.014
ESD 0.619 0.24 1 0.381 0.619 0.24 1 0.381 0.571 0.24 0.9 0.429

ESKNN 0.991 0.99 0.99 0.009 0.983 0.99 0.98 0.017 0.991 0.99 0.99 0.009

Table 13. Feature analysis table (S4, S5, S6) for method II.

Classifier
S4 (12 Components) S5 (15 Components) S6 (17 Components)

Acc Sp Sen Err Acc Sp Sen Err Acc Sp Sen Err

DT 0.992 0.99 0.99 0.008 0.972 0.95 0.99 0.028 0.983 0.98 0.98 0.017
LD 0.548 0.32 0.78 0.452 0.565 0.34 0.8 0.435 0.665 1 0.33 0.335
LR 0.679 0.97 0.39 0.321 0.679 0.97 0.39 0.321 0.676 0.97 0.38 0.324

NBG 0.636 0.97 0.39 0.364 0.662 1 0.32 0.338 0.665 1 0.33 0.335
NBK 0.92 0.96 0.88 0.08 0.926 0.97 0.89 0.074 0.909 0.95 0.87 0.091

SVM-L 0.531 0.27 0.79 0.469 0.486 0.23 0.74 0.514 0.5 0.24 0.76 0.5
SVM-Q 0.503 0.19 0.82 0.497 0.469 0.15 0.79 0.531 0.514 0.15 0.88 0.486
SVM-C 0.472 0 0.94 0.528 0.472 0.1 0.85 0.528 0.486 0 0.97 0.514
SVM-F 0.662 1 0.32 0.338 0.662 1 0.32 0.338 0.696 1 0.39 0.304

SVM-MG 0.665 1 0.33 0.335 0.662 1 0.32 0.338 0.696 1 0.39 0.304
KNN-F 0.991 0.99 0.99 0.009 0.983 0.98 0.98 0.017 0.989 0.98 0.99 0.011
KNN-M 0.949 0.94 0.96 0.051 0.96 0.94 0.98 0.04 0.94 0.97 0.91 0.06

KNN-Cos 0.639 0.28 1 0.361 0.628 0.28 0.97 0.372 0.645 0.3 0.99 0.355
KNN-C 0.946 0.94 0.95 0.054 0.963 0.94 0.98 0.037 0.94 0.98 0.9 0.06
KNN-W 0.991 0.99 0.99 0.009 0.986 0.99 0.98 0.014 0.993 0.99 0.99 0.007
Eboost 0.489 0.39 0.59 0.511 0.534 0.48 0.59 0.466 0.489 0.39 0.59 0.511

EBT 0.989 0.98 0.99 0.011 0.966 0.97 0.96 0.034 0.986 0.99 0.98 0.014
ESD 0.577 0.26 0.89 0.423 0.563 0.39 0.73 0.437 0.665 1 0.33 0.335

ESKNN 0.991 0.99 0.99 0.009 0.983 0.98 0.98 0.017 0.991 0.99 0.99 0.009
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Figure 15 shows a comparison of the performance of various classifiers based on the
accuracy achieved as a result of distinguishing hypertension and normal PuPG signal.
Figure 16 depicts the comparison result of various classifiers based on their specificities
after using EMD as the preprocessing technique. Figure 17 represents the comparison
of the sensitivities of various classification methods. NBG classifier achieves the highest
specificity performance of 100% for feature sets S3 (Figure 16), but it reaches maximum
sensitivities of 26% for the same feature set (Figure 17). The sensitivity performance is
100% for several classifiers (LD, NBG, SVM-MG, ESD) for feature set S1 (Figure 17), but the
specificity performance is comparatively low.

Figure 18 illustrates the best classification performance in the form of a confusion
matrix for selected features set (S1) with KNN-W classifier. The sensitivity of classification
is more than 99%, which means only one out of 700 PuPG signals was wrong predicted
as hypertension data class, whereas the remaining 699 PuPG signals were correctly iden-
tified as hypertension. Out of 709 healthy PuPG signals, 702 were correctly predicted as
healthy, achieving specificity of 99%. The overall average classification accuracy in the best
configuration with the KNN-W classifier was 99.4%.

Figure 15. Performance of accuracy for different feature sets in various classifiers for PuPG signal through method II.

Figure 16. Performance of sensitivity for different feature sets in various classifiers for PuPG signal through method II.
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Figure 17. Performance of specificity for different feature sets in various classifiers for PuPG signal through method II.

(a) Confusion matrix in terms of percentage (b) Confusion matrix in terms of numbers

Figure 18. Confusion matrix for method II.

Table 14 includes the results of comprehensive experimentation which is performed
to avoid the classifier overfitting. The selected framework was examined through 5-, 10-,
15-, and 20-fold cross-validation and 20% and 25% train-test holdout validations. For all
experimental settings, the proposed scheme achieved more than 98% accuracy.

Table 14. Validation of the selected scheme of method II.

Evaluation Classes Accuracy True Positive Rate False Negative Rate

5 Fold Cross-Validation
Healthy

0.986
0.99 0.01

Hypertension 0.98 0.02

10 Fold Cross-Validation
Healthy

0.994
0.99 0.01

Hypertension >0.99 <0.01

15 Fold Cross-Validation
Healthy

0.994
0.99 0.01

Hypertension >0.99 <0.01

20 Fold Cross-Validation
Healthy

0.997
0.99 0.01

Hypertension 1 0

20% Hold Out Validation
Healthy

0.986
1 0

Hypertension 0.97 0.03

25% Hold Out Validation
Healthy

0.989
0.98 0.02

Hypertension 1 0
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4.3. Method I versus Method II: A Comparative Analysis

This section aims to compare both methods I and II analytically. Based on this com-
parison, we figure out the best working solution for the detection of hypertension through
PuPG signals. Method I comprises of preprocessing of PuPG signals through DWT, fol-
lowed by feature extraction. Extracted features were subjected to the HFSR scheme and
finally classified through Ensemble Subspace KNN. Method II consists of EMD-based
signal preprocessing followed by feature extraction. Features were fed to KNN-W classifier
for distinguishing normal and hypertension data classes after being reduced through the
HFSR approach.

Table 15 shows the performance comparison of methods I and II in terms of aver-
age accuracy, sensitivity, specificity, error, and number of features. Method I achieves
classification performance of 98.4% accuracy, 97% sensitivity, and 99% specificity using
12 transformed features. Method II obtains 99.4%, 99.2%, and 99.6% results of classification
accuracy, sensitivity, and specificity respectively through only five reduced features.

Table 15. Performance comparison of methods I and II.

Performance Method I Method II

Accuracy 98.40% 99.40%
Sensitivity 97.00% 99.20%
Specificity 99.00% 99.60%

Error 0.02% 0.60%
# of features 12 5

Comparative analysis of both methods establishes that method II outperforms method
I in terms of achieving better classification accuracy on a reduced number of features. This
might be due to the fact that the accuracy achieved in the case of DWT highly depends on
the proper wavelet basis selection [64]. The selection of an appropriate basis is challenging
especially for non-stationary data [65]. On the other hand, EMD is a fully data-driven,
adaptive, and basis-less transformation [66]. Moreover, the IMF selection process of
EMD based on relative energy and mean frequency has assisted the selection of useful
discriminative signal characteristics.

Figure 19 presents the finalized EHDS (expert hypertension detection system) based
on PuPG signal analysis. EHDS first takes raw PuPG signal as input and performs prepro-
cessing through EMD by rejecting the irrelevant IMFs. Next, only 24 significant features
highlighted by the hybrid selection scheme are extracted and reduced through KPCA.
The final transformed 1 × 5 feature vector is fed to KNN-W to distinguish the normal
and hypertension data classes. Figure 20 illustrates the classification performance of the
proposed EHDS as a function of the number of transformed features. It can be observed
that the proposed EHDS achieves the optimum performance on only five transformed
features. The classification performance shows no notable improvement with the increase
in the number of features.
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Figure 19. Proposed EHDS block diagram.

Figure 20. Performance of method II in terms of accuracy, sensitivity, and specificity for 1 to 24 trans-
formed features.

5. Discussion

Human blood vessels and the microcirculation system experience transformations
with the rise in blood pressure (BP); these changes are exceptionally obvious for patients
with severe hypertension. PuPG signals carry a wealth of information about the car-
diac health [25–27]. The PuPG signal reflects physical changes in blood volume pressure
in blood vessels during the cardiac cycle. The features extracted in this study indicate
the changes in Normal and Hypertension PuPG signals acquired from various subjects.
The high classification performance of EHDS reflects the association of extracted trans-
formed features with the physiological characteristics of the cardiac condition of the subject.
Thus, the proposed expert system may provide a good approximation of the presence or
absence of non-communicable diseases such as hypertension.

Table 16 presents a performance comparison of the recent studies. A diagnostic index
for the classification of low and high-risk hypertension classes attaining accuracy of 100%
was proposed by [17]. In contrast, our work is targeted towards the classification of Nor-
mal and Hypertension classes through PuPG signals. In another study, [18] developed a
computational intelligence tool based on ECG signals for the classification of normal and
hypertension. EMD was employed in the signal preprocessing stage, followed by nonlinear
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feature extraction from the decomposed IMFs. Extracted features were ranked through Stu-
dent’s t-test. The highest classification accuracy of 97.70% was obtained through the KNN
classifier with tenfold cross-validation. A photoplethysmograph (PPG) based detection of
hypertension was proposed by [19]. A total of 125 features of various types were extracted
and reduced through MRMR. The authors reported the best classification performance
with KNN-W, specifically to be 100%, 85.71%, and 92.31% for positive predictive value,
sensitivity, and F1-score, respectively.

Table 16. Comparison with previous works.

Ref. Modality Preprocessing Features Feature Reduction Classification Data Set Results

[12] PPG CWT GoogLeNet - GoogLeNet MIMIC F1 score: 92.55%

[13] PPG and
ECG -

PAT and
morphological
features

- KNN MIMIC F1 score: 94.84%

[14] HRV - Standard deviation
of NN intervals - MIL

Self-collected data set
Hypertension 24 and
Normal: 19

Accuracy: 85.47%

[15] ECG SGF Entropy features - SVM
Self-collected data set
Hypertension: 61 and
Normal: 67

Accuracy: 93.33%

[16] HRV -

Statistical, spectral,
geometrical,
wavelet, fractal,
and non-linear
features

PCA QDA
Self-collected data set
Hypertension: 41
Normal: 30

Accuracy: 85.5%

[17] ECG OWFB
Fractal dimension
and
energy features

Student’s
t-test

Diagnosis
index

PhysioNet database
High-risk
Hypertension: 17
subjects
Low-risk Hypertension:
122 subjects
Total: 139 subjects

100% between
low-risk and
high-risk classes

[18] ECG EMD Entropy features Student’s
t-test

KNN
classifier

MIT BIH Sinus rhythm
database, SHAREE
database:
Normal: 18 signals
Hypertension: 139
signals

Accuracy: 97.70%
Sensitivity:
98.90%
Specificity:
89.10%

[19] PPG Chebyshev
II

Time and
morphological
features

MRMR KNN-W
Hypertension: 35
Normal: 48
Total: 83

Positive
Predictive Value:
100%
Sensitivity:
85.71%
F1-score: 92.31%

[20] BCG Morphological
features - CAR

Self-collected data set
Hypertension: 61 and
Normal: 67

Accuracy: 84.4%

This study PuPG EMD

Time, frequency,
cepstral, fractal,
and chaotic
features

HFSR KNN-W
Self-collected data set
Hypertension: 56
Normal: 65

Accuracy: 99.7%
Sensitivity: 99.2%
Specificity: 99.4%

The current research is focused on the classification between normal and hypertension
data through PuPG signals. To the best of author’s knowledge, this is the first study that
uses the PuPG signals for discriminating among normal and hypertension with high preci-
sion. The current method achieves better performance than the existing ECG- [15,17,18],
PPG- [12,19], HRV- [14,16], and BCG-based [20] approaches. Our method also outperforms
the fusion-based method for detection of hypertension that utlized a combination of PPG
and ECG [13].

The proposed expert system could play a vital role in the early detection of hyperten-
sion in low- and middle-income countries. It is important to mention that an estimated
1.04 billion population suffered from hypertension in 2010 [67]. A non-invasive technique
based on PuPG signals analysis proposed in this research could be used for the detection
of non-communicable diseases.



Sensors 2021, 21, 247 29 of 32

6. Conclusions

Early detection of hypertension or high blood pressure is extremely significant since
it does not cause any obvious symptoms in many people; hence, it can harm the heart,
the kidneys, and even the brain. In this study, we proposed an automated detection
system for hypertension from PuPG signals for timely and precise screening of disease.
First, PuPG signals were preprocessed through EMD, followed by feature extraction of
various types. Highly discriminative features were selected through the proposed HFSR
scheme that consisted of feature reduction and selection methods. The resultant reduced
features of dimension 1 × 5 were subjected to various classification methods. The KNN-W
classifier achieved the best performance in terms of accuracy, sensitivity, and specificity of
99.4%, 99.2%, and 99.6%, respectively. To compute the model performance and avoid over-
fitting, 5-, 10-, 15-, and 20-fold cross-validations were employed. The proposed method
was also compared with the DWT based preprocessing scheme followed by the same
feature extraction, selection (HFSR), and classification pipeline. The main advantages of
this research are as follows:

• The proposed EHDS system is based on the non-invasive methodology of
PuPG signals.

• The EHDS is reliable and less computational intensive with high accuracy.
• The EHDS avoids overfitting as it is validated through 5-, 10-, 15-, and 20-fold

cross-validation.
• The proposed approach does not only rely on morphological characteristics of the

acquired signal.
• The method can be completely automated, and it works with all qualities of PuPG

signals.

Despite the enormous advantages of the proposed method, it has a few limitations.

• The data set used in this research is yet small, with each sample with a length of 10 s.
• The procedure of initial feature extraction and selection of proper IMFs in EMD made

the overall process strenuous and time-consuming.

The proposed study conducted a comprehensive comparison of preprocessing schemes
(DWT and EMD), feature analysis, selection, and classification as illustrated in Figure 3.
The computational complexity of the proposed is significantly low due to the fact that it
operates on trained classifier models, therefore eliminating the training computational cost
(Figure 19). The proposed system has the potential to be deployed in clinical environments
and intensive care units where it can contribute to lessen the workload of medical profes-
sionals through its accurate detection and timely diagnosis. In future works, our research
group aims to increase the data set size and apply deep learning models to automate the
feature extraction process. The proposed framework is intended to be implemented on
portable embedded platforms.
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