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Pulse signals are widely used to evaluate the status of the human cardiovascular, respiratory, and circulatory systems. In the
process of being collected, the signals are usually interfered by some factors, such as the spike noise and the poor-sensor-contact
noise, which have severely affected the accuracy of the subsequent detection models. In recent years, some methods have been
applied to processing the above noisy signals, such as dynamic time warping, empirical mode decomposition, autocorrelation, and
cross-correlation. Effective as they are, thosemethods are complex and difficult to implement. It is also found that the noisy signals
are tightly related to gross errors. +e Chauvenet criterion, one of the gross error discrimination criterions, is highly efficient and
widely applicable for being without the complex calculations like decomposition and reconstruction. +erefore, in this study,
based on the Chauvenet criterion, a new pulse signal preprocessing method is proposed, in which adaptive thresholds are
designed, respectively, to discriminate the abnormal signals caused by spike noise and poor-sensor-contact noise. 81 hours of
pulse signals (with a sleep apnea annotated every 30 seconds and 9,720 segments in total) from the MIT-BIH Polysomnographic
Database are used in the study, including 35 minutes of poor-sensor-contact noises and 25 minutes of spike noises. +e proposed
method was used to preprocess the pulse signals, in which 9,684 segments out of a total of 9,720 were correctly discriminated, and
the accuracy of the method reached 99.63%. To quantitatively evaluate the noise removal effect, a simulation experiment is
conducted to compare the Jaccard Similarity Coefficient (JSC) calculated before and after the noise removal, respectively, and the
results show that the preprocessed signal obtains higher JSC, closer to the reference signal, which indicates that the proposed
method can effectively improve the signal quality. In order to evaluate the method, three back-propagation (BP) sleep apnea
detection models with the same network structure and parameters were established, respectively. +rough comparing the
recognition rate and the prediction rate of the models, higher rates were obtained by using the proposed method. To prove the
efficiency, the comparison experiment between the proposed Chauvenet-based method and a Romanovsky-based method was
conducted, and the execution time of the proposed method is much shorter than that of the Romanovsky method. +e results
suggest that the superiority in execution time of the Chauvenet-based method becomes more significant as the date size increases.

1. Introduction

Within each heart beat cycle, the blood vessel presents
pulsatile changes in accordance with the systolic and dia-
stolic functions of the heart, which are termed as the pulse
signals [1]. +ere are plenty of physiological information in
pulse signals, by which some physiological parameters, such
as pulse rate, blood oxygen saturation, and microcirculation,
can be calculated directly or indirectly, and which can also be
applied to related detection models for the evaluation of the

cardiovascular, respiratory, and circulatory system statuses
[2–4]. However, the pulse signals are relatively weak and can
be inevitably interfered by various factors in the process of
collection, especially the noises caused by the poor sensor
contact and the unstable switch power, which may affect the
accuracy of the subsequent related detection models [5, 6].

Generally, the noise in the signal needs to be identified by
the corresponding preprocessing methods, which can then
be applied to the evaluation of signal quality or the im-
provement of signal quality (including the suppression or
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removal of noise). We can use some existing preprocessing
methods to improve the signal quality, especially for the
above low-quality pulse signals. Li and Clifford [7] proposed
a PPG signal preprocessing algorithm based on dynamic
time warping (DTW), which evaluated the signal quality by
means of analyzing the characteristics related to signal
quality through a multilayer perception neural network.
Karlen et al. [8] developed a preprocessing algorithm that
can estimate the quality of PPG signals in real time. By using
the cross-correlation algorithm for segmented PPG signals,
the signal quality index (SQI) was obtained and the poor-
quality data were removed by the index. Kou [9] defined the
dynamic variable coefficient by using the mean value and
variance, and the thresholds were determined by window
sliding and iterative calculation to detect the poor-sensor-
contact noises, which not only evaluated the signal but also
removed the outliers. Li et al. [10] proposed a joint algorithm
which combined the time domain and the frequency domain
to evaluate the pulse signals. And, the fundamental waves in
the frequency domain were analyzed by means of the quality
factors used in physics and engineering, and in combination
with the valid single edge counts in the time domain, the
low-quality signals were selected and removed. Koneshloo
and Du [11] proposed a PPG signal preprocessing method
on a joint basis of pursuit linear program. By reconstructing
and analyzing the sequence correlation of PPG signals, the
adaptive removal of noise was achieved, which provided
high-quality pulse signal for the subsequent processing. Li
et al. [12] proposed a simple real-time denoising method
based on double median filter to preprocess the PPG signal,
which improved the quality of signals by effectively sup-
pressing the noise and preserving the essential morpho-
logical features from PPG signals. Wang et al. [13] applied
empirical mode decomposition (EMD) to the processing of
the dynamic pulse data. +ey selected the specific compo-
nents to reconstruct the signals and extracted important
features in the original signals by applying multiscale filter
and accumulated energy contribution rate filter to the
components that were obtained from decomposition, re-
solving the problem of breaks in the dynamic pulse signals,
namely, the problem of poor-sensor-contact. Sun et al. [14]
firstly filtered the original pulse signals, then extracted the
wave peak characteristics of the filtered signals, and lastly
selected the signals of good quality by applying variance
discrimination to the characteristics, which improved the
computation accuracy of physiological parameters. +e
application of the above preprocessing methods has made a
great contribution to the evaluation or improvement of pulse
signal quality. However, the methods applied for removing
the spike noise and the poor-sensor-contact noise are so
complex that they have to use multiple iterative calculations,
decompositions, reconstructions, and so on and thus occupy
many system resources, not favorable for the subsequent
related physiological parameters and the establishment of
detection models. +erefore, it is of great significance to
adopt a simpler andmore effective preprocessing method for
the removal of these noises.

In view of the fact that the abnormal conditions, such as
poor-sensor-contact and instrument malfunctions, are small

probability events in the process of signal collection, and
theoretically, the gross errors are the small probability errors
that exceed the normal error range in specified conditions.
+erefore, the noises collected in these abnormal conditions
can be analyzed and processed according to the discrimination
criterion of gross error, being identified and then removed.
Due to the complexity of the existing algorithms and referring
to the discrimination criterion of the gross error and its ap-
plicable conditions, in the design of the preprocessing method
combined with the characteristics of the actual abnormal
noises, the widely applicable Chauvenet criterion that does not
contain multiple iterations is selected as the basic principle.

To sum up, this paper has proposed a new pulse signal
preprocessing method based on the Chauvenet criterion, which
is highly efficient in implementation, and is used to discriminate
the noises occurring in the conditions of poor-sensor-contact
and unstable switch power. According to the gross error dis-
crimination criterion and the characteristics of the noises,
adaptive thresholds are designed to discriminate the spike noise
and the poor-sensor-contact noise and then the pulse signals in
the MIT-BIH database are used to validate the effectiveness.

2. Data

+e pulse signals used in this research, taken from the MIT-
BIH Polysomnographic Database [15, 16] (https://www.
physionet.org/content/slpdb/1.0.0/), were obtained from
the detection of 16 subjects in the sleeping lab of Boston’s
Beth Israel Hospital. All the subjects were male, aged 32 to 56
(43 on average), and weighed 89 to 152 kg (119 kg on av-
erage). +e data include 81 hours’ pulse signals with a
sampling frequency of 250Hz and corresponding sleep
apnea syndrome annotations, among which a segment of
valid signals of high quality is shown in Figure 1(a). Apart
from the baseline drift, the power frequency noise and the
electromyography interference, pulse signals collected in the
actual conditions, may also include spike noises caused by
unstable switch power and noises caused by poor sensor
contact. As is shown in Figure 1(b), the amplitude of the
spike noise is very high, almost reaching themaximum of the
AD converter. +e noisy signal occurring in the condition of
poor sensor contact is shown in Figure 1(c), with no signal
input in the second half segment.

Noisy signals of low quality are not suitable for the
subsequent detection model. +erefore, an effective algo-
rithm needs to be designed to discriminate such signals.
+ere are 81 hours of pulse signals in theMITpulse database,
which is mainly used for the detection of sleep apnea and
annotations are already given by experts to the signals of 30
seconds in each segment, with 9,720 segments in total. As is
known, the subsequent analysis is based on the quality of the
data, so the noises in the pulse signals affect the accuracy in
the establishment of the sleep apnea model. +erefore in this
study, in a similar pattern, quality annotations of the data are
given to the signals of 30 seconds in each segment, which is
used for the study of noise discrimination algorithm. It is
discovered that there are 35 minutes’ poor-sensor-contact
noises and 25minute’ spike noises in all the 81 hours of pulse
signals.
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3. Method

3.1. Characteristics and Basic Principles of the Chauvenet
Criterion. +is study has proposed a discrimination
method for noisy pulse signals based on the criterion of the
gross error discrimination. +e widely used criterions are
the Pauta criterion, the Romanovsky criterion, the Dixon
criterion, the Grubbs criterion, and the Chauvenet crite-
rion [14]. +e Pauta criterion is applicable only in the
precondition of sufficient times of collection, so it cannot
be applied to a small amount of signals. In the Romanovsky
criterion, iterative calculations are needed to determine
whether there are gross errors in each segment of signals.
With this method, noises cannot be detected from a great
amount of data at once. In both the Grubbs criterion and
the Dixon criterion, data need to be sorted firstly and only
the first or last segment of signals can be detected by each
calculation. Multiple iterative calculations need to be
conducted, which is a complex and inefficient process.
Neither a multiple iteration nor the sorting of data is
necessary for the Chauvenet criterion, which is not limited
by the amount of data so it is easier to conduct quick and
accurate discrimination.

+e Chauvenet criterion is a strict gross error dis-
crimination criterion based on the equal confidence prob-
ability [17]. A probability range, including all the samples in
the data set and centered on a mean value, is determined,
and all the data outside of the range are taken as abnormal
and to be removed from the data set. If the number of
measurements recorded is n, also called sample size, and
then the confidence probability is 1 − (1/2n). +e quantity
(1/2n) corresponds to the combined probability represented
by the two tails of the normal distribution, and due to its
symmetry, it is possible to consider only the probability
(1/4n) of one tail. +e Chauvenet coefficient, which is also
referred to as the maximum allowable deviation, can be
achieved by finding the z-score corresponding to the (1/4n)

portion of the confidence probability, so it is only related to
the sample size n. In the condition of normal distribution
(the average value of the distribution is 0 and the standard

deviation is 1), the Chauvenet coefficient can be calculated
by the inverse function value based on 4n or an empirical
formula 1 + 0.4 ln(n). If the absolute value of the difference
between a detected value and the mean value is greater than
the product of the standard deviation and the Chauvenet
coefficient, the detected value is determined as containing
gross errors.

3.2. Pulse Signal Preprocessing Method with the Adaptive
*resholds Based on the Chauvenet Criterion. In this re-
search, the abnormal pulse signals are discriminated by the
Chauvenet criterion, and the steps are as follows.

3.2.1. Calculation of Characteristic Samples. For any set of
the original data including the pulse signals in them-section

with a length of n for each section, X �

x11 · · · x1n

⋮ ⋱ ⋮
xm1 · · · xmn

⎛⎜⎝ ⎞⎟⎠. In

this application, the pulse signals last 30 seconds in each
segment, with 9,720 segments in total, and thus n equals
7,500 and m equals 9,720.

(1) *e Characteristic Samples of Spike Noise. According to
the characteristics of the spike noise amplitude, the original
segmented signals are taken the subject for detection.
+erefore, firstly, the mean value for each original data
segment is calculated in turn to form the mean value
sample, meani � 

n
j�1xij/n, i � 1, 2, . . . , m; and next, the

standard deviation for each data segment is calculated in
turn to form the standard deviation sample,
stdi �

����������������������


n
j�1(xij − meani)

2/(n − 1)


, i � 1, 2, . . . , m; In this
application, n equals 7,500, m equals 9,720, and stdi is a
9,720 dimensional array obtained by calculation.

(2) *e Characteristic Samples of Poor-Sensor-Contact Noise.
According to the features of poor-sensor-contact noises, we
divide the 9,720 segments of pulse signals into 10 groups and
calculate themean value of the standard deviation samples of
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Figure 1: Pulse signals: (a) high-quality signal; (b) signal with spike noise; (c) signal with poor-sensor-contact noise.
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each group, mean std � 
m
i�1stdi/m, and then calculate the

standard deviation of the standard deviation samples,
std std �

�������������������������


m
i�1(stdi − mean std)2/(m − 1)



.

3.2.2. Determination of the Adaptive *resholds.
Adaptive thresholds are designed to conduct more accurate
discrimination. For the subjectX to bemeasured, with a quantity
of t, the equation of the adaptive threshold T is as follows:

T � WtSX � 1 + 0.4 ln(t) 

������������


t
i�1 Xi − X( 

2

t − 1



, (1)

where X is the sample mean value, SX is the sample standard
deviation, and Wt is the Chauvenet coefficient calculated by
the empirical formulae in this application.

(1) *e *reshold Design for Spike Noise Discrimination.
Applying equation (1) to design the threshold for the spike noise
discrimination, the original segmented signalsXij are selected as
detection subjects, i � 1, 2, . . . , m; j � 1, 2, . . . , n; the quantity
of detection subjects is determined by the sample size of each
segment of signals t � n, and the spike noise threshold Tpn is

Tpn � Wnstdi � 1 + 0.4 ln(n) 

����������������


n
j�1 Xij − meani 

2

n − 1



,

(2)
where n stands for the sample size and Wn is the Chauvenet
coefficient for spike noise discrimination. In this application, n
equals 7,500, Wn � 1 + 0.4 ln(n) � 1 + 0.4 ln(7500) � 4.569,
stdi is calculated by Step 1, and then we can obtain Tpn.

(2) *e *reshold Design for Poor-Sensor-Contact Noise
Discrimination. For the poor-sensor-contact signals, the
standard deviation sample stdi is selected as detection
subjects, i � 1, 2, . . . , m; the quantity of detection subjects is
determined by the number of signal segments t � m, and the
threshold of poor-sensor-contact noise Tpc is

Tpc � Wmstd std � 1 + 0.4 ln(m) 

�������������������


m
i�1 stdi − mean std( 

2

m − 1



,

(3)

where m stands for the segments and Wm is the Chauvenet
coefficient for poor-sensor-contact noise discrimination. In
this application, m equals 972, Wm � 1 + 0.4 ln(m) � 1+

0.4 ln(972) � 3.752, std std is calculated by Step 1, and then
we can obtain Tpc.

3.2.3. Discrimination of Spike Noise and Poor-Sensor-Contact
Noise

(1) Spike Noise Discrimination. As for the abnormal signal with
spike noise, since the amplitude of the spike noise is extremely
large, the Chauvenet criterion is used for each original seg-
mented signal to determine whether there is an abnormal value.
If it does, the segmented signal is taken as a spike noise. In other
words, if the absolute value of the difference between a certain
detected value and the mean value of signals in the segment is

greater than the spike noise threshold, as is shown in equation
(4), the segmented signal being detected is taken as an abnormal
signal including spike noise. All the signal segments are dis-
criminated in turn, and the locations of the discriminated spike
noises are recorded in the set P1:

xij − meani



>Tpn. (4)

(2) Poor-Sensor-Contact Noise Discrimination. As for the
poor-sensor-contact noises, due to the existence of sudden
amplitude changes in pulse signal when sensor is poorly
contacted, the Chauvenet criterion is used for the standard
deviation sample to discriminate if there is any abnormal
value among them. If it does, the segment of signals cor-
responding to this abnormal standard deviation is taken as
poor-sensor-contact noises. In other words, if the absolute
value of the difference between a standard deviation and the
mean value of it is greater than the threshold of the poor-
sensor-contact, as is shown in equation (5), the signal
corresponding to this standard deviation is taken as a poor-
sensor-contact noise. +e locations of the discriminated
poor-sensor-contact noises are recorded in the set P2:

stdi − mean std


>Tpc. (5)

3.2.4. Noise Removal. +e noises are removed from the
original signals to obtain the final preprocessed signals
according to the location of the abnormal signals, which is
the union of the set P1 and the set P2.

4. Results and Discussion

+e81 hours’ original signals in the data base were divided into
9,720 segments in time sequence, with 30 sec for each segment.
+en, all the 9,720 segments were evenly divided into 10
groups, with 972 segments in each. +e proposed method in
this study was applied to each group. For group 1, the detection
results are shown in Figure 2 and the standard deviations of the
972 segments are shown in Figure 2(a).+e abscissa represents
the locations of the segmented signals of group 1, with 972
segments in total. +e ordinate represents the standard de-
viations corresponding to the segmented signals.

As can be seen in Figure 2(a), the standard deviations of
the signals in segment 253 and segment 765 are much higher
than those of other signals, so it can be determined that the
two segments include poor-sensor-contact noises. +e
waveforms of the signals in segment 253 and segment 765
are shown in Figures 2(b) and 2(c), and in order to clearly
compare the waveforms of the signals, their amplitudes are
normalized from 0 to 1. +e abscissa stands for the time of
data collection and the ordinate for the normalized am-
plitudes. It can be seen that there are poor-sensor-contact
noises in the signals plotted in Figures 2(b) and 2(c).

+e proposed method in this study was applied to group
7, and the spike noises detected are shown in
Figures 3(a)–3(d), corresponding to segments 13, 201, 331,
and 719, respectively. It can be seen that there are spike
noises with abnormal amplitudes in all of the four segments.
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+e proposed method was applied to 10 groups of pulse
signal, respectively, and the two types of noises (spike noise
and poor-sensor-contact noise) were detected in each group.
+e discrimination results are shown in Table 1. +e ac-
curacy of the proposed method, Accuracy_D, is calculated as

Accuracy_ D �
TP + TN

TP + TN + FP + FN
× 100%, (6)

where TP is true positive when noises discriminated as
noises, TN is true negative when normal signals discrimi-
nated as normal signals, FP is false positive when normal
signals discriminated as noises, and FN is false negative
when noises discriminated as normal signals.

As is seen in Table 1, the discrimination accuracy of each
group of signals is over 99%. In the results, 9,684 segments
out of a total of 9,720 were correctly discriminated, and the
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Figure 2: +e detection results of the signals with poor-sensor-contact noises: (a) the standard deviation of group 1; (b) the pulse signal in
segment 253; (c) the pulse signal in segment 765.
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Figure 3:+e detection results of the signals with spike noises: (a) the pulse signal in segment 13: (b) the pulse signal in segment 201: (c) the
pulse signal in segment 331: (d) the pulse signal in segment 719.
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average accuracy of the proposed method in discrimination
has reached 99.63% with the average relative error as 0.37%.

To evaluate the noise removal effect by the proposed
method, a simulation experiment is conducted to compare
the similarity of the two signals by calculating the Jaccard
Similarity Coefficient (JSC) (shown in equation (7)). +e
closer the JSC value is to 1, the higher the similarity between
the two signals:

JCR �
|f(n)∩ f(n)|

|f(n)∪ f(n)|
, (7)

where f(n) represents the reference signal and f(n) rep-
resents the noisy signal or processed signal.

A fraction of good-quality pulse signals serving as the
reference signal (named as Rsig) (shown in Figure 4(a)), a
noisy signal (named as Nsig) (shown in Figure 4(b)) is
synthesized by adding the spike noise and the poor-sensor-
contact noise to the reference signal. And then, the pre-
processed signal (named as Psig) (shown in Figure 4(c)) is
obtained through the proposed method.

Comparing the waveforms from Figure 4, the spike noise
and the poor-sensor-contact noise are greatly removed.
Besides the visual comparison, JSC is used to evaluate the
proposed method quantitatively.+e JSC calculated between
Rsig and Nsig is 0.77 and that between Rsig and Psig is 0.93.
+e result shows that our proposed method obtains higher
JSC, closer to the reference signal, which suggests the quality
of the signal is improved.

In order to validate the reliability of the method, a
detection model of sleep apnea based on back-propagation
(BP) neural network was set up, with the original pulse
signals, the denoised signals were obtained by a median
filtering method [12], and the preprocessed signals by using
the proposed method were used as the model input, re-
spectively, and the sleep apnea syndrome annotations as
model output, which were marked as the models ORIP-
Apnea, Denoising-Apnea, and PREP-Apnea, respectively.
Before preprocessing, there were 9,720 segments of pulse
signal, and 9,606 segments were left after removing noises
with the proposed method. +e detection model is a three-
layer BP neural network, with the number of neuron in the
hidden layer being 50. +e transfer function in the hidden
layer is sigmoid, the transfer function in the output layer is

softmax, the performance function is cross-entropy, and the
training function is trainscg. +e calculation for the accuracy
of the model, Accuracy_M, is shown as

Accuracy_ M �
TPA + TNA

TPA + TNA + FPA + FNA
× 100%, (8)

where TPA stands for true sleep apnea, TNA for true
nonsleep apnea, FPA for false sleep apnea, and FNA for false
nonsleep apnea.

10-fold cross-validation was used to calculate the rec-
ognition rate (RR, the accuracy calculated using the training
data set) and prediction rate (PR, the accuracy calculated
using the test data set) of ORIP-Apnea, Denoising–Apnea,
and PREP-Apnea, as is shown in Table 2.

As is shown in Table 2, the average recognition rate and
prediction rate of ORIP-Apnea are 78.11% and 77.61%,
respectively, and those of Denoising-Apnea and PREP-
Apnea are 79.12%, 79.06%, 81.96%, and 81.06%, respectively.
Both the recognition rate and prediction rate of PREP-
Apnea are higher than those of ORIP-Apnea and Denoising-
Apnea, with the recognition rate increased by 3.85% and the
prediction rate increased by 3.45% after preprocessing the
original signal, which is mainly because the proposed pre-
processing method has identified and processed noises that
are always mistaken for apnea signals. +e preprocessed
signals can improve the accuracy when applied to the apnea
detection model, which indicates that the proposed method
is a reliable preprocessing method for pulse signals.

In order to prove the efficiency, we conducted the ex-
periment for execution time comparison by using a com-
puter (64-bit based PC configuration: Windows 7 64 bit,
Matlab R2014a 64 bit, Intel Core i5-7500, 3.4GHz, 32GB
RAM) and compared the execution time of the proposed
Chauvenet-based method with that of a Romanovsky-based
method which needs multiple iterative calculations. +e
comparisons of the execution time between the twomethods
are shown in Table 3.

If a record contains M sampling points, the mean value
and standard deviation will be calculated M times by the
Romanovsky-based method, so with N records, the calcula-
tions will be N × M times. However, the mean value and
standard deviation will be calculated once per record by the
Chauvenet-based method, so with N records, the calculations

Table 1: +e discrimination results of the proposed method.

No. True False TP TN FP FN Accuracy (%) Error (%)
1 968 4 18 950 2 2 99.59 0.41
2 972 0 8 964 0 0 100.00 0.00
3 968 4 8 960 2 2 99.59 0.41
4 969 3 14 955 2 1 99.69 0.31
5 970 2 2 968 0 2 99.79 0.21
6 969 3 12 957 0 3 99.69 0.31
7 968 4 4 964 3 1 99.59 0.41
8 969 3 17 952 0 3 99.69 0.31
9 966 6 11 955 0 6 99.38 0.62
10 965 7 5 960 6 1 99.28 0.72
Total 9684 36 99 9585 15 21 — —
Average — — — — — — 99.63 0.37
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Figure 4: +e pulse signals in simulation experiment: (a) Rsig; (b) Nsig; (c) Psig.

Table 2: Comparisons of recognition rate and prediction rate among ORIP-Apnea, Denoising–Apnea, and PREP-Apnea.

No.
ORIP-Apnea Denoising-Apnea PREP-Apnea

RR (%) PR (%) RR (%) PR (%) RR (%) PR (%)
1 78.41 78.02 79.12 79.04 81.74 80.92
2 78.64 78.80 78.68 79.09 82.51 81.51
3 77.13 77.04 78.76 79.02 82.37 81.07
4 78.16 78.55 79.84 79.44 80.82 80.91
5 77.28 76.11 79.64 79.12 81.67 80.87
6 77.62 78.42 78.58 78.86 82.02 81.33
7 79.33 76.16 79.23 79.17 81.33 81.58
8 78.50 78.22 78.65 78.83 82.56 80.04
9 77.82 77.92 79.26 79.01 83.55 82.02
10 78.21 76.83 79.43 79.06 81.03 80.37
Average 78.11 77.61 79.12 79.06 81.96 81.06

Table 3: Comparisons of the execution time between the proposed Chauvenet-based method and the Romanovsky-based method.

No.
N � 10 N � 100 N � 1000

CET (s) RET (s) CET (s) RET (s) CET (s) RET (s)
1 1.54 12.73 1.56 111.98 1.75 1040.93
2 1.55 12.56 1.56 113.40 1.75 1041.74
3 1.54 12.59 1.56 112.80 1.73 1022.54
4 1.56 12.54 1.56 109.51 1.79 1033.36
5 1.54 12.60 1.56 113.33 1.75 1023.35
6 1.55 12.58 1.56 112.52 1.75 1035.48
7 1.54 12.60 1.56 111.50 1.73 1029.24
8 1.54 12.55 1.57 111.98 1.74 1034.65
9 1.54 12.58 1.56 112.08 1.76 1037.84
10 1.55 12.66 1.57 112.13 1.74 1025.65
Average 1.54 12.60 1.56 112.12 1.75 1032.48
Note.N stands for the segments of pulse signals processed by the two methods and CETand RETrepresent the execution time using the proposed Chauvenet-
based method and the Romanovsky-based method, respectively.
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will be N times only. As is shown in Table 3, we can see that
the RET increases greatly with the number of records N going
up. +e performance indicates that CET is shorter than RET,
and the superiority of the proposed method in execution time
is more significant as the size of data increases.

5. Conclusion

A preprocessing method based on the Chauvenet criterion is
proposed to solve the problem that noises severely affect the
accuracy of the subsequent detection models. Referring to
the error theory, adaptive thresholds for noises discrimi-
nation are designed according to the characteristics of the
spike noise and the poor-sensor-contact noise and those of
the original pulse signals. +e noises are removed by means
of discrimination based on the Chauvenet criterion, so that
the signal quality is improved. +e pulse signals from the
MIT-BIH database are preprocessed with the proposed
method, and it is found that the discrimination accuracy has
reached 99.63%. +e noise removal effect is evaluated
through the similarity comparison experiment. JSCs, which
are calculated before and after the noise removal respec-
tively, have increased from 0.77 to 0.93.+e results show that
the quality of the signal is improved through the proposed
method. For validating the reliability of the method, sleep
apnea detection models, ORIP-Apnea, Denoising-Apnea,
and PREP-Apnea, based on the BP neural network are set up
with the original pulse signals, denoised signals, and pre-
processed signals as the input, respectively. Both the rec-
ognition rate and prediction rate of PREP-Apnea are higher
than those of ORIP-Apnea and Denoising-Apnea. Com-
pared with those of ORIP-Apnea, the recognition rate and
the prediction rate of PREP-Apnea have increased by 3.85%
and 3.45%, respectively. In addition, the comparison ex-
periment of execution time is conducted to prove the effi-
ciency, and the execution time of the proposed method is
much shorter than that of the Romanovsky method. +e
performance shows that, in processing speed, the superiority
of the proposed method is more significant as the size of the
data increases. +e above results indicate that the proposed
method can effectively improve signal quality and the de-
tection accuracy, which has a potential significance for the
detection of related diseases with pulse signals.
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