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The development of next-generation sequencing technologies has allowed for the identification of several new
genes and genetic factors in human genetics. Common results from the application of these technologies have
revealed unexpected presentations for mutations in known disease genes. In this review, we summarize the
major contributions of exome sequencing to the study of neurodegenerative disorders and other neurological
conditions and discuss the interface between Mendelian and complex neurological diseases with a particular
focus on pleiotropic events.

INTRODUCTION

The development of new technologies has revolutionized the
field of genetics. We are now able to determine variation and
structure at a genome-wide level, with base-pair resolution and
to assess its impact on phenotypes in an unprecedented manner.

Genome-wide association studies (GWAS) have been essen-
tial to uncover common variability contributing to various
complex disorders. Whole-exome and whole-genome sequen-
cing have identified rare variants causing or imparting large
effects both on Mendelian as well as on complex diseases. But
perhaps more interesting is how the integration of these tech-
nologies is uncovering some unexpected results when molecular
data are associated with clinical phenotypes and when pre-
viously overlooked biological processes become central patho-
biological pathways in a disease.

TECHNOLOGICAL ADVANCES IN THE GENETICS

OF DISEASE

Our understanding of the genetics underlying neurological
disease has often been based on the development and application
of new technologies. Perhaps the first example is how genetic
linkage analyses of large pedigrees enabled the finding of
several causative mutations underlying familial forms of
disease. Case–control association studies on the other hand,

which compared frequencies of genotypes in genes based on a
priori biological hypotheses, did not have the same success for
non-familial disorders. New loci for these common forms of
disease have recently been found by GWAS where variation, dis-
tributed across the whole genome, is compared between thou-
sands of cases and thousands of controls (1). For these forms
of disease success clearly arrived when we were able to survey
across the genome without the bias of biological plausibility.
Thus, technological advances have allowed for the identification
of very rare causative mutations underlying Mendelian forms of
disease—through linkage analyses—and of common variants
with low effects contributing to the susceptibility of late-onset
and ‘sporadic’ disorders—through GWAS. However, limita-
tions to these two approaches remain: linkage analyses are
unable to adequately test variants that do not impart a very
strong effect on disease, and GWAS is only suitable for variabil-
ity that is relatively common in the general population. We are
now able to test these types of variation by using whole-exome
and other sequencing approaches (2,3).

WE ARE GETTING WHAT WE PAID FOR

Exome sequencing is not only allowing for the quick identifica-
tion of many genes as the cause of several diseases, it is also
uncovering new risk factors for complex disorders. The
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application of this recently developed sequencing technology to
neurological diseases is no exception and many examples of
novel genes being associated with these disorders can now be
found in the literature (Table 1).

Most causative novel genes have been identified in families
where a specific phenotype segregates, either presenting a dom-
inant or recessive pattern of inheritance. In the case of recessive
diseases, the results obtained by exome sequencing are often
guided by autozygosity mapping and in the case of dominant
diseases, by genetic linkage analyses (12).

The number of findings is expected to increase as more
samples; more funding and more collaborations are put in
place. Several large projects are currently underway including
several national and international collaborations. Probably, the
largest of these projects is the Alzheimer’s Disease Sequencing
Project (ADSP - https://www.niagads.org/adsp/content/home),
a joint effort between the National Human Genome Research
Institute and the National Institute on Aging, which was one of
the first projects launched under the $130 million National
Alzheimer’s Project, that started in 2012.

The democratization of massively parallel sequencing, and in
particular of exome sequencing, has allowed for the identifica-
tion (and will likely continue to identify) of an enormous
number of novel genetic defects causing different diseases
(Table 1). Even though the observation that mutations in the
same gene can affect distinct clinical phenotypes has been a well-
known and studied concept in molecular genetics (13), this ava-
lanche of data resulting from the first era of exome sequencing
has revealed novel connections between phenotypes that can
help us to better understand the pathobiology of different neuro-
logical diseases. To consider these pleiotropic events, we will
firstly discuss different instances where variants present in the
same genes were found to be involved in different phenotypes
and, secondly, we will focus on more specific cases where
same-gene variants have been shown to exert different effects
on diseases, depending on the way the variant is inherited.

VARIANTS IN THE SAME GENES CAUSING

DIFFERENT PHENOTYPES

The definition of ‘different phenotypes’ can be rather difficult.
One illustrative example is the overlap between frontotemporal
dementia (FTD) and amyotrophic lateral sclerosis: based on clin-
ical, genetic and epidemiological data, these two previously
thought of as completely independent entities, seem to be
on opposite ends of a spectrum of disease, characterized

pathologically by the presence of TDP-43 positive inclusions
throughout the central nervous system (14–16). Adding to this
clinical and neuropathological overlap is the recent molecular
finding of hexanucleotide intronic expansions in C9ORF72 as
the cause of both FTD and ALS. It is currently not known
why individuals with apparently the same genetic alteration
develop either ALS or FTD (17,18). One possibility is that differ-
ent expansion sizes are associated with different phenotypes; a
hypothesis that has proved very difficult to test since the size
of each mutated allele is difficult to assess.

Examples like the C9ORF72 involvement in two clinically
distinct entities raise questions about the best way to define dis-
eases, particularly regarding the weight that should be put on the
molecular findings and on the relationship between these find-
ings and the neuropathological signatures associated with each
disease. From the examples given in Table 2, it is difficult to
reach definite conclusions for most cases: for ATP13A2, no
pathological analysis of Kufor Rakeb brains has been performed
yet; the Alzheimer’s disease case with a CADASIL-associated
mutation is still alive; and for GRN no pathological assessment
of the NCL homozygous cases was done, although mice
present with typical NCL lesions. However, for VCP, it has
been clinically and neuropathologically demonstrated that muta-
tions in this gene are responsible for cases diagnosed with either
IBMPFD or ALS (19).

In line with the aforementioned spectrum of FTD-ALS
disease, these results expand even more the range of overlap
by including an association of ALS with bone dysfunction and
myopathy. At the same time, these results point towards the
involvement of cellular protein degradation processes in the
molecular patholog of ALS. The involvement of such path-
obiological pathways in ALS can also be substantiated by the
recent findings of SQSTM1 (encoding the p62 protein, a multi-
functional protein that binds ubiquitin and is one of the best-
known autophagic substrates) (41) mutations both in ALS and
FTD (24,25).

Many other atypical phenotypical presentations are suggested
in the literature, particularly for different dementias, for example
PSEN1 mutations were found in FTD cases (42,43) and a
nonsense mutation in PRNP was associated with clinical and
neuropathological features of AD (44).

Although these overlaps between different clinical entities
can generate difficulties in the establishment of definitive
diagnoses, the assessment of mixed cohorts has also revealed
interesting genetic findings: high throughput deep sequencing
identified several GRN and MAPT mutations in AD clinical
cohorts (possibly due to misdiagnoses) (45), a genome-wide

Table 1. Examples of novel genes recently found to be associated with neurodegenerative diseases by the use of exome sequencing

Disease Gene Mutation(s) Effect on disease Refs.

Parkinson’s disease VPS35 Heterozygous p.Asp620Asn Causative (4,5)
Alzheimer’s disease TREM2 Heterozygous p.R47H Increased risk (OR . 3) (6,7)
Alzheimer’s disease SORL1 Heterozygous missense and nonsense Potentially causative (8)
Hereditary diffuse leukoencephalopathy with spheroids CSF1R Heterozygous missense, insertions and deletions

all affecting the protein tyrosine kinase domain
Causative (9)

Amyotrophic lateral sclerosis PFN1 Heterozygous missense Causative (10)
Autosomal-recessive cerebellar ataxia with spasticity GBA2 Homozygous missense and nonsense Causative (11)
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analysis uncovered several risk loci with shared effects on five
psychiatric disorders (46) and the joint analysis of multisystem
proteinopathy cases reflecting the expanded phenotype and
proteinaceous pathology characterizing diseases as IBM, FTD,
ALS and PDB has allowed for the identification of causative
mutations in hnRNPA2B1 and hnRNPA1 (47).

It is also possible that the relative abundance of pleiotropic
effects being found by exome sequencing results from the diffi-
culty in interpreting the pathogenic impact of some variants
identified through NGS. High throughput techniques have
shown that each individual carries a large number of genomic
variations of unclear significance and for some of these varia-
tions, especially if found in isolated patients and in the absence
of functional studies, the establishment of their pathogenicity
in relation to a specific phenotype may be extremely problematic.
As more and more samples are being sequenced, we see that
variants previously thought to be pathogenic are being found
in healthy individuals, challenging the definition of causality
and the interpretation of NGS results.

The establishment of pathogenicity to variants identified
through NGS is far from being a straightforward process, and
it is currently posing as a potential confounder for the identifica-
tion of true pleiotropic events and requiring new tools to
adequately assess this issue.

VARIANTS IN THE SAME GENE CAN CAUSE A

RARE EARLY-ONSET SEVERE DISEASE AND

MODULATE THE RISK FOR A LATE-ONSET

COMMON DISEASE

One result we previously predicted is the finding of pairs of dis-
eases previously thought to be unrelated and that are influenced
by different types of genetic variation in the same gene (48): one
disease is usually severe, has an early onset, and is caused by
homozygous loss-of-function mutations, while the other is a
late-onset disease with increased susceptibility caused by het-
erozygous (probably with partial loss-of-function) variants in
the same gene (Table 3).

Usually mutations in one gene cause specific phenotypes
either in the heterozygous or in the homozygous state, but gener-

ally not in both. In autosomal recessive diseases, heterozygous

individuals are usually healthy. In autosomal dominant disor-

ders, the allele frequency for the mutation is low, thus homozy-

gous individuals are very rare, with the exception of highly

inbred populations. When observed, these homozygous cases

are usually very similar to the heterozygous affected family

members [Huntington disease (53), Parkinson’s disease (54),

Creutzfeldt-Jakob disease (55)] or have a more severe form of

Table 2. Examples of mutations in the same genes causing different diseases, highlighting the role of NGS in uncovering pleiotropic events in neurodegenerative
disorders

Gene Initially described in disease(s) Type of mutation Also found in Type of mutation Refs.

ATP13A2∗ Kufor Rakeb syndrome (KRS, OMIM
#606693)

Frameshift homozygous Neuronal ceroid-lipofuscinosis
(NCL)

Missense
homozygous

(20,21)

NOTCH3∗ Cerebral autosomal dominant
arteriopathy with subcortical infarcts
and leukoencephalopathy (CADASIL,
OMIM #125310)

Missense heterozygous
changing a cysteine residue in
the protein

Alzheimer’s disease (AD,
OMIM #104300)

Missense
heterozygous
changing a cysteine
residue in the
protein

(22,23)

C9ORF72 Frontotemporal dementia (FTD, OMIM
#600274) and/or amyotrophic lateral
sclerosis (ALS, OMIM #105400)

GGGGCC hexanucleotide
intronic expansion

(17,18)

SQSTM1 Paget disease of the bone (PDB, OMIM
#602080)

Missense heterozygous;
frameshift; affecting splice
site

FTD and ALS Missense
heterozygous;
affecting splice site

(24–27)

GRN∗ FTD Heterozygous null Neuronal ceroid lipofuscinosis
(CLN11, OMIM #614706)

Homozygous null (28–30)

VCP∗ Inclusion body myopathy associated with
Paget disease and frontotemporal
dementia (IBMPFD, OMIM #167320)

Heterozygous missense ALS and hereditary spastic
paraplegia

Heterozygous
missense

(19,31,32)

PLA2G6 Neurodegeneration with Brain Iron
Accumulation 2A and 2B and Karak
Syndrome (INAD, NBIA2A, OMIM #
256600 and NBIA2B, OMIM #
610217)

Missense, nonsense, splice-site,
deletions, large intragenic
deletions, homozygous or
compound heterozygous

Adult-onset
dystonia-parkinsonism
(PARK14, OMIM 612953)

Homozygous and
compound
heterozygous
missense and
frameshift

(33,34)

PSEN1 AD Missense, small insertions,
heterozygous

Acne inversa (ACNINV3,
OMIM #613737)

Frameshift deletion (35,36)

TRPV4 Scapuloperoneal spinal muscular atrophy
(SPSMA, OMIM #181405)

Missense heterozygous Charcot-Marie-Tooth disease
type 2C (HMSN2C,
#606071)

Missense
heterozygous

(37)

TPP1∗ Late-infantile Neuronal Ceroid
Lipofuscinosis 2 (CLN2, OMIM
#204500)

Missense, nonsense, splice-site
affecting, deletions,
insertions and deletion–
insertion homozygous or
compound heterozygous

Autosomal recessive
spinocerebellar ataxia 7
(SCAR7, OMIM %609270)

Compound
heterozygous

(38–40)

∗Second association found by exome sequencing. Refs., references associated with the original descriptions in the different diseases.
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the same phenotype (Spinocerebellar Ataxia-2, -3 and -6, for
example) (56–59).

The occurrence in the same locus of genetic variation with dif-
ferent modes of inheritance imparting different effects on differ-
ent diseases can partially be explained by natural selection:
homozygous loss of function mutations cause early-onset disor-
ders and many individuals with these mutations die before reach-
ing reproductive age, contributing to the rare frequency of the
disease and of the mutations. On the other hand, heterozygous
variants confer risk to a disorder with an onset usually occurring
beyond reproductive age, making these variants and diseases
more common in the population.

Homozygous mutations in TREM2 were originally found to be
the cause of Nasu-Hakola disease (also known as polycystic lipo-
membranous osteodysplasia with sclerosing leukoencephalopa-
thy), a rare autosomal recessive form of dementia presenting
with pain and swelling of wrists and/or ankles due to bone
cysts and usually followed by bone fractures (49). Patients
usually die in the fourth decade of life presenting the later
features of the disease that resemble those of AD or FTD. The
same type of mutations (and in some cases the same exact muta-
tions) have been described in patients presenting with frontotem-
poral dementia, but with no associated bone phenotypes (50,60).
More recently, a rare heterozygous variant (p.R47H) was asso-
ciated with an increased risk of AD (6,7). TREM2 is a membrane
protein that forms a receptor–signalling complex with TYROBP
(also known as DAP-12) and works to activate immune
responses in different cells from the myeloid lineage, like macro-
phages and dendritic cells. It is thought to have an anti-
inflammatory role in the brain (49). In AD, loss-of-function or
partial loss-of-function mutations in the gene are expected to
alter inflammatory processes and lead to a decreased ability of
clearing amyloid plaques, with a consequent increase in cell
death and cognitive decline. Common variation in the TREM2
locus has also been associated by GWAS with C-reactive
protein levels (61) and potential associations of p.R47H with
FTD, ALS and Parkinson’s disease have also been reported
(62–65), suggesting a potential role for TREM2 across different
neurodegenerative disorders.

In a similar fashion, homozygous mutations in the gene coding
for the glucocerebrosidase (GBA) enzyme cause Gaucher’s
disease, a lysosomal storage disease characterized by the accu-
mulation of GBAs (51), while heterozygous variants in GBA
have been associated with an increased risk of PD (52), DLB
(66) and PD with dementia (67).

These findings have confirmed the central role of inflamma-
tion and lysosomal pathways in AD and PD, respectively.

Also interesting to note are the associations between
heterozygous variants in autosomal recessive PD loci and differ-
ent pathologies. Homozygous mutations in PARK2 (encoding
parkin, an E3 ubiquitin ligase) are known to cause
early-onset forms of Parkinson disease (68) and the association
of heterozygous variants with an increased risk of PD has long
been debated. More recently, PARK2 somatic mutations have
been associated with different types of cancer (69), suggesting
that germline mutations in PARK2 cause PD and somatic muta-
tions contribute to cancer (for a review see Plun-Favreau et al.)
(70). Additionally, genome-wide analysis of rare copy
number variants identified PARK2 as a candidate gene for
attention-deficit/hyperactivity disorder and GWAS have found
significant associations between common variability in this
locus with lumbar disc degeneration (in a meta-analysis of
northern Europeans) (71), ageing (by performing linkage and
association in large Amish kindreds) (72), pancreatic cancer in
the Japanese population (73) and metabolite levels (74). The
fact that PARK2 is embedded in a common fragile site
(FRA6R) and, consequently, is particularly prone to breaks,
may explain the frequent occurrence of PARK2 gross mutations
like deletions in cancer cells and the association of copy
number variants with attention-deficit/hyperactivity disorder
(75). However, it is difficult to anticipate a related mechanism
for the associations established with common point variability
in the locus, especially since similar associations have been
identified for other PARK loci: by GWAS, PARK7 has been
associated with ulcerative colitis (76) and celiac disease (77),
while PLA2G6 has been associated with susceptibility to
melanoma (78) and cutaneous nevi (79,80) (high melanocytic
nevi count is the strongest known risk factor for cutaneous
melanoma). Interestingly, LRRK2 has also been associated
with inflammatory bowel disease, Crohn’s disease and leprosy
(81–84).

POSSIBLE MECHANISMS FOR COMPLEX

ASSOCIATIONS BETWEEN MOLECULAR

FINDINGS AND PHENOTYPES

While revealing this increasing complexity (that can be consid-
ered to challenge the basis of Mendelian genetics), NGS techni-
ques are also providing some relevant insights into the
mechanisms underlying such complexity. One example previ-
ously mentioned is the possibility that different expansion
sizes of C9ORF72 are related to either a phenotype of FTD or
ALS. However, besides this more obvious possible correlation
between different types of mutations and distinct phenotypes,
other mechanisms can be involved and these include: oligogenic
or polygenic inheritance, variants in distinct genes acting
as phenotypic modifiers of a monogenic disorder, different
genetic background, gene–gene interactions, differential ex-
pression levels in different cell types, environmental factors or
epigenetic effects. All of which will require much larger and
deeply studied data sets to be tested on.

Table 3. Examples of homozygous/heterozygous variants in the same gene
causing a severe early-onset disease and increasing the risk for a different
late-onset disease

Gene Homozygous mutations
cause

Refs. Heterozygous
variants increase risk
for

Refs.

TREM2 Nasu-Hakola and
FTD-like syndrome
without bone disease

(49,50) Alzheimer’s disease (6,7)

GBA Gaucher’s disease (51) Parkinson’s disease (52)

Refs., references.
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CONCLUSION

Results from exome sequencing analyses have reinforced the
notion that some neurodegenerative diseases are part of patho-
logical spectrums arising from common molecular processes. In
the context of late-onset diseases, and in particular diseases
with a long preclinical phase, it is not surprising that there is sub-
stantial clinical heterogeneity given the potential for influence of
different factors (including genetic and environmental) from the
inception of the process to phenotypic presentation. This would
be more obvious if the genes mutated were involved with repair
or response to an insult—the end point would be determined by
what the initial problem was and where it started.

These commonalities observed between different diseases
cannot only be seen in the form of pure pleiotropic genetic
effects but also, and perhaps more interestingly, when variants
in the same gene but with different patterns of inheritance
cause a severe early-onset disease and modulate the risk for a
more common and less severe late-onset disorder.

Although extraordinary advances are being made by the appli-
cation of exome sequencing to the study of neurological dis-
eases, it is also important to mention that at least part of the
genetic lesions contributing to these diseases will not be amen-
able to be found by exome or even genome sequencing. The
large intronic hexanucleotide expansion in C9ORF72 is a clear
example in neurological diseases but examples from other
diseases are also arising, like the large VNTR in MUC1
causing medullary cystic kidney disease type 1 (85).

Clearly some of these results will help clinicians understand
the co-occurrence of clinical phenotypes in patients, as well as
point to wider genetic screens when the obvious candidate
genes are negative for mutations, and to potential druggable
targets. The latter is already evident from the recent programmes
that several drug companies have started on inflammation and
associated processes for Alzheimer’s disease, following the
identification of TREM2 as a risk gene for this disorder.

In summary, results showing genetically overlapping diseases
have clear implications for the clinical diagnoses and follow-up
of patients, but are also of great importance to uncover the
molecular mechanisms underlying these pathologies.
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