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One practical application of genome-scale metabolic reconstructions is to

interrogate multispecies relationships. Here, we report a consensus meta-

bolic model in four yeast species (Saccharomyces cerevisiae, S. paradoxus,

S. mikatae, and S. bayanus) by integrating metabolic network simulations

with RNA sequencing (RNA-seq) datasets. We generated high-resolution

transcriptome maps of four yeast species through de novo assembly and

genome-guided approaches. The transcriptomes were annotated and

applied to build the consensus metabolic network, which was verified using

independent RNA-seq experiments. The expression profiles reveal that the

genes involved in amino acid and lipid metabolism are highly coexpressed.

The diverse phenotypic characteristics, such as cellular growth and gene

deletions, can be simulated using the metabolic model. We also explored

the applications of the consensus model in metabolic engineering using

yeast-specific reactions and biofuel production as examples. Similar strate-

gies will benefit communities studying genome-scale metabolic networks of

other organisms.

The metabolic network reconstructions can be applied

in diverse aspects, such as metabolic engineering for

biotechnological productions [1], and interrogation of

multispecies relationships [2]. Among these applica-

tions, the cross-species comparison of metabolic

networks allow for a systematic investigation of struc-

ture-function relationships of biological processes and

may put forth valuable hints on the evolution of these

metabolic pathways [3–5]. For instance, the conse-

quences of copy number alterations in metabolic

networks suggested a potential role for dosage

selection in the mammalian evolution [3]. In addition,

a ‘community consensus’ reconstruction of the yeast

metabolic network was performed by Herrg�ard et al.

[6], which was based on a large, focused work meeting,

to define the protocol for the curation process as well

as resolving the majority of discrepancies between the

existing reconstructions.

However, the majority of the current metabolic net-

works are reconstructed based on the prior knowl-

edge (knowledge-driven) and focused on network

topologies or characteristics of components in the
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model, ignoring the actual states of the metabolic

networks [7]. For instance, the transcriptomes in cells

should always be considered, in which the changes

are critical for generating phenotypic diversity among

species [8]. On the other hand, the gene expression

divergence may lead to the failures of repeating

biological experiments or of developing medicines in

scientific research field [8]. Recent advances in

sequencing technology have made it available to

derive accurate metabolic models [9,10]. In theory,

RNA-seq can be applied to reconstruct complete and

high-resolution transcriptomes across all species, cell

types and states [11–13]. Several methods have been

developed to build the transcriptome, and they fall

into two main classes: ‘genome-guided’ and genome-

independent (de novo assembly) [14]. The first meth-

ods rely on a reference genome to first map all the

RNA-seq reads to the genome and then assemble

overlapping reads into transcripts. Unfortunately, the

genome-guided method does not always work.

Despite the large drop in the cost of next-generation

sequencing, the complete study of a genome is still

costly and difficult, especially for nonmodel organ-

isms. Besides, the model being studied is sufficiently

different from the reference genome because it comes

from a different strain or line. In this situation,

de novo assembly is suitable for the accurate recon-

structions.

In the study, we carried out an integration analysis

of RNA-seq expression profiles from four yeast species

(Saccharomyces cerevisiae, Saccharomyces paradoxus,

Saccharomyces mikatae, and Saccharomyces bayanus)

to generate a ‘consensus’ metabolic network. First, we

generated high-resolution transcriptome maps of four

yeast species through de novo assembly and genome-

guided approach. We then produced a consensus

metabolic network and validated the model using an

independent RNA-seq study. By quantifying the gene

expression level in the model, we estimated the conser-

vation and divergence of metabolic pathways. We also

discussed the practical applications of the metabolic

model.

Materials and methods

Overview

The process, explained in detail below and illustrated in

Fig. 1, consists of four steps: (a) genome-guided tran-

scriptome reconstruction; (b) de novo transcriptome

assembly; (c) reconstruction of consensus metabolic

model; and (d) model annotations, simulations, and

validation.

RNA-Seq data acquisition and metabolic network

of Saccharomyces cerevisiae

The raw RNA-seq data from four yeast species (S. cere-

visiae, S. paradoxus, S. mikatae, and S. bayanus) was

downloaded from the NCBI GEO database (NCBI GEO

accession: GSE32679) [15], with two replicates for each spe-

cies. The four yeast species were grown in complete media

and sampled according to the protocol described in Marth

et al.’s study [15].

The S. cerevisiae iND750 metabolic network (hereinafter

referred to as ‘iND7500) was retrieved from Schellenberger

et al.’s work [16]. It contains 1061 metabolites, which par-

ticipate in 1266 reactions in 47 subsystems, catalyzed by

750 verified S. cerevisiae genes. The model is available as a

systems biology markup language (SBML) [17] file, which

could be easily used in the MATLAB-compatible COBRA

Toolbox [18].

Genome-guided transcriptome reconstruction

The reference genome and annotations for S. cerevisiae were

obtained from the Saccharomyces Genome Database (http://

www.yeastgenome.org/). Genome, annotations, and orthol-

ogy mappings for the other species were from Kellis et al.’s

work [19]. RNA-seq reads were aligned to their respective

genomes using the MOSAIK alignment program (version

1.1.0018, http://bioinformatics.bc.edu/marthlab/Mosaik)

allowing for a threshold of two mismatches between each 35-

base pair read and the reference genome. The alignment out-

put was parsed using the bamtools API [20].

De novo transcriptome assembly

All the de novo assemblies were run with OASES (version

0.2.08) [21], and VELVET (version 1.2.07) [22]. In each of the

assemblies, the RNA-seq reads were used to build a de

Bruijn graph through Velvet, with the k-mer lengths of 17,

19, 21, 23, 25, 27, 29, 31, and 33, respectively. The Bruijn

graphs were then simplified for errors, organized into a

scaffold, divided into loci, and finally analyzed to extract

transcript assemblies or transfrags. Once all of the individ-

ual k-mer assemblies were finished, they were merged into

a final assembly.

Reconstruction of consensus metabolic model

In the process, the BLASTN (version 2.2.23) program was

used to map all the metabolic genes in S. cerevisiae model

to the transcriptomes reconstructed through genome-guided

approach and de novo assembly, with e-value threshold set

at 10�4. We then overlapped all the positive results from

four species to obtain a consensus metabolic gene dataset.

We derived a consensus metabolic model from the

S. cerevisiae metabolic network using two commonly used
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algorithms of top–down metabolic reconstructions, includ-

ing GIMME [7] and iMAT [23]. The GIMME algorithm is

a linear programming procedure, which can matches high-

throughput omics data (such as transcriptome and pro-

teome) to an original flux distribution that obtained from

the full metabolic model. The constraining reactions in the

consensus were set up according to the Yeast 5 genome-

scale model [24]. On the other hand, the iMAT algorithm

is a mixed integer linear programming algorithm that best

matches the omics data to pathway length. Using these two

methods for the consensus model reconstruction, (a) we

prepared the S. cerevisiae metabolic network, and (b) the

high-quality transcriptomes in four species based on the

genome-guided and de novo methods above.

Differential expression in pairwise comparison

We identified differentially expressed genes (DEGs) using a

free BIOCONDUCTOR [25] package, called DESEQ (version

1.1.11) [26]. In RNA-seq experiments, read counts differ

for each sample due to a variable number of reads pro-

duced by sequencing runs and the mixture of RNA within

samples. Sample normalization is confounded by differ-

ences in gene expression. To solve the problem, DEseq uses

a generalization of the Poisson model, the negative bino-

mial distribution, to model biological and technical vari-

ance and test for differential expression between the two

conditions or species. All genes that were found to be

DEGs between two species (at a P-value cutoff of 0.05 and

fold-change < 0.5 or > 2, that is, fold-change < �1 or > 1

after log transformation) were retained for further analysis.

We also applied reads per KB per million reads (RPKM)

to detect gene expression levels [27].

To reduce the bias induced by randomization, we intro-

duced the phastCons tree model [28] with branch lengths

for all four species (Fig. S1), with S. bayanus included in

the further analysis as an outgroup. If a DEG between

S. bayanus and the other three species show the same

tendency (i.e., all the fold changes > 2 or < 0.5), the gene

was considered to form divergent expression patterns.

Fig. 1. A flowchart schematic

representation of our study. The process

consists of four steps: (1) genome-guided

transcriptome reconstruction; (2) de novo

transcriptome assembly; (3) reconstruction

of consensus metabolic model; and (4)

model validation, simulation, and

annotation. In step (4), we determined the

conservation and divergence of metabolic

genes in gene expression.
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Validation of the metabolic model using

independent RNA-seq study

To validate our metabolic model, we introduced another

independent RNA-seq dataset (NCBI GEO accession:

GSE38875), with two replicates for S. paradoxus,

S. mikatae, and S. bayanus, and six replicates for S. cere-

visiae [29]. Cultures were grown at 25 °C in yeast extract

peptone dextrose medium to log phase. The RNA-seq reads

were analyzed using the same procedures in Fig. 1: (a) the

transcriptomes for the four yeast species were reconstructed

using both genome-guided and De Novo assembly methods,

and (b) the consensus metabolic model was built using

GIMME [7] and iMAT [23] algorithms based on the recon-

structed transcriptomes and S. cerevisiae iND750 [16].

Moreover, we compared our metabolic network with man-

ually curated metabolic networks, including YEAST5 [30]

and YEAST6 [31].

Reconstruction of coexpression network

We combined the two independent RNA-seq datasets

together, and got 20 expression profiles in total for the four

yeast species. The genes were ranked according to expres-

sion variance among samples and the ones with lowest vari-

ance (the top 25 percentile) were filtered. We then adopted

the Pearson’s correlation coefficient (PCCs) of gene expres-

sion patterns to measure the gene coexpression. To make

the result solid, we set |Pearson’s r| 0.90.

Metabolic network simulations

The metabolic models were analyzed by using multiple

methods in COBRA toolbox (V 2.0.2) [18], including flux

balance analysis (FBA) [32], minimization of metabolic

adjustment (MOMA) [33], and Genetic Design through

Local Search (GDLS) [34].

These methods provide important tools for harnessing

the knowledge encoded in the reconstructed metabolic

model. FBA predicts metabolic flux distributions at steady

state by using linear programming while the method of

minimization of metabolic adjustment (MOMA) employs

quadratic programming to identify a point in flux space,

which is closest to the wild-type point, compatibly with the

gene deletion constraint. FBA and MOMA of the meta-

bolic network were used to calculate the impact of gene

deletions on maximum biomass production rate (a proxy

for fitness). We set both the upper and lower flux bounds

of the reaction(s) involving the deleted gene to zero. The

gene-reaction associations in the model are indicated by

logical relationships between metabolic genes and their

corresponding reactions. That is, if a single gene partici-

pates in multiple reactions, the gene deletion will result in

the removal of all associated reactions. On the other hand,

if a reaction involves multiple noninteracting genes, it will

not be silenced in a single gene deletion. We categorized

the simulation results from a single gene deletion into non-

lethal and lethal, which correspond to unchanged maximal

growth (defined as mutant growing at > 99.9% of the wild-

type growth rate) and reduced maximal growth or no

growth separately. We can obtain valuable information by

exploring the effect of reducing flux through a single reac-

tion on growth, for example, predicting the haploinsuffi-

cient phenotypes in yeasts. Moreover, robustness analysis

of the metabolic network tells us how growth rate changes

as the flux through a specific reaction of interest varies in

magnitude [35].

The GDLS algorithm [34] was used to identify the reac-

tions list to knock out in order to increase in silico produc-

tion of desired metabolites. GDLS is a computational

design tool for metabolic engineering, which uses an effi-

cient, low-complexity local search approach to identify

favorable genetic designs from flux balance metabolic mod-

els [34]. In this study, we set neighborhood size to be 2,

maximum number of knockouts to be 5, and the minimum

growth rate to be 0.05 mmol gDW�1 h�1 [36]. The model

was adjusted as the minimal medium composition to be

aerobic and contain a glucose supply (20 mmol

gDW�1 h�1).

Essential genes in yeast genome

We retrieved the essential genes for yeast growth from

Saccharomyces Genome Deletion Project (http://www-

sequence.stanford.edu/group/yeast_deletion_project), which

generates more than 20000 strains with the overall goal

of assigning function to the ORFs through phenotypic

analysis of the mutants [37]. Based on the gene deletion

experiments, the single gene deletion results using FBA

and lMOMA can be categorized into: True Positives

(model simulation predicts growth when inessential genes

are deleted), False Negatives (model simulation predicts

no growth when inessential genes are deleted), False Pos-

itives (model simulation predicts growth when essential

genes are deleted), and True Negatives (model simulation

predicts no growth when essential genes are deleted).

Gene ontology and statistical analysis

All the Gene Ontology enrichment analyses were assessed

using ClueGO, a Gene Ontology-based tool as function-

ally grouped networks [38]. KEGG pathway analysis was

also performed using ClueGO. Two-sided hypergeometric

test was adopted as the default statistical test. Tukey–Kra-

mer test was performed to determine the statistical signifi-

cance of the average length of assembled transcripts from

different k-mers. Two-sample t-test was performed to

compare the gene expression levels between metabolic

genes.
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Results

Integrated analysis of genome-guided and de

novo assembly

We searched transcripts of each species obtained

through the genome-guided method against the

sequences from the other three species and retrieved

4174 consensus transcripts (Fig. 2A), accounting

78.7% of the annotated cDNA sequences in S. cere-

visiae. Of these consensus genes, 545 were found to be

metabolic genes in S. cerevisiae metabolic genes. Mean-

while, molecular function enrichment analysis with

Gene Ontology annotation reveals that the transcripts

not included in consensus dataset from S. cerevisiae are

enriched with DNA-binding (GO:00036770), protein

kinase activity (GO:00046720), and transcription factor

binding (GO:00081340) and other important function

categories (the detailed information was depicted in

Fig. S2; all P values <0.01), which are crucial for cell

growth. KEGG pathway analysis shows that the meta-

bolic genes not included in the consensus dataset were

enriched with basic metabolic pathways (Fig. 2B), such

as Glutathione metabolism (KEGG:004800), and

Glycolysis/Gluconeogenesis (KEGG:000100).

We reasoned that there were missing consensus

genes between four yeast species due to the incomplete

genome information. As a result, we carried out

de novo assembly of 2.9 9 108 RNA-seq reads to

generate a high-resolution transcriptome map. In the

Fig. 2. Transcriptome assembly using RNA-seq reads. (A) Venn plot of transcripts of four yeast species obtained through the genome-

guided method, with 4174 consensus transcripts. Sce, Spa, Smi, and Sba represent Saccharomyces cerevisiae, S. paradoxus, S. mikatae,

and S. bayanus separately. (B) KEGG pathway analysis of the metabolic genes not included in the consensus enzymes obtained through the

genome-guided method. The red stars indicate statistical significance (two stars when P < 0.01; one star when P < 0.05). (C) The scaffold

N50 values when the k-mer was set to 17, 19, 21, 23, 25, 27, 29, 31, and 33 in de novo assembly. (D) The average transcript count in each

species when the k-mer was set to 17, 19, 21, 23, 25, 27, 29, 31, and 33 in de novo assembly.
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single k-mer assembly in oases and velvet protocol,

the average length of scaffolds was highest when the

k-mer was set to 19 (Fig. 2C; Tukey–Kramer test,

P = 5.7 9 10�7). Besides, the transcripts retrieved

from 19-mer performed best in the following BLAST

analysis, which were therefore used for the further

analysis. Oases assembles 71429 transcripts in four

yeast species, with two replicates in each species

merged into one transcriptome (Fig. 2D). In these

transcripts, we detected 217 consensus metabolic genes

included in S. cerevisiae model. We combined tran-

scriptomes from genome-guided and de novo assembly

strategies and obtained 599 consensus metabolic genes

in four yeast species.

Reconstruction and validation of consensus

metabolic network in four yeast species

Based on iND750 and the transcriptomes above, we

applied two common methods (Materials and Meth-

ods) to reconstruct a consensus metabolic network. It

shows that the two methods produced the equivalent

network, containing 992 metabolites, which participate

in 1104 reactions, catalyzed by 604 metabolic genes

(TEXT S1). The model was written in systems biology

markup language and could be divided into 47 subsys-

tems (Fig. S3). It is observed that different gene-pro-

tein-reaction (GPR) relationships are adopted in

different subsystems. For example, reactions in oxida-

tive phosphorylation are often catalyzed by multiple

genes while genes in fatty acid biosynthesis correspond

to multiple reactions.

Using an independent RNA-seq dataset [29], we

repeated the procedure for model reconstruction with

all the parameters the same (Materials and Methods).

The reconstructed transcriptomes contains 4728 con-

sensus transcripts from genome-guided assembly

approach and 73 661 transcripts from de novo assem-

bly approach. A total of 602 consensus metabolic

genes were found from the transcriptomes. A meta-

bolic model containing 992 metabolites, 1104 reac-

tions, and 604 metabolic genes was obtained. It

shows that the model contains the same GPR rela-

tionships as the one in TEXT S1, suggesting that the

reconstructed model is robust. Moreover, compared

to the manually curated metabolic networks [30,31],

the data-driven network reconstruction we adopted is

stable among different datasets. For example,

YEAST6 comprises 1458 metabolites participating in

1888 reactions, which are annotated with 900 yeast

genes encoding the catalyzing enzymes [31]. Mean-

while, YEAST5 includes 1655 metabolites participat-

ing in 2110 reactions [30]. Another advantage of the

data-driven strategy is the ease to add additional

inputs to the metabolic model. For instance, it would

be necessary to consider the actual states (gene

expression, DNA methylation, etc.) of the metabolic

network.

Expression patterns of metabolic genes

Gene expression is a sensitive measure to observe the

molecular change [8]. It is commonly accepted that

highly expressed genes tend to be essential and evolve

at lower rates [39]. As a result, we first explored the

highly expressed metabolic genes in the yeast consen-

sus metabolic model. Figure 3 shows the top 40 highly

expressed metabolic genes in S. bayanus, most of

which show high expression in other three species. By

setting stringent criteria (all fold change ≥ 2 or ≤ 0.5,

and P < 0.05 between S. bayanus and the other three

species), we identified seven genes divergent in gene

expression. Among these seven genes, gene FAS2

(Fatty acid synthase subunit alpha) shows up-regu-

lated patterns while the other six genes (ACO1,

PCM1, IPP1, MET5, MES1, and TPS1) show down-

regulated patterns between S. bayanus and the other

three species. It shows that the protein encoded by

S. bayanus FAS2 is much longer than the orthologous

proteins in the other species, with large deletions/in-

sertions in the multiple sequence alignment. We also

detected FAS2 with positive selection on coding

region (P < 10�5), using the Nei–Gojobori method

[40] and the bootstrap method (500 replicates) in

MEGA5 [41].

We also wondered whether the metabolic genes in

the model displayed the same patterns in expression

profiles with each other. As a result, we built up a

coexpression network based on the intra- and inter-

species expression variation (Fig. 4; Methods). It

shows that most of the coexpressed genes are associ-

ated with amino acid and lipid metabolism. Besides,

10 metabolic genes present a densely connected mod-

ule, mainly participating in Glycolysis/Gluconeogenesis

and Phospholipid Biosynthesis.

Simulating phenotypic characteristics of

metabolic model

Using the metabolic model, we could predict pheno-

types of yeast metabolic genes. In the previous studies,

one of the most important phenotypic predictions is

the simulation of cellular growth [35]. As a result, we

defined biomass composition of the cell as the biomass

objective function and performed FBA on the recon-

structed network to maximize the objective function. It
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shows that the optimal solution for the model is the

same as the optimal solution in S. cerevisiae metabolic

network (optimal flux = 0.097).

We performed a genome-scale single gene deletion

study using both FBA and linearMOMA methods in

COBRA toolbox [35]. It shows that 113 genes were

considered lethal and 491 genes were nonlethal out of

604 genes in the model, with 95 gene deletions leading

to reduced maximal growth rates and 396 exhibiting

no change in growth using FBA (Fig. S4A). The

growth ratios of 331 gene deletions to wild-type are

different between two methods. It is mainly due to the

different flux-based analysis strategies by FBA and

lMOMA [33]. Compared with FBA, lMOMA is based

on the same stoichiometric constraints, but the optimal

growth flux for mutants is relaxed, providing an

approximate solution for a suboptimal growth flux

state. However, it shows that the lethal genes predicted

using FBA are also predicted lethal using lMOMA,

suggesting that prediction of essential metabolic genes

from both methods are consistent. In addition, the sin-

gle gene deletion results show that biomass could be

produced in 451 out of 492 the gene-deletion strains in

which genes annotated as inessential or nonaux-

otrophic were deleted (true positive) and that biomass

could not be produced in 48 mutant strains where

these inessential or nonauxotrophic genes were deleted

(false negative). As a result, the consensus metabolic

model has a 90.4% sensitivity for identifying the essen-

tial genes. If the simulation results predicted that bio-

mass could be produced following a gene deletion, the

deleted gene was not considered as essential in 92% of

the cases (a 92% positive predictive value).

We wondered the effects of reducing flux through

reactions catalyzed by the highly expressed genes in

consensus metabolic model. As a result, we studied the

effect of decreasing the expression level of the top two

genes (Fig. S4B) on the growth rate to predict haploin-

sufficient phenotypes. The gene YLR044C (pyruvate

decarboxylase; EC 4.1.1) participates in Pyruvate

Fig. 3. The expression patterns of highly

expressed Saccharomyces bayanus

metabolic genes in four yeast species. The

heat map shows the log2 transform of

RPKM (reads per kilobase of exon per

million reads) values of metabolic genes in

the consensus metabolic model. Red stars

indicate differentially expressed genes

with the changes in RPKM ratio over

twofold and P < 0.01 between S. bayanus

and the other three species.
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Metabolism while the gene YKL060C (fructose-

bisphosphate aldolase; EC 4.1.2.13) catalyzed Glycoly-

sis/Gluconeogenesis. The growth rate is sustained near

the optimal value over a range of fluxes for Pyruvate

Metabolism (PYRDC, Pyruvate decarboxylase) while

the growth rate for Glycolysis/Gluconeogenesis (fruc-

tose-bisphosphate aldolase) is sharply reduced after

optimal value, indicating network robustness with

respect to flux changes in PYRDC (Fig. S4B). How-

ever, a complete deletion of the PYRDC reaction

would lead to a lethal phenotype, whereas deletion of

the fructose-bisphosphate aldolase reaction exhibits no

change in growth.

Applications of consensus model in metabolic

engineering

One important use of metabolic reconstructions is to

guide of metabolic engineering in yeast [42], for exam-

ple, overproduction of biofuels [43]. Here, we applied

the model to identify how to increase in silico produc-

tion of desired metabolites. We took yeast-specific

reactions and ethanol as examples.

We searched the Yeast Metabolome Database (http://

www.ymdb.ca/) using metabolic genes in the metabolic

model and identified 54 yeast-specific reactions

(Table S1). We set the minimal medium composition of

the metabolic model aerobic and contain a glucose sup-

ply (20 mmol gDW�1 h�1) and predicted a list of candi-

date reactions for deletion to optimize product

formation of these yeast-specific reactions (Table 1). It

shows that seven out of the 54 reactions can be opti-

mized by reaction knockouts. Besides, it also shows that

2-oxoglutarate exchange (EX_akg) can be knocked out

for the overproduction of five specific reactions.

We estimated the in silico overproduction of ethanol,

zymosterol, and D-sorbitol as biofuel production. The

resulting knockout list for ethanol is aldehyde dehydro-

genase acetaldehyde NADP, catalase, CO2 transport

diffusion mitochondrial, glucose 6 phosphate isomerase,

and threonine aldolase (Table 2). The resulting knock-

out predicted a growth rate of ~ 0.21 and a product

excretion rate of ~ 37.29. As for zymosterol, the result-

ing knockout predicted a growth rate of ~ 0.44 while a

product excretion rate of ~ 1.50. We set the maximum

number of knockouts to be no limit, the list of reactions

Fig. 4. Coexpression network of metabolic genes based on the intra- and interspecies variation in gene expression. Only the main island of

the coexpression network is shown. gra: gene-reaction association; pp: coexpression relationships between metabolic genes.
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to knock out increases to 12 (the list for zymosterol in

Table 2 plus ALATA_L, BPNT, GHMT2r, GLYt2 m,

HSK, IPPS, NDPK1). However, the growth rate is

reduced ~ 0.28 and the production rate increases to

~ 1.67. For D-Sorbitol, The optimal knockouts are

transketolase, L-alanine transaminase, 3-5-bisphosphate

nucleotidase, ergosterol exchange, and h2o transport via

diffusion. Both ethanol and D-Sorbitol result in the

some similar optimal flux distribution.

Discussion

In the recent 10 years, network reconstruction

approaches have developed rapidly [7,44]. The yeast

metabolic reconstruction presented here represents an

analogous process for systems biology studies of a tar-

get organism. With the successful achievement of the

consensus reconstruction based on RNA-seq, similar

strategies should benefit systems biology for other

organisms in metabolic modeling. We believe that the

metabolic model reconstruction provided here will

have special utility in a number of areas. First, the

reconstruction will allow successful phenotype predic-

tions, including cell growth, in response to genetic

and/or environmental perturbations using a variety of

methods [6]. In the study, we simulated gene deletion

phenotypes and robustness analysis of specific reac-

tions. The results are of importance to studying molec-

ular functions of metabolic genes. Second, we can

perform an exploration of metabolic pathways and

well-curated connections between gene products. With

the inevitable depletion of the world’s energy supply,

there has been an urgent need in alternative sources of

energy. In the recent years, many scientists are increas-

ingly conscious of biomass energy as a means of pro-

viding modern energy [45]. The results show that we

can apply the consensus metabolic model in biofuel

production. Moreover, we can optimize the overpro-

duction of specific metabolites (such as ethanol)

through gene knockouts. Third, it can be integrated

with other high-throughput data, such as microarray

[46], genomic information [47], and proteomics [48],

for exploring questions related to comparative metabo-

lomics and of metabolic pathway evolution.

Yeasts can cause a spectrum of diseases that range

from colonization to uniformly fatal invasive disease.

For example, Invasive fungal diseases (IFDs) are

increasingly common complications in critically ill

patients worldwide and are frequently fatal [49]. Refer-

ring to yeast biology, several groups have stressed the

threat that the lack of new antifungal drugs of broad

spectrum and low toxicity poses to public health [50].

We reason that the yeast metabolic model is suitable for

drug development. There are several available strategies

for this. First, the structures of 100 metabolic proteins

have been solved to date, which can be easily applied in

the drug design [51]. Second, the systems biology tools,

especially the constraint-based modeling of genome-

scale metabolic networks, can be used in exploring

pathogenic processes and drug discovery [52]. In addi-

tion, we explored the conservation and divergence of the

Table 1. Metabolic engineering of yeast-specific reactions using in silico GDLS optimizations.

MFAPS PETOHM PINOS PMETM PSERDv DAGPYP PStv

Knockouts EX_akg EX_akg EX_akg, HMGCOAtm EX_akg PStm EX_akg, HMGCOAtm PStm

Product 0.012 0.012 0.01 0.012 0.02 0.013 2.0 9 10�4

Biomass 1.95 1.95 1.95 1.95 1.95 1.95 1.95

The concentration of product and biomass is mmol gDW�1 h�1. EX_akg: 2 Oxoglutarate exchange; HMGCOAtm: Hydroxymethylglutaryl

CoA reversible mitochondrial transport; PStm: phosphatidylserine mitochondrial transport; MFAPS: methylene fatty acyl phospholipid syn-

thase; PETOHM: phosphatidylethanolamine N methyltransferase; PINOS: phosphatidylinositol synthase; PMETM: Phosphatidyl N methy-

lethanolamine N methyltransferase; PSERDv: phosphatidylserine decarboxylase; DAGPYP: diacylglycerol pyrophosphate phosphatase; PStv:

phosphatidylserine vacuolar transport.

Table 2. Metabolic engineering of consensus metabolic model for

biofuel production.

Ethanol Zymosterol D-Sorbitol

Knockout

list

ALDD2y, CAT,

CO2tm, PGI,

THRA

CSNAT, ERGSTt,

ME1 m,

PYRt2 m, TKT2

ALATA_L, BPNT,

EX_ergst(e),

H2Ot, TKT2

Product 37.29 1.50 14.2

Biomass 0.21 0.44 0.12

The concentration of product and biomass is mmol gDW�1 h�1.

ALDD2y: aldehyde dehydrogenase acetaldehyde NADP; CAT: cata-

lase; CO2tm: CO2 transport diffusion mitochondrial; PGI: glucose 6

phosphate isomerase; THRA: Threonine aldolase; CSNAT: carnitine

O acetyltransferase; ERGSTt: ergosterol reversible transport;

ME1 m: malic enzyme NAD mitochondrial; PYRt2 m: pyruvate

mitochondrial transport via proton symport; TKT2: transketolase;

ALATA_L: L-alanine transaminase; BPNT: 3-5-bisphosphate

nucleotidase; EX_ergst(e): Ergosterol exchange; H2Ot: H2O trans-

port via diffusion.
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metabolic genes in gene expression. The majority of the

consensus metabolic genes is conserved, which can pro-

vide useful evolutionary information for targets of

broad-spectrum therapeutics.

Despite our experimental and statistical rigor, our

dataset does have some limitations. We used two

RNA-seq datasets with 20 samples to reconstruct the

coexpression network, which may not cover the entire

temporal differentially expressed genes. Besides, the

reconstructed metabolic model is not robust to the

changing flux through a single reaction. Some of the

links between reactions or nodes (including metabo-

lites, reactions, or genes) might be missing. The future

work should focus on the filling gaps in metabolic

pathways.

Conclusion

In this study, we reconstructed a consensus metabolic

model in four yeast species based on RNA-Seq data-

sets. The metabolic model can be applied to metabolic

engineering and benefit communities studying genome-

scale metabolic networks of other organisms.
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