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Abstract: In this paper, we propose a novel approach to segment tumor and normal regions in
human breast tissues. Cancer is the second most common cause of death in our society; every eighth
woman will be diagnosed with breast cancer in her life. Histological diagnosis is key in the process
where oncotherapy is administered. Due to the time-consuming analysis and the lack of specialists
alike, obtaining a timely diagnosis is often a difficult process in healthcare institutions, so there
is an urgent need for improvement in diagnostics. To reduce costs and speed up the process, an
automated algorithm could aid routine diagnostics. We propose an area-based annotation approach
generalized by a new rule template to accurately solve high-resolution biological segmentation tasks
in a time-efficient way. These algorithm and implementation rules provide an alternative solution
for pathologists to make decisions as accurate as manually. This research is based on an individual
database from Semmelweis University, containing 291 high-resolution, bright field microscopy breast
tumor tissue images. A total of 70% of the 128 × 128-pixel resolution images (206,174 patches)
were used for training a convolutional neural network to learn the features of normal and tumor
tissue samples. The evaluation of the small regions results in high-resolution histopathological
image segmentation; the optimal parameters were calculated on the validation dataset (29 images,
10%), considering the accuracy and time factor as well. The algorithm was tested on the test dataset
(61 images, 20%), reaching a 99.10% f1 score on pixel level evaluation within 3 min on average. Besides
the quantitative analyses, the system’s accuracy was measured qualitatively by a histopathologist,
who confirmed that the algorithm was also accurate in regions not annotated before.

Keywords: breast cancer; medical image classification; histopathological image segmentation;
whole slide image analysis; deep learning; convolutional neural networks; sliding window method;
computer-aided diagnosis

1. Introduction

Malignant tumors are one of the leading causes of death in the world’s population.
Among all types of cancer, breast cancer is the most common malignant disease in women.
According to statistics, every eighth woman will be diagnosed with breast cancer in her
life. There is an unforeseen increase predicted in the EU regarding new cancer cases in men
by 2040 [1]. Women, although less dramatically, will also witness a rise in tumor numbers.
Cancer incidence is expected to grow by 30%, and cancer-related death will increase by 35%
in Hungary by 2030 [2]. Therefore, there is an urgent need for improvement in diagnostic
capabilities and early detection of cancerous diseases. The diagnosis of a breast tumor is
based on physical examination, imaging and histological confirmation. Shortage in any of
the above resources will hinder cure and outcome. As the analyses are time-consuming
and experts are overloaded, obtaining a diagnosis quickly and reliably is often a difficult
process in healthcare institutions, thus, the treatment of the patient may be delayed. In the
future, pathologists will perform histological analyses with tools not utilized previously,
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quality assurance, computer-aided assistance, digitalization and accuracy of measurements
will reach the level of “next-generation histology”.

In this paper, a new rule-based segmentation technique is introduced through breast
tumor tissue evaluation. The flowchart in Figure 1 presents how the research was managed.
The WSI annotation was executed by the experts on digitized breast tissue surgical slides.
After preprocessing the data and splitting it into training, validation and test sets, small
ROIs were created from the marked areas. As the database was prepared, a convolutional
neural network was trained to classify the patches into the tumor or cancer types. The
segmentation strategy combines the ROI classification with a sliding window algorithm,
where the essential parameters were optimized on the validation dataset. Finally, the
algorithm was evaluated on the test set, reaching a 99.10% f1 score. This paper is designed
to provide a deeper understanding of the applied rules, which could lead to accurate results
on other medical computer vision problems as well.

Figure 1. Flowchart of the research process.

2. Materials and Methods
2.1. Algorithm and Implementation Rules

Facing segmentation problems on large-scale images is a complex task, especially
from a medical point of view where it is essential to precisely segment regions and to
avoid false negative results. Following the rules written in this paper, we provide a
template to accurately solve high-resolution biological segmentation tasks in a time-efficient
way regardless of the imaging technique. Our strategy reflects a new aspect of a tumor
tissue segmentation algorithm, from the data annotation to the evaluation. The following
rules were applied and can be applied efficiently in other segmentation tools or in other
tissue types:

1. Database rule: avoid human errors in the annotation
In general, analyzing cancer tissues generates contour-based annotations for the whole
image, separating the tumor and healthy parts by a border. Due to our special request,
the experts annotated the samples for this research in a very time-consuming way by
marking only the tumor and healthy areas without any intermediate parts. This extra
effort results in a more precise database with less noise, human error and redundant
data compared to other datasets.

2. Preprocessing and evaluation rule: involving the experts
For medical image processing, it is essential to follow the instructions of the experts, so
during the study, they were involved in the research at every stage of the implemen-
tation. Setting the size of the training tiles was examined by the histopathologists to
select the one that is descriptive enough for the human eye. The segmentation results
were also evaluated qualitatively by the experts with multiple parameter settings.

3. Training rule: multi-resolution database
In the case of deep learning tasks, it is crucial to building a model that is generalizable
to different datasets. Considering the fact that there is no optimal measure for the best
resolution where the most information can be extracted, for neural network training,
we used a multi-resolution collection of the tumor and healthy tiles to be more robust
to noise and magnitude changes.
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4. Validation rule: time–accuracy trade-off
The aim of our study was to create an accurate algorithm to segment tumor and
healthy tissues depending on the evaluation time for computer-aided diagnosis. This
algorithm used hardware parallelization, time–accuracy trade-off measurements on
the sliding window classification and appropriate parameter optimization to speed
up the segmentation process.

2.2. Database and Preprocessing

Our database includes high-resolution, H&E stained bright field microscopic histopatho-
logical images collected by Semmelweis University. The samples are collected from breast tissue
surgical resections.

In most cases, researchers use histological slices from formalin-fixed, paraffin-embedded
(FFPE) tissue samples, which will be stained with hematoxylin and eosin. Obtaining
patient samples is easy through the various clinics. The prepared slices are examined by
the pathologist under a light microscope at different magnifications to make an accurate
diagnosis, and, in many cases, the slices are stained for other examinations. In routine
diagnostics, a slide can be examined within seconds to minutes, and no slides are digitized.
There are many scanners that already have state-of-the-art technology. Electronic slices
are made by WSI scanners, which allow reading the slices and storing the images on the
one hand and using programs to display the electronic slices (samples/images) on the
other hand.

The database contains 291 high-resolution 8-bit depth RGB images in 20× magnifi-
cation, which has 254,632 ± 34,643 × 177,585 ± 83,086 pixel size on average (Figure 2).
The pixel width is 0.2425, and the pixel height is 0.2426 micrometers. These images were
annotated in the open-source QuPath software environment by pathologists marking the
surely healthy and tumor regions. The experts were asked to annotate the samples to
our request in a special way by annotating only the tumor and healthy regions without
any intermediate parts (Rule 1). This process is very time consuming and requires more
effort from the histopathologists because they marked the separated cancerous regions
independently (area-based annotation) instead of simply drawing a border between the
tumor and normal regions (contour-based annotation). Therefore, not all the regions were
annotated. Thus the aim of this study was to find all the cancerous regions by learning the
features of the tissues. Using area-based annotation helps to create a more precise dataset
containing less noise, human error and redundant data.

The database preprocessing was implemented as follows. First, we built a Groovy
script as a QuPath Plugin, which masked the white background from the samples to
decrease the size and keep only the relevant data. Due to the big size of the images, a
downsampling method was applied. Thus the samples were exported through lossless
compression from QuPath data files to .tiff format with 4-6-8 downsampling factors to
make a multi-resolution database (Rule 3), which helps the network evaluation to be robust
and flexible at different magnifications. The second step, the annotation masking and the
image patch extraction, was executed in Python (Figure 3). Ground truth is needed to
evaluate the algorithms, so generating arrays to store the healthy and tumor masks helps
us measure the accuracy of the analysis. Small, 128 × 128-pixel resolution tiles (Figure 4)
were cut from the regions that the expert considered surely as tumor or as normal tissue
areas (Rule 2). This size was small enough to observe just a few cells precisely and large
enough to notice some local correlations in the tissues.

This database was equally distributed by the downsampling factor, and it was split
into three groups: 70% (201 images) belong to training, 10% (29 images) to validation and
20% (61 images) to the testing dataset (Table 1).
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Figure 2. Examples of annotated histopathology images. Yellow annotation: tumor, green annotation:
normal tissue.

Figure 3. The process of masking the annotated areas (yellow: tumor, green: normal) and cutting out
the inside patches of histopathological image regions.

(a) Malignant tile (b) Benign tile

Figure 4. Examples of 128 × 128-pixel resolution annotated histopathological image patches.
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These database samples were, on average, 29,314 ± 10,908 pixels wide and
17,432 ± 5126 pixels long. The training database contains 206,174 disjunct patches, the
validation database 30,927 patches and the test database 36,944 patches cut out from the
annotated image regions. At the neural network training and at all the measures and
evaluations, the healthy-tumor tile rate was normalized and equalized.

Table 1. Database information.

Dataset Train Validation Test

Distribution 70% 10% 20%
No. of high-resolution samples 201 29 61

No. of tumor tissue tiles 77,811 18,469 18,973
No. of normal tissue tiles 128,363 12,458 17,971

Total no. of tiles 206,174 30,927 36,944

2.3. Training and Feature Extraction

The hardware used in this research is the NVIDIA RTX 2080 GPU [3]. The neural
network was trained in the TensorFlow Keras framework (version 2.8.0). The algorithms
were implemented by scripts written in Python and evaluated by the scikit-learn machine
learning library, such as measuring the accuracy, f1 score, precision, recall, area under the
ROC curve (auroc), mean squared error and confusion matrix scores.

Training a neural network is a very costly process at the beginning without any
previous knowledge, so we made a proof of concept of a small set of breast tissue samples,
which enabled us to perform more experiments in a shorter time. Initially, we started the
training with a deep neural network to achieve high test accuracy according to a large
number of network parameters. After that, we reduced the filter sizes to be as small as
possible, which still keeps the training accuracy high. After testing a lot of convolution
neural network parameters and filter sizes, the final architecture has four convolutional
layers with filter sizes of 8, 16, 16 and 32 and convolutional kernel sizes of 3 × 3, 3 × 3, 5 × 5
and 3 × 3 (Figure 5). After we found approximately good architecture and hyperparameters
resulting in accurate classification scores, we expanded the database for all breast tumor
tissue samples using 90% (185,874 patches) of the 128 × 128 resolution tiles from the
training dataset weighted by the rate of cancerous and healthy tissue patches. The patches
were added to the neural network in 64 large batches, which was efficient considering the
memory usage and the training performance. After many attempts to avoid underfitting
and overfitting problems by making small changes in the hyperparameter settings—such
as modifying the learning rate, and increasing the bath size—the final neural network
architecture provides 64,290 parameters. After each layer, the SELU activation function
was applied to avoid the dying ReLU problem, and a batch normalization was added to
optimize the training performance. The last layer was a fully connected dense layer with
a softmax activation function, which returns as linear regression confidence between 0
and 1 (0 means healthy and 1 means tumor). The final decision was made according to
130 combined parameters, and the training threshold between the two classes was at a
0.5 confidence value (Figure 6).

For training the neural network, the SGD optimizer was used with a momentum
of 0.75 and a learning rate of 1 × 10−4, which helps the convergence become faster. The
weights were L2-normalized for affecting the network to be based on distributed decisions
instead of being dominated by a few big weights. The back-propagation starts calculating
from the mean squared error scores. The training performance was evaluated on 10%
(20,300 patches) of the training dataset. The model keeps learning until the validation loss
decreases, and early stopping is applied to avoid getting stuck at the local minimum. The
best weights were saved at the minimum point of the validation loss.
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Figure 5. Convolutional neural network model.

(a) (b)

Figure 6. Examples of 128 × 128-pixel resolution histopathological image tile evaluations. (a) Image tile
prediction: tumor confidence = 0.99 (tumor). (b) Image tile prediction: tumor confidence = 0.01 (normal).



Diagnostics 2022, 12, 2161 7 of 16

After five epochs of training, the network stopped learning with a training loss of
0.79% and a validation loss of 0.59% (Figure 7). The performance evaluation on 10% of
the training dataset shows us the following results: accuracy = 99.21%, auroc = 99.20%,
precision = 99.67%, recall = 99.21%, f1 score = 99.20%. The True Positive region of the
confusion matrix is 99.67%, the True Negative region is 98.74% and the False Positive and
False Negative regions are 0.33% and 1.26%, respectively (Figure 8). This network learned
the required features in order to be able to precisely and confidently classify the 128 × 128
resolution unknown patches into tumor and healthy groups.

Figure 7. Training and validation loss accuracy changes at every epoch during training.

(a) (b)

Figure 8. ROC curve and confusion matrix to evaluate the training performance. (a) Averaged ROC
curve. (b) Confusion matrix.

2.4. Whole Slide Image Segmentation Strategy

In the previous section, the deep learning algorithm was described, which is an
evaluation of a 128 × 128-pixel-sized patch of tissue, and the returned value is the result
of the linear regression between 0 (healthy) and 1 (tumor). The algorithm learned the
parameters of the cancerous and healthy tissues, so it is also able to predict unknown
patches by their features.

The algorithm segments the whole slide of histopathological images by a sliding
window technique, which steps through the whole image by evaluating 128 × 128-pixel-
sized ROIs (Rule 4). There are parameters that have to be optimized to get an accurate and
time-efficient algorithm. First, the ideal threshold level should be chosen between 0 and 1,
which determines the boundary between the healthy and tumor decision.
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The second parameter that should be optimized is the step size, which sets the level of
overlapping during the sliding window algorithm. Trying 128 (no overlapping), 64, 32, 16
and 8 step sizes were the logical options considering the hardware characteristics. Evaluat-
ing just one tile takes 0.019 s, but appropriate hardware parallelization is recommended to
speed up the process. With batch-level evaluation, the algorithms were significantly faster,
so this is an efficient way to develop a real-time calculating assistant program. However,
the difference of the step sizes was important because there are, on average, 31,190 eval-
uations at step size = 128, 124,758 at 64, 499,034 at 32, 1,996,139 at 16 and 7,984,558 at 8.
Decreasing the step sizes leads to twice as many evaluations in both the horizontal and
vertical directions. After evaluating each patch, the predictions should be aggregated at
every pixel. Therefore, each pixel got a different tumor confidence value calculated from 1
prediction at step size = 128, 4 predictions at step size = 64, 16 predictions at step size = 32,
64 predictions at step size = 16 and 256 predictions at step size = 8. Displaying the whole
slide image, evaluations were implemented as follows: every prediction value becomes a
color, which shows the tumor confidence of that area. The selected palette was grayscale
(from 0 = white to 1 = black), and the Jet colormap from Matplotlib external library in
Python represents the values from blue to red (0 to 1). The performance evaluation of these
algorithms is based on the binarized values at each pixel that were compared with the
ground truth markers by the pathologist experts.

Due to the long evaluation time and the changing accuracy depending on the assigned
values for each pixel, a parameter search was needed to find the best setups for this algo-
rithm to evaluate whole slide images precisely and quickly. These optimization algorithms
were executed on the validation dataset written in the following section.

2.5. Validation and Parameter Optimization

The parameter searching was executed on the validation dataset, which is 10% of
the database, containing 29 high-resolution samples having 30,927 validation patches.
The first step was finding the best threshold to binary classify the results of the output
confidence. After trying all the thresholds between 0.00 and 1.00, the final threshold with
the highest f1 score was 0.13 (Figure 9). The kernel level evaluation on 30,927 validation
patches at this threshold shows us the following results: accuracy = 98.52%, auroc = 98.52%,
precision = 98.22%, recall = 98.84%, f1 score = 98.53% and mean squared error = 1.48%. The
True Positive region of the confusion matrix is 98.21%, the True Negative region is 98.84%
and the False Positive and False Negative regions are 1.79% and 1.16%, respectively.

Figure 9. Displaying f1 score changes at different threshold levels between 0 and 1.

The second step was finding the ideal step size depending on time and f1 score. For
this parameter, searching the samples was evaluated at different step sizes with the final
threshold level (0.13). The validation dataset samples were evaluated with the previous 128,
64, 32, 16 and 8 pixels step sizes (Figure 10). The accuracy of these algorithms was calculated
by comparing the annotated masks as the ground truth (Figure 11b) with the predictions
(Figure 12) at each pixel position. The time of the evaluation shows us exponential growth,
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so the goal is to use as few evaluations as possible to become accurate (Figure 13). Beyond
step size 32, the algorithm’s accuracy is not increasing significantly, but the time changes
are rising. At the step size parameter of 32 pixels, the algorithm is averaging the returning
values from 16 predictions. Using more overlapping at the sliding windows causes such a
large amount of time that makes the algorithm become inefficient for real-time diagnosis.
The final evaluation time takes 2.15 min plus the assigning time of the predictions (0.31 min),
so the total time of a sample evaluation is executed on average just within 3 min (Table 2).

(a) (b)

Figure 10. Parameter searching for the optimal overlapping step size. (a) Step size = 32 pixels. Pixel
value averaged from 16 predictions. (b) Step size = 8 pixels. Pixel value averaged from 256 predictions.

(a) (b)

Figure 11. Examined tissue image and the tumor annotations. (a) Image of the examined tissue
sample. (b) Annotation mask of the tumor regions.
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Table 2. Average evaluation performances and times at different step sizes on the threshold level
of 0.13.

Step Size Accuracy F1 Score Evaluation Time (min)

128 96.99% ± 3.36% 98.41% ± 1.79% 0.13
64 98.17% ± 2.59% 99.03% ± 1.38% 0.53
32 98.26% ± 2.50% 99.08% ± 1.33% 2.15
16 98.32% ± 2.38% 99.12% ± 1.13% 8.63
8 98.34% ± 2.33% 99.13% ± 1.12% 34.52

(a) (b)

Figure 12. Whole image (Figure 11a) segmentation displays the evaluation before optimizing the
parameters. In this case, there is no overlapping, so the pixel value came from a one-tile prediction
of each tile. Colors around the 0 confidence value means healthy, and around 1 means tumor tissue
region. (a) Segmentation result (Binary colormap). (b) Segmentation result (Jet colormap).

(a) (b)

Figure 13. Parameter searching and validation to find the best step size considering time and accuracy.
(a) Evaluation time depending on step sizes. (b) F1 score and accuracy changes.

Considering the results of the validation algorithms, the final parameter for the deci-
sion threshold between healthy or tumor tissue tiles was 0.13 (Figure 9). The step size for
the sliding window evaluation was 32 pixels (Figure 10b), which means 16 for prediction
overlapping. The results are displayed on Figure 14.
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(a) (b)

Figure 14. Whole slide image segmentation results with threshold = 0.13 and step size = 32 pixels.
(a) Ground truth annotations (yellow: tumor, green: normal/healthy). (b) Segmentation result
delineated onto the original image (yellow: tumor, rest: normal/healthy).

3. Results
3.1. Kernel Level Evaluation

The algorithm’s performance was evaluated on the test dataset containing 61 multi-
resolution whole-slide images, which is 20% of the samples in the database. The results were
measured in two ways. At kernel level evaluation—based on the prediction of 36,944 test
patches—ensures 98.80% accurate outcomes with the final threshold of 0.13 (Table 3, Figure 15).

3.2. Pixel-Level Evaluation

The second way was the pixel-level evaluation, where all the pixels of the ground truth
annotations were compared to the whole slide image predictions at the same positions.
The quantitative evaluation—with the final threshold of 0.13 and with a 32-pixels step
size—shows us that the algorithm at this parameter setting provides quick and accurate
predictions about the ground truth areas. The averaged pixel level accuracy was 98.28%,
and the f1 score reached 99.10% performance.

Table 3. Kernel level test metrics with the final threshold.

Metric Result

Accuracy 98.80%
AUROC 98.80%
Precision 98.81%

Recall 98.78%
F1 score 98.80%

Mean squared error 1.38%
True Positive Region 98.81%
False Positive Region 1.19%
False Negative Region 1.22%
True Negative Region 98.78%
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(a) (b)
Figure 15. ROC curve and confusion matrix evaluation on the test dataset. (a) Averaged ROC curve.
(b) Confusion matrix.

The algorithm always finds more cancerous parts than the ground truth regions, which
is good since the annotations just cover the surely tumor and surely healthy parts; this
could be measured as a qualitative evaluation made by the pathologists who annotated
these regions. The experts confirmed (Rule 2) that the algorithm was also accurate by
finding every tumor part with a small occurrence of misclassifying healthy parts.

4. Discussion

There are multiple applied ways to examine breast tissues, including Mammography,
Ultrasound, Computer Tomography (CT), Magnetic Resonance Imaging (MRI) and Nuclear
Imaging. In recent years, lots of articles have been published about computer-based
techniques in order to segment and classify tissue images. Among women, the most
common incident site of cancer was the breast, and due to the increasing number of
patients and the small number of pathologists, an automated computer-aided diagnosis
could help this complex and time-consuming procedure [4]. In computer-aided decision
approaches, information technology is applied to help doctors to examine individuals [5].
There is a recent study [6] that reflects on the importance of assisting radiologists and
healthcare professionals in the breast cancer classification process by introducing a new
Ensemble Deep-Learning-Enabled Clinical Decision Support System using ultrasound
images [7]. This research [6] was designed to identify the tumor-affected regions by multi-
level thresholding-based image segmentation. MRI has also become a broadly used imaging
technique that avoids ionization radiation and, therefore, it may be suitable for patients
with implants [8]. It can also capture the structure’s higher gentle tissue resolution [8].

Although ultrasound and MRI provide non-invasive approaches, most researchers
utilize the BreaKHis database [9] for their studies [8,10–18], which contains 7909 breast
cancer images in RGB format with dimensions of 700 × 460 pixels in four different magnifi-
cations (40×, 100×, 200× and 400×). This database has been built in collaboration with the
P&D Laboratory—Pathological Anatomy and Cytopathology [9]—including H&E stained
microscopic breast tumor tissue image patches, which were annotated by experts. Most
of the researchers split the database into training and test subsets, sometimes also using
cross-validation samples [15]. Besides BreaKHis, other images were also applied. All of
these breast cancer databases have similar characteristics, for example, using the Wisconsin
Original Dataset [10], the University of Michigan and University of British Columbia Vir-
tual Slidebox [19] or other individual databases [20–22]. The different magnifications of
images and the multi-resolution databases are essential to make the models more robust
and generalizable [23].

Our rule-based method provides a general approach to any segmentation problems
presented on our own individual H&A stained microscopic dataset. The high-resolution
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images of this database were annotated to our special request of being more detailed than
they usually are. All the separated cancerous regions were marked independently (Rule 1)
instead of simply drawing a border between the tumor and the normal tissues. This area-
based approach is unique because these annotations are time-consuming for the experts
and expensive for the research institutes, but we consider that this algorithm will make
decisions in a more accurate way of the not marked regions by learning the features only of
the tumor and healthy samples without less noise, human error and redundant data. Our
database was examined by histopathologists who were also involved in every stage of the
implementation and validation processes (Rule 2). The database was split into training,
validation and test sets containing multi-resolution images (Rule 3) to learn the features
more robustly by a convolutional neural network.

Most publications also presented a convolutional neural network-based deep learning
classification, which provides a large number of binary classifications, although a small
number of papers used multi-class separation [13,24]. Detecting both, the subclasses of
the benign and malignant tissues were 10% less accurate in comparison with the binary
decisions [15], which are more important for computer-aided diagnosis to save time and
help the pathologist to examine relevant areas for further analysis.

The algorithms were quantitatively evaluated on test patches. They were shown to
reach 80–100% accuracy scores. The highest prediction accuracy achieved was 99.86% by a
three convolutional and max pooling layered neural network [10]. The algorithm—which
is magnification independent—is also provided by a convolutional neural network. This
architecture was trained to predict the benign/malignant decision and the magnification
factor by softmax loss minimization [11].

In the paper [25], the highlight is the collection of features, which are important
in the classification process to minimize computation time and data size and increase
the precision and effectiveness of machine learning approaches. Beyond classification,
paper [8] also concerns approaches combining the outcomes as a segmentation result by
sliding through the whole image. The paper introduces a deep neural network-based binary
classification, evaluated on the ROIs of the slides with 50% overlapping steps, achieving
96.70% test accuracy.

Although we all know that the duration of the tissue sample evaluation is essential,
only a few publications share relevant information with us about these issues. A U-NET-
based epidermal tissue segmentation approach is executed on whole-slide histopathological
images (17,111 × 17,145) in 3 min on average [19], and the Panoptes network predicts
endometrial cancer by analyzing a slide with an appropriate GPU within 4 min [23]
(Table 4).

The evaluation of our method used a sliding window technique to binary classify the
tumor and healthy tissues at each pixel. The validation dataset considers the time and
accuracy of the algorithm by displaying which parameter values are the best options to
provide results as fast and also as accurately as possible (Rule 4). The algorithm was tested
on the test dataset, reaching a 99.10% f1 score on pixel-level evaluation of a high-resolution
image, averagely within 129 s.

Table 4. Comparing our approach to the other WSI segmentation techniques that consider the time
factor as well.

Work [19] [23] Our Work

Model U-net Panoptes CNN
Database 69 skin 496 endometrial 291 breast

WSI carcinoma WSI WSI
F1 score 89% NA 99.10%
AUROC NA 96.90% 98.80%
WSI size 17,111 × 17,145 NA 29,314 × 17,432

Evaluation time 136.5 s 240 s 129 s
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5. Conclusions

The algorithms were evaluated by scikit-learn metrics machine learning library and
manually by pathologists. The kernel level and the pixel level evaluation show us that
these methods are accurate and quick enough to be an efficient alternative for a computer-
aided diagnosis. The algorithms work on downsampled WSIs; thus, analyzing samples
at different magnifications could be executed after reducing their resolution to the same
level as the trained database, which is robust to small changes in magnification. In this
paper, we present an individual approach to segment breast tumor tissues. We built our
neural network model on an area-based, annotated (Rule 1) dataset where the tumor and
healthy regions were precisely marked without any intermediate parts in order to avoid
human errors. The experts—who annotated the dataset—were involved in the whole
research process (Rule 2), especially at the preprocessing and evaluation stages. As we
trained the convolutional neural network on a multi-resolution (Rule 3) dataset to learn
the features most robust to noise and magnitude changes, we reached a 99.21% accurate
model. The model was trained only on the tumor and healthy parts, but it was also able to
segment any other regions of the image. The algorithm analyses the whole slide images by
evaluating patches with a sliding window technique, which was optimized to speed up the
segmentation process without decreasing its performance (Rule 4). The final segmentation
parameters were set according to the trade-off between the evaluation time and the accuracy
of the segmentation.

The qualitative evaluation of the experts (Rule 2) confirmed that the segmentation
was also accurate even on regions not annotated before. In the future, developing a
program for pathologists and enabling them to modify the predicted tumor areas by adding
and extracting regions can be time-efficient and precise assistance for computer-aided
diagnosis. This study was compared with other approaches: on kernel level evaluation with
classification networks and on pixel level evaluation with segmentation results, considering
the time factors as well. According to our experiments on the test dataset, this approach
provides more accurate performance in less time, by reaching a 99.10% f1 score with a
3 min evaluation time on average.

Following the implemented rules helps to segment any other tumor tissue samples
(e.g., ovarian) where the segmentation is even more complicated and time-consuming for
pathologists. Applying the guidelines of this paper could be a straightforward solution
to other modalities of imaging as well. According to our expectations, these methods will
perform as accurately as on breast tumor tissue samples.
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