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Abstract: Callose is an important biopolymer of β-1,3-linked glucose units involved in different
phases of plant development, reproduction and response to external stimuli. It is synthesized
by glycosyltransferases (GTs) known as callose synthases (CalS) belonging to family 48 in the
Carbohydrate-Active enZymes (CAZymes) database. These GTs are anchored to the plasma membrane
via transmembrane domains. Several genes encoding CalS have been characterized in higher plants
with 12 reported in the model organism Arabidopsis thaliana. Recently, the de novo transcriptome
of a fibre-producing clone of stinging nettle (Urtica dioica L.) was published and here it is mined
for CalS genes with the aim of identifying members differentially expressed in the core and cortical
tissues of the stem. The goal is to understand whether specific CalS genes are associated with
distinct developmental stages of the stem internodes (elongation, thickening). Nine genes, eight of
which encoding full-length CalS, are identified in stinging nettle. The phylogenetic analysis with
CalS proteins from other fibre crops, namely textile hemp and flax, reveals grouping into 6 clades.
The expression profiles in nettle tissues (roots, leaves, stem internodes sampled at different heights)
reveal differences that are most noteworthy in roots vs. leaves. Two CalS are differentially expressed
in the internodes sampled at the top and middle of the stem. Implications of their role in nettle stem
tissue development are discussed.
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1. Introduction

The plant cell wall is a natural composite material composed of cellulose, hemicelluloses, pectins,
as well as structural proteins and it can be impregnated by the aromatic macromolecule lignin, which
confers hydrophobicity [1]. The cells of tissues in rapid expansion/elongation are enveloped by the
primary cell wall (composed mainly of cellulose, pectins and hemicelluloses), which is flexible, but at
the same time strong to cope with the tensile forces occurring during stretching and expansion [2,3].
Tissues that have stopped elongation start to thicken the cell walls and synthesize the secondary cell wall,
which can be impregnated with lignin and contains chiefly cellulose and hemicelluloses (e.g., xylan) [4].
The different composition and mechanical properties of plant cell walls are well exemplified in the stem
of higher plants, where a basipetal lignification gradient accompanies the transition from elongation in
young tissues at the top, to thickening in older internodes at the bottom [5,6].
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Besides these classes of biopolymers, plant cells also synthesize another type of polysaccharide,
callose, amorphous and characterized by β-1,3-linked glucose units with some β-1,6 branches [7].
Callose has a transient nature, being deposited and removed during specific stages of plant cell
development. Callose is deposited in response to pathogen attack [8] or wounding [9], as well as at the
cell and sieve plates; it regulates symplastic connectivity through plasmodesmata, by determining the
size exclusion limit (SEL) [10]. Additionally, it is present in the inner cell wall of pollen tubes where
it resists tension and compression stress [11,12] and it was also shown to participate in cotton fibre
growth [13]. This last aspect is in relation to symplasmic isolation via plasmodesmata gating ensuring
the turgor-driven elongation of the fibre cell [14].

The symplasmic isolation mediated by callose plugging is also important for the control of
morphogens’ diffusion involved in the development of the shoot apical meristem (SAM) [15].
Additionally, the release from dormancy is coordinated by re-establishing symplasmic connectivity in
the meristem via the catalytic action ofβ-1,3-gucanases degrading callose [16]. More recently, callose was
shown to have a role in stomata [17] and trichome patterning [18] and its amorphous nature was suggested
to be associated with plant biosilicification. The micropores in its amorphous structure offer indeed an
ideal environment for silicic acid autocondensation into opaline silica [19]. Fluorescence microscopy
using the silica-specific fluorescent tracer [2-(4-pyridyl)-5-((4-(2-dimethylaminoethylaminocarbamoyl)
methoxy)phenyl)oxazole]-PDMPO and aniline blue proved the co-localization of callose and silica in
horsetail [20,21] and rice [22], as well as thale cress [23]. From the above-mentioned processes, it is
thus evident that callose is polyfunctional and that its deposition plays a fundamental role in plant
development, biosilicification and in the response to exogenous stresses of biotic nature.

In this study, the recently published de novo transcriptome of stinging nettle [24] was mined
for CalS genes to study the expression in different tissues and internodes of the stem. Nettle is a
bast fibre-producing plant and its cellulosic fibres are characterized by noteworthy lengths that are
reached by a mechanism known as intrusive or invasive growth [25,26]. During intrusive growth, the
middle lamella of neighbour cells is invaded (hence the adjective “intrusive” or “invasive”) without
generating wound responses [27,28]. Callose was not observed in intrusively growing flax fibres [25],
a result suggesting that there is a mechanism allowing elongating tissues to recognize endogenous
mechanisms of intrusive growth. Callose was nevertheless found in bast fibres on the pulling side of
flax stems subjected to gravitropic stimulus: the polymer was deposited in bottlenecks of sausage-like
bast fibres in the lower part of the stem where it occluded the lumen [29]. Hence, although callose is
not found in intrusively growing fibres, it can be deposited in bast fibres in response to mechanical
stimulation. Additionally, it remains to be elucidated whether callose mediates symplasmic isolation
and turgor-driven elongation in intrusively growing bast fibres in young stem regions. Identifying
CalS genes in bast fibre-producing plants is therefore important for researches addressing aspects
related to turgor-driven growth and response to gravistimulation.

Here, evidence is provided for the occurrence of at least nine CalS genes in stinging nettle whose
expression varies in roots and leaves. The corresponding proteins are grouped, together with other
members from thale cress, Cannabis sativa and flax, into 6 clades. A search for conserved motifs
carried out on the promoter regions of the genes from clades 1, 2, 3 and 5 identifies the occurrence of
conserved motifs recognized by transcription factors (TFs), in particular members of the Dof (DNA
binding with one finger) family. In the stem internodes sampled at different developmental stages
(elongation/thickening), two CalS genes are differentially expressed. Microscopy reveals accumulation
of callose in sieve plates, but not in the bast fibres of the cortical tissues, as previously shown for
flax [29].
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2. Results and Discussion

2.1. Bioinformatics and Phylogenetic Analysis of UdCalS

By merging an approach combining searches into the recently reported de novo transcriptome and
BLAST analyses in the available nettle leaf database at Blast4OneKP, nine putative CalS genes are
identified in stinging nettle, eight of which encode full-length proteins (accession numbers MT468366,
MT468367, MT468368, MT468369, MT468370, MT468371, MT468372, MT468373, MT468374). The details
of the genes (nucleotide and corresponding amino acid length), number of transmembrane domains
and presence of conserved domains with relative E-values are provided in Table 1. As can be noticed,
with the exception of UdCalS6, all the identified proteins are longer than 1750 amino acids and they
have >10-11 transmembrane domains (depending on the software used for prediction). All of the
identified full-length proteins contain the glucan synthase superfamily and FKS1 domains, the latter
being highly conserved among land plants [30] and homologous to fungal β-1,3-glucan synthases [31];
UdCalS1-3-7-8 are characterized by the occurrence, at the N-terminus, of a Vta1 superfamily domain
that is involved in sorting of endosomal protein [30]. As previously reported, Vta1 is absent from
nettle CalS9 and 10 [32], as well as from CalS11 and 12.

The phylogenetic analysis of UdCalS proteins with orthologs from thale cress and the fibre
crops C. sativa and Linum usitatissimum (see Supplementary file 1) shows clustering into the
previously-reported 6 clades [32] in both maximum likelihood and balanced minimum evolution trees
(Figure 1). The 6 groups are composed of UdCalS9-10, UdCalS11-12, UdCalS5, UdCalS1-2-3-4, UdCalS8
and UdCalS6-7 (Figure 1); however, nettle orthologs of cluster 5 were not identified. Interestingly,
within clade 6, the hemp ortholog of CalS5 shows the occurrence of a MATE (Multi-antimicrobial
extrusion protein)-like superfamily domain (aa 1732-1908) and it is the only glycosyltransferase from
family 48 (GT48) with such a domain among the species selected for the phylogenetic analysis.
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>80 in (b). The bigger the circle, the higher the bootstrap value. The accession numbers of the proteins
from thale cress and C. sativa (taken from NCBI) and flax (from Phytozome) are indicated on the trees
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Table 1. Characteristics of the identified CalS genes and proteins from stinging nettle. The accession numbers, transcript and protein length, as well as the E-value,
amino acid start/end and names of the respective conserved domains are provided together with the number of transmembrane domains predicted with TMHMM,
Phobius and TOPCONS.

Gene Name with
Accession Numbers

Transcript
Length (nt)

Protein
Length (aa)

Conserved Domains Number of Transmembrane Domains

From aa To aa E-Value Conserved Protein
Domain Family Short Name TMHMM Phobius TOPCONS

UdCalS1
MT468368

5886 1961
1045 1805 0 pfam02364 Glucan_synthase

superfamily
16 17 19

312 424 9.97 × 10−53 pfam14288 FKS1_dom1

45 170 5.69 × 10−14 pfam04652 Vta1 superfamily

UdCalS3
MT468366

5886 1961
1059 1817 0 pfam02364 Glucan_synthase

superfamily
17 18 17

323 436 2.83 × 10−55 pfam14288 FKS1_dom1

52 179 1.78 × 10−17 pfam04652 Vta1

UdCalS6 (partial)
MT468373 3249 1082 216 961 0 pfam02364 Glucan_synthase

superfamily 10 10 11

UdCalS7
MT468367

5778 1925
1042 1782 0 pfam02364 Glucan_synthase

superfamily
15 17 20

335 445 3.44 × 10−49 pfam14288 FKS1_dom1

56 191 4.57 × 10−11 pfam04652 Vta1 superfamily

UdCalS8
MT468374

5913 1970
1102 1834 0 pfam02364 Glucan_synthase

superfamily
13 17 17

346 447 5.48 × 10−48 pfam14288 FKS1_dom1

65 115 0.00046 pfam04652 Vta1 superfamily

UdCalS9
MT468369

5706 1901
1023 1766 0 pfam02364 Glucan_synthase

superfamily 16 17 17

337 446 2.45 × 10−54 pfam14288 FKS1_dom1

UdCalS10
MT468370

5712 1903
1026 1768 0 pfam02364 Glucan_synthase

superfamily 15 15 18

347 457 4.65 × 10−52 pfam14288 FKS1_dom1

UdCalS11
MT468372

5406 1801
897 1669 0 pfam02364 Glucan_synthase

13 17 19
174 287 8.84 × 10−52 pfam14288 FKS1_dom1

UdCalS12
MT468371

5322 1773
875 1639 0 pfam02364 Glucan_synthase

12 18 19
169 270 5.78 × 10−47 pfam14288 FKS1_dom1
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To understand the potential role of the identified CalS from nettle, a search for conserved motifs
was carried out in the promoters of the CalS genes in the different clades (comprised between 200–500 bp,
sequences in Supplementary File 2). Statistically significant motifs were identified in the promoters of
the genes from clade 1-2-3 and 5 (Table 2). The identified conserved motif from clade 1 was submitted to
a search against the JASPAR non-redundant sequence database for plants and a match with the binding
site of Dof5.8 TF was identified. Dof TFs are zinc-finger regulators distributed among non-vascular and
vascular plants that bind to the sequence 5′-AAAG-3′/5′-CTTT-3′ [33]. More specifically, Dof5.8 was
shown to play a role in the correct development of veins in the leaves of Arabidopsis thaliana [34] and its
promoter was demonstrated to be regulated, at least in part, by auxin [35]. Indeed, the overexpression
of this TF led to a modification in the expression of several genes involved in auxin biosynthesis,
vascular tissue formation, as well as secondary cell wall deposition [34]. Although the approach here
used is based entirely on a bioinformatic prediction, the presence of a conserved motif related with the
auxin-dependent vascular tissue patterning is noteworthy, especially if one considers the existence
of an auxin-plasmodesmata-callose feedback switch regulating plasmodesmata permeability and,
ultimately, the symplasmic flux of signalling molecules during physiological processes [36]. It should
be noted that GSL8 from thale cress (a.k.a. AtCalS10) is the major player in callose deposition at the
plasmodesmata; this protein belongs to clade 1 according to the phylogenetic analyses here shown
(Figure 1) and previously reported [32].

Genes from clade 2 have a conserved motif (Table 2) showing a match with the TF BASIC
PENTACYSTEINE 6 (BPC6). BPC TFs bind GA-rich regions, they are involved in different developmental
processes and show widespread expression levels in different organs [37].

The promoters of CalS from clade 3 contain three conserved motifs (Table 2). The first one shows
similarity to the binding site of the TF Dof1.5 (from thale cress and a.k.a. COG1), a negative regulator
of phytochrome A and B signalling [38]. Phytochrome B is the main receptor of red light and mediates
defence responses by activating, among others, callose deposition [39]. The potential link of CalS from
clade 3 with stress response is corroborated by the other 2 motifs found. The first one shows similarity
to the binding sites of SCHLAFMÜTZE (SMZ) from thale cress, an AP2-like ethylene-responsive TF
regulating flowering time [40] and downregulated under elevated levels of CO2 [41]. The second motif
shows similarity to the binding site of the ethylene-responsive transcription factor ERF4 from thale
cress and which belongs to a class of repressors implicated in the response to abiotic stress [42].

The promoters of genes from clade 5 have three conserved motifs (Table 2) and all show similarity
to Dof TF binding sites. The first shows similarity to the binding site of Dof5.8, the second to
COG1/Dof1.5 and the third to A. thaliana Dof3.2. Dof3.2 (a.k.a. as Dof6) is a member of the PEAR
(PHLOEM EARLY DOF 1) proteins which regulate radial growth of protophloem sieve elements [43].

The occurrence of putative motifs recognized by Dof-type TFs in the CalS promoters deserves
future functional investigation, especially if one considers their reported involvements in cell cycle
regulation [44], biotic [45] and abiotic stress response [46], all processes in which callose is known to
play an important role [7].
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Table 2. Conserved motifs in the promoters of CalS from clade 1-2-3 and 5 with similarity to known hits from the JASPAR plants non-redundant database updated to
2018 and corresponding p-values. R: A/G, Y: C/T, S: G/C, W: A/T, K: G/T, M: A/C, B: C/G/T, D: A/G/T, H: A/C/T, V: A/C/G, N: any base.

CalS Clade Conserved Motif
(Significance of the Motif)

Similarity (JASPAR 2018
Plants Non-Redundant) p-Value

1 TTYKTKTTTKTTYATTTTBWTTCTTWTTTTWAHKMTTWTTSTYTGHATHT
(3.7 × 10−5) MA1267.1 (AT5G66940) 6.31 × 10−8

2 AMACHWTCTCWHYSTCTCTCTCTCYVHC
(1.6 × 10−5) MA1402.1 (BPC6) 3.76 × 10−11

3

YCACAYDKCKKCHTCMTCYTSTTCTCTYTTBTVTWYCCTYT
(1.5 × 10−8)

TCCTCYTTMTCGCCYCGCMATGCSTTSTACTGCTWYTKCWKCYAST
(9.2 × 10−8)

GGCGTTAGTTTGTTCTCGTCGATCACTGCCGCTCTGGTATCAGGCGGCGG
(3.6 × 10−2)

MA1279.1 (COG1)

MA0553.1 (SMZ)

MA0992.1 (ERF4)

5.57 × 10−5

2.99 × 10−3

1.29 × 10−6

5

YATBHWWBTCYCTCTCTTTYTRTTTTTNTTSWYNTNYT
(6.2 × 10−10)

AARDRSDTAAAGSTGAMATCTTTSBYT
(7.4 × 10−4)

TSVCCTTHWGKKTTTRSWTYRTTTTRAT
(5.5 × 10−3)

MA1267.1 (AT5G66940)

MA1404.1 (BPC1)

MA1279.1 (COG1)

3.44 × 10−7

3.72 × 10−7

1.38 × 10−3
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2.2. Callose Localization in Stem Tissues and Gene Expression Analysis in Different Organs

To understand whether callose is deposited at different levels in internodes undergoing elongation
and thickening, staining with aniline blue was carried out on longitudinal sections of the top, middle
and bottom internodes. As can be seen in Figure 2, callose is solely found at sieve plates in the phloem
tissue. In young internodes at the top, no callose is deposited at the level of bast fibres, a finding
confirming the previous data in the literature that did not report wound responses during elongation
of the fibres [27,28].
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Figure 2. Callose localization at the sieve plates revealed using aniline blue. (a) Top, (b) middle and
(c) bottom internode of the stem. The sieve tube elements and phloem parenchyma cells containing
crystal druses are indicated with white arrows; sieve plates are indicated with an asterisk. Bars: 10 µm.

Gene expression profiling was performed on internodes sampled at different heights, as well as
on outer/inner stem tissues, roots and leaves. All the genes studied are expressed in the tissues and
organs investigated, although at different levels (Figure 3). In nettle, the majority of CalS genes is
expressed preferentially in the roots (Figure 3a): nettle has a system of rhizomes allowing it to spread
massively by forming an underground network. It should be noted in this respect that, in bamboo, the
formation of rhizome buds was accompanied by the induction of a CalS gene [47]; it is plausible to
assume that CalS in nettle are involved in the development of the rhizomes via formation of new buds.

With the exception of UdCalS6-9 and 10 that do not show statistically significant changes (for
UdCalS6 a higher variability is present among the root replicates which increases the standard
deviation), a higher expression of the CalS genes is observed in the roots of stinging nettle (Figure 3a).
Only UdCalS11 is expressed at higher levels in leaves. Out of all the nettle CalS proteins, UdCalS11
shows the highest percentage of identity (60.5%) and query coverage (98%) to wheat (Triticum aestivum
L.) TaGSL22, whose corresponding gene was reported to be expressed specifically in wheat leaf blade,
although at very low levels [48]. The expression level of this gene in nettle leaves is within the same
range as the others; it may be involved in basic processes related with leaf growth and expansion.

When whole internodes (i.e., no separation of cortical and core tissues) at the top and middle are
analysed, no statistically significant changes are detected (Figure 3b); however, UdCalS1 and 10 show
higher expression in the core tissues of the bottom internode, while UdCalS8 is expressed at higher
levels in the peels at the bottom (Figure 3b).

When the top and middle internodes are separated into cortical and core tissues, differences
can be observed for UdCalS1 and 8 (Figure 3c), whose expression is not statistically significant when
whole internodes are analysed (Figure 3b). This is likely due to the presence of a mixture of cortical
and core tissues in the whole internodes. Indeed, for UdCalS8, the expression in the cortical peels
is significantly lower than the core in the top internode, while in the middle internode there is no
difference between core and peels. Hence, when analysing whole internodes at the top and middle
of the stem, the differences in expression between cortical and core tissues are not evident. UdCalS1
is expressed at statistically significant higher levels in the cortical tissues of the middle internode,
while UdCalS8 is downregulated in cortical tissues at the top (Figure 3c). Therefore, in the stem tissues,
the CalS genes showing differential expression are UdCalS1, 10 and 8.
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tissue of the top and middle internodes, indicated as Core TOP/MID, Peels TOP/MID. Error bars
correspond to the standard deviation calculated from four biological replicates. Asterisks in (a) indicate
statistically significant differences (p-value < 0.05) at the Student’s t-test. Different letters on the vertical
bars in (b) and (c) indicate statistically significant differences (p-value < 0.05) among groups. In (b) a
Kruskal–Wallis test followed by Dunn’s post-hoc test was used for UdCalS7-12-11-8, while an ANOVA
one-way analysis followed by Tukey’s post-hoc test was applied to all the remaining genes [UdCalS6
F(3,11) = 2.44, p-value = 0.119; UdCalS1 F(3,11) = 16.54, p-value = 0.000; UdCalS9 F(3,12) = 3.24, p-value
= 0.60; UdCalS3 F(3,11) = 1.92, p-value = 0.184; UdCalS10 F(3,11) = 9.44, p-value = 0.002]; in (c) a
Kruskal-Wallis test followed by Dunn’s post-hoc test was used for UdCalS1-11, while all the other
genes were analysed with an ANOVA one-way followed by Tukey’s post-hoc test [UdCalS6 F(3,10) =

3.01, p-value = 0.081; UdCalS10 F(3,12) = 0.62, p-value = 0.661; UdCalS7 F(3,12) = 2.95, p-value = 0.75;
UdCalS12 F(3,12) = 1.53, p-value = 0.256; UdCalS9 F(3,10) = 0.72, p-value = 0.562; UdCalS3 F(3,11) = 1.28,
p-value = 0.342; UdCalS8 F(3,12) = 11.81, p-value = 0.001].
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Interestingly, among all the nettle CalS, UdCalS8 is the protein showing the highest percentage
of identity (58.26%) and query coverage (95%) with TaGSL10, which is a callose synthase displaying
stem-specific expression in wheat (T. aestivum L.) [48].

3. Materials and Methods

3.1. Plant Growth

Nettle plants (clone 13) were grown as previously described [24,49,50]. To summarize, stem apical
cuttings were taken from a donor plant, they were immediately dipped in tap water and subsequently
in a commercial root-inducing hormone mix in powder form. The cuttings were put in a mixture of 1/3
sand 2/3 potting soil and then grown in incubators set with a cycle of 16 h light 25 ◦C/8 h dark 20 ◦C.
When the plants were 35 days old (approximately 70 cm in height), internodes were sampled at the top
(immediately below the apex), middle (below the top internode) and bottom (two internodes below
the middle).

The leaves (harvested from younger and older stem regions) were cut and frozen in liquid nitrogen.
To sample the roots, the pots were inverted over a bucket, the pots removed and the soil gently shaken
to remove the bigger particles; subsequently, the roots were cleaned with tap water, blotted dry, then
excised and immediately plunged in liquid nitrogen. The top and middle internodes were either
taken as a whole or separated into cortical and core tissues as described previously in hemp [6].
Four independent biological replicates, each consisting of a pool of five homogeneous plants, were
used in the study. The tissues were ground to a fine powder using liquid nitrogen and a pre-chilled
mortar with a pestle. The ground tissues were stored at –80 ◦C until RNA extraction.

3.2. RNA Extraction and Gene Expression Analysis

RNA was extracted and its purity/concentration checked as previously described [24,49,50].
Primers were designed with Primer3Plus ([51] and available at: http://www.bioinformatics.nl/cgi-
bin/primer3plus/primer3plus.cgi) and checked with the OligoAnalyzer Tool from Integrated DNA
Technologies (IDT) (available at: https://eu.idtdna.com/pages/tools/oligoanalyzer). Their amplification
efficiencies were calculated using serial dilutions, as described previously [24,49,50].

The primer list for the expression analysis of nettle CalS is provided in Table 3. The primers for the
reference genes were previously reported [50]. For qPCR analysis, the method described previously for
384-wells plates was used [24,49,50]. Data were analysed using qBASEPLUS (Biogazelle, Zwijnaarde,
Belgium). The reference genes Cyclophilin and the translation elongation factor EF2 were used for
normalization in roots and leaves; Cyclophilin and the eukaryotic translation initiation factor eTIF4E
were used to normalize the data obtained on the top, middle and bottom inner/outer tissues; eTIF4E
and the gene RAN coding for a small GTP-binding protein were used to normalize the data of the
outer and inner tissues of the top and middle internode. For statistical analyses, the Normalized
Relative quantities (NRQ) were log10 transformed. Normal distribution of the data was checked with
a Shapiro-Wilk test in IBM SPSS statistics v20 (IBM SPSS, Chicago, IL, USA) and graphically visualized
with a Q-Q plot. The homogeneity of the data was checked with the Homogeneity of Variance Test
in IBM SPSS statistics v20. For data following normal distribution and homogeneous, a Student’s
t-test or one-way ANOVA with Tukey’s post-hoc text were performed. For data that did not follow a
normal distribution and/or were not homogeneous, a Kruskal-Wallis test was performed with Dunn’s
post-hoc test.

http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
http://www.bioinformatics.nl/cgi-bin/primer3plus/primer3plus.cgi
https://eu.idtdna.com/pages/tools/oligoanalyzer
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Table 3. Details of the primers used for the qPCR assay.

Name Primer Sequence (5′→3′) Tm (◦ C) R2 Efficiency (%) Amplicon Size (bp)

UdCalS6 Fwd TTCTCGCTCTCCGTTTCTTC
80.21 0.96 89.32 82UdCalS6 Rev ACCATCAAACCCTTGCTACG

UdCalS1 Fwd TCACACTCACCGAGAAAACG
82.88 0.99 110.56 138UdCalS1 Rev GCCGAAACAGAAGCTGAAAC

UdCalS10 Fwd TGGAAGAGGCTTTGTTGTCC
81.81 0.99 111.60 146UdCalS10 Rev AGGAAACAGGTCCGTTGTTG

UdCalS7 Fwd TGAGGAGGGTGAAACTTTGG
83.01 0.99 109.73 149UdCalS7 Red GGCTTGGTTGAAGAGCAAAC

UdCalS12 Fwd TTTGGACTCGGAGGAATCAG
85.56 0.99 110.71 139UdCalS12 Rev ATCCACGGGATGATGAAGAG

UdCalS9 Fwd TGTGGACAAGTTGCGAGAAG
81.14 1 111.43 127UdCalS9 Rev CCCCAAAACTTTCAGAGTCG

UdCalS11 Fwd TCTTGAACCAGCAGTTCGTG
84.49 0.99 105.96 111UdCalS11 Rev TCGTGAGGAAATCCCAGATG

UdCalS3 Fwd GCCTGATGCTCCAAAAGTTC
79.66 0.99 109.35 84UdCalS3 Rev TGCAAGGAGAAAAGGACCTC

UdCalS8 Fwd GTCCACGCCTTTGAAATAGC
83.69 0.99 110.52 145UdCalS8 Rev CTCGAACATCGCTCTTTTCC

3.3. Bioinformatic Analyses

Full-length CalS sequences from nettle were reconstructed by merging the contigs of the de
novo transcriptome [24] and the sequences retrieved in the nettle leaf database at Blast4OneKP
(http://db.cngb.org/blast4onekp/home). For the genomic sequences, the U. dioica samples in NCBI
BioProject number PRJNA602985 were used. For Cannabis, thale cress and flax, the sequences
upstream of the start codon and subjected to motif search were retrieved from the Cannabis genome
browser (http://genome.ccbr.utoronto.ca/cgi-bin/hgBlat?command=start) and the Phytozome portal
(https://phytozome.jgi.doe.gov/pz/portal.html). For the phylogenetic analyses, CalS protein sequences
from thale cress and Cannabis sativa were obtained from NCBI, while for Linum usitatissimum they were
retrieved from the Phytozome portal. The maximum likelihood (ML) tree was generated using iqtree [52]
(available at: http://iqtree.cibiv.univie.ac.at/, by setting default parameters and 100 bootstraps), while
the balanced minimum evolution tree (FastME) was performed using NGPhylogeny.fr [53] (available at:
https://ngphylogeny.fr/) by setting 1000 bootstraps. The trees were visualized with iTOL [54] (available
at: https://itol.embl.de/login.cgi).

Transmembrane domain prediction was performed using TMHMM [55], Phobius [56,57] and
TOPCONS [58]. Conserved domains were identified with CDART [59] and Batch CD-search [60]
(available at: https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi).

Motif search in the promoters (length ≤ 500 bp upstream of the start codon) of clade 1-2-3-5 CalS
from nettle, hemp, flax and thale cress (Supplementary File 2) was performed with the MEME Suite
5.1.1 [61] (accessed on April 18th–19th 2020 and available at: http://meme-suite.org/doc/cite.html?
man_type=web). Three motifs between 5–50 bp long were searched. The identified motifs were then
analysed with Tomtom [62] (available at http://meme-suite.org/tools/tomtom) for a comparison against
the available motifs in the JASPAR CORE plant database 2018 [63].

3.4. Tissue Sectioning and Confocal Microscopy

For confocal microscopy on the internodes, sections of 5 mm were vacuum-impregnated in a solution
containing sodium phosphate buffer (0.2 M, pH 7.2), glutaraldehyde (1% w/v), paraformaldehyde (2%
w/v) and caffeine (1% w/v). Samples were fixed overnight at 4 ◦C and subsequently dehydrated in
ethanol series (70%−30 min, 70%−60 min, 95%−30 min, 95%−60 min, 100%−30 min). The samples were
embedded in resin containing PEG 400 (2% v/v) and dimethacrylate ethylene glycol (0.4% w/v) and
included (Technovit® 7100, Heraeus Kulzer GmbH, Hanau, Germany), as described previously [50].
Longitudinal sections of 10 µm thickness were obtained with a microtome and placed on glass slides.

http://db.cngb.org/blast4onekp/home
http://genome.ccbr.utoronto.ca/cgi-bin/hgBlat?command=start
https://phytozome.jgi.doe.gov/pz/portal.html
http://iqtree.cibiv.univie.ac.at/
https://ngphylogeny.fr/
https://itol.embl.de/login.cgi
https://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
http://meme-suite.org/doc/cite.html?man_type=web
http://meme-suite.org/doc/cite.html?man_type=web
http://meme-suite.org/tools/tomtom


Int. J. Mol. Sci. 2020, 21, 3853 11 of 14

Sections were stained with 0.005% (w/v) aniline blue in 0.07 M potassium phosphate buffer (pH 8.0) for
30 min at room temperature in the dark, followed by three rinses with the same potassium phosphate
buffer. A drop of 50% glycerol was added on the slides before covering with coverslips. Sections were
visualized with a Zeiss LSM 880 confocal microscope (Carl Zeiss AG, Oberkochen, Germany) using a
405 nm laser.

4. Conclusions

This study identifies at least nine CalS genes in stinging nettle and bioinformatics searches have
found putative conserved motifs in their promoters recognized by TFs, in particular of the Dof family.

From the results obtained with qPCR, the CalS genes identified are all detected in the different
organs and stem tissues of stinging nettle and three are differentially expressed along the stem.
The approach used, therefore, allowed the distinction of CalS involved in different developmental
stages of the stem tissues in stinging nettle.

No CalS gene is upregulated in the young internodes at the top, nor is callose detected in regions
other than the sieve plates. However, future analyses on sections comprising younger developmental
stages of the bast fibre cells in their transition from symplastic to intrusive growth will reveal
whether callose is deposited at plasmodesmata to isolate the compartment and favour the onset of
turgor-driven expansion.

Supplementary Materials: Supplementary Materials can be found at http://www.mdpi.com/1422-0067/21/11/
3853/s1.
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