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However, VA-ECMO therapy has little effect in some AMI 
patients, suggesting a need for more intensive therapy and/
or care. These outcomes also strongly suggest the impor-
tance of predictive clinical evaluation of the prognosis of 
AMI patients with cardiac shock on admission to hospital 
and before receiving VA-ECMO therapy. Previously, most 
studies investigated risk factors relevant to severe out-
comes following VA-ECMO therapy in AMI patients 
based on the assumption that risk factors were indepen-
dent.9–12 What has not been done to date is the evaluation 
of risk using a statistical model considering combinations 

I schemic heart disease (IHD) is a global health problem, 
with an increasing prevalence and poor prognosis.1 
The World Health Organization estimated that more 

than 9 million people died of IHD in 2016.1 In particular, 
prognosis is poor (70–80% death rate) in patients with car-
diogenic shock due to acute myocardial infarction (AMI), 
even if those patients receive high-quality cardiopulmonary 
resuscitation (CPR).2 If patients with cardiogenic shock 
show potential of recovering cardiac output, veno-arterial 
extracorporeal membrane oxygenation (VA-ECMO) ther-
apy can be rapidly applied as a way to reduce mortality.3–8 
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Background: Patients with cardiogenic shock due to acute myocardial infarction (AMI) can rapidly undergo veno-arterial extracor-
poreal membrane oxygenation (VA-ECMO) therapy to recover cardiac output and decrease mortality. However, the clinical indicators 
predictive of mortality in these patients remain unknown.

Methods and Results: We conducted a single-center retrospective cohort study targeting AMI patients undergoing VA-ECMO. All 
63 patients undergoing VA-ECMO for AMI at the Japanese Red Cross Kumamoto Hospital between January 1, 2010 and June 30, 
2020 were enrolled. An exploratory analysis was conducted using a survival tree model and variables selected in a univariate Cox 
proportional hazard model. The median survival time from the start of VA-ECMO was 6.3 days, and 77.8% (n=49) of patients died. 
Survival analysis divided patients into 3 groups based on 2 parameters at the initial medical examination: Group 1, patients with 
neither hyperglycemia (blood glucose ≥213 mg/dL) nor thrombocytopenia (platelets ≤145,100/μL); Group 2, patients with hypergly-
cemia; and Group 3, patients with hyperglycemia plus thrombocytopenia. Relative to Group 1, the risk of in-hospital mortality was 
significantly increased in Group 2 (hazard ratio [HR] 2.25; 95% confidence interval [CI] 1.13–4.46), and that risk further increased in 
Group 3 (HR 7.60; 95% CI 3.21–17.95).

Conclusions: Hyperglycemia plus thrombocytopenia on initial medical examination combinatorially increase the risk of mortality in 
patients with cardiogenic shock due to AMI undergoing VA-ECMO.
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nosis of AMI was made according to the Japanese Circula-
tion Society’s guidelines on the diagnosis and treatment of 
acute coronary syndrome, and was based on electrocardio-
grams, elevated myocardial biomarkers, and angiography.15 
All-cause mortality during the in-hospital period was set as 
the primary endpoint.

The study was performed in accordance with the Decla-
ration of Helsinki and was approved by the ethics committees 
for clinical research at the Japanese Red Cross Kumamoto 
Hospital (No. 396) and Kumamoto University (Rinri No. 
2153). Written informed consent was obtained from each 
participant before they were enrolled in the study. Partici-
pants and their families confirmed their consent for inclu-
sion of their data in this manuscript via an opt-out method.

Extracorporeal Membrane Oxygenation (ECMO) Systems 
and Management Methods
The ECMO circuit consisted of a cannula, centrifugal 
pump, heat exchanger, and membrane oxygenator. 
Patients were treated using 1 of 2 ECMO systems: Capiox 
Custom Pack EBS Heart Lung Kit (Terumo, Tokyo, 
Japan) or Endumo (Heiwa Bussan, Tokyo, Japan). The 
target flow rate of ECMO was set within a perfusion index 
of 2.0–2.6 L/min/m2. Cardiotonic and vasopressor agents 

of clinical parameters.
Here, to evaluate an association between risk factors 

and patient mortality risk, we conducted a single center 
retrospective cohort study in Japan targeting patients 
receiving VA-ECMO with myocardial infarction, which is 
the most common cause of cardiogenic shock.13,14 Using 
this clinical data, we performed data-driven exploratory 
analysis of combinatorial factors predictive of mortality of 
AMI patients receiving VA-CEMO therapy. We also dis-
cuss the clinical implications of our results.

Methods
Study Design
This study was an observational single-center retrospective 
cohort study targeting a population aged ≥20 years receiv-
ing VA-ECMO treatment for AMI at the Japanese Red 
Cross Kumamoto Hospital in Japan. In all, 63 patients who 
underwent VA-ECMO at that medical center after experi-
encing AMI between January 1, 2010 and June 30, 2020 
were enrolled in the study. All patients enrolled in the study 
were Japanese. No patients were excluded from the analy-
sis, and all patients who received VA-ECMO treatment 
were listed in the dataset for statistical analysis. The diag-

Table 1. Patient Characteristics Before Veno-Arterial Extracorporeal Membrane Oxygenation (Categorical 
Variables) and Results From Univariate Analysis Using Cox Proportional Hazard Models

Categorical variable Percentage Number HR (95% CI) P value

Male sex 69.8 44 1.03 (0.55, 1.92) 0.927

Smoking 39.7 25 0.73 (0.36, 1.47) 0.374

Alcohol use 38.1 24 0.96 (0.52, 1.76) 0.897

Diabetes 46　　　 29 0.82 (0.46, 1.46) 0.503

Hypertension 69.8 44 0.92 (0.48, 1.75) 0.799

Dyslipidemia 49.2 31 0.89 (0.50, 1.58) 0.681

Chronic kidney disease 17.5 11 1.48 (0.73, 2.98) 0.278

Continuous renal replacement therapy 25.4 16 1.29 (0.70, 2.39) 0.414

Location of cardiac arrest

  No cardiac arrest   4.8   3 1 –

  IHCA 49.2 31   2.1 (0.50, 8.89) 0.313

  OHCA 46　　　 29 1.36 (0.32, 5.81) 0.681

ECG immediately before VA-ECMO induction

  Asystole 20.6 13 1 –

  PEA 31.7 20 1.14 (0.53, 2.45) 0.729

  VT/VF 39.7 25   0.7 (0.33, 1.51) 0.367

  Bradycardia   3.2   2      0 (0.00, 0.00) 1

  Sinus rhythm   4.8   3 0.89 (0.25, 3.21) 0.861

Infarct-related artery

  Single vessel 25.5 16 1 –

  Double vessels 30.3 19 0.97 (0.46, 2.06) 0.938

  Triple vessels 11.1   7 0.76 (0.29, 2.02) 0.586

  Left main trunk   6.4   4 1.36 (0.44, 4.19) 0.597

  Left main trunk+multiple vessels 22.2 14 0.66 (0.28, 1.56) 0.342

  Unknown   4.7   3 0.87 (0.18, 4.08) 0.855

Antiplatelet drugs

  None 36.4 23 1.00 –

  Single   8.0   5 0.46 (0.13, 1.54) 0.206

  DAPT 55.6 35 0.40 (0.22, 0.72) 0.002

CI, confidence interval; DAPT, dual antiplatelet therapy; ECG, electrocardiogram; HR, hazard ratio; IHCA, in-hospital 
cardiac arrest; OHCA, out-of-hospital cardiac arrest; PEA, pulseless electrical activity; VA-ECMO, veno-arterial 
extracorporeal membrane oxygenation; VF, ventricular fibrillation; VT, ventricular tachycardia.
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Electrocardiogram data (asystole, pulseless electrical activ-
ity [PEA], ventricular fibrillation/ventricular tachycardia, 
bradycardia or sinus rhythm) were collected before VA-
ECMO was started. CRRT was defined as use of continuous 
hemodiafiltration during the hospital admission period. 
Information relevant to the degree of stenosis of the coro-
nary artery lesion causing the myocardial infarction was 
also collected. We evaluated the use of antiplatelet therapy 
(aspirin, clopidogrel, and/or prasugrel), heparin, and epi-
nephrine or norepinephrine during the period between the 
first medical examination and the start of VA-ECMO. 
During this period, subjects were not treated with insulin, 
platelet infusions, or revascularization therapy, such as 
stenting.

At the start of VA-ECMO, pump speed (in r.p.m.), the 
perfusion index, the fraction of inspiratory oxygen (FiO2), 
and the oxygen flow rate of exchange oxygenation were 
recorded.

Statistical Analysis
To prepare for the statistical analysis of data from the 63 
patients, missing information for categorical variables was 
analyzed. Information was missing for the following vari-
ables: hypertension (n=2), diabetes (n=3), dyslipidemia 
(n=2), smoking (n=5), alcohol use (n=6), and chronic kid-
ney disease (n=1). Median imputation was performed to 
complement missing information for the following con-
tinuous variables: BMI (n=4), CK-MB (n=2), total biliru-
bin (n=8), pH (n=6), BE (n=6), blood glucose (n=3), 
lactate (n=12), calcium levels (n=9), CRP (n=6), pump 
speed (n=2), perfusion index (n=2), FiO2 (n=2), and oxy-
gen flow (n=2). All variables were examined visually, and 
data for creatinine, BUN, eGFR, CK, CK-MB, LDH, 
AST, ALT, leukocyte count, lactate, and CRP were log-
transformed to correct for a skewed distribution.

were used to control mean blood pressure and maintain it 
above 65 mmHg. Activated clotting time was maintained 
at 150–200 s by continuous heparin infusion to avoid com-
plications from clotting and bleeding. Continuous renal 
replacement therapy (CRRT) was also used when patients’ 
renal function decreased during ECMO. Patients were 
weaned from ECMO if cardiac function was not exacer-
bated, even if the ECMO flow rate was maintained at 
1.0 L/min.15 If VA-ECMO weaning was deemed difficult, a 
medical team consisting of cardiologists, cardiovascular 
surgeons, clinical engineers, and nurses made treatment 
decisions as to whether ventricular assist device (VAD) 
therapy was needed.

Clinical Evaluation and Laboratory Testing
Clinical information, including age and sex, was collected 
from patients. Smoking and drinking habits were assessed 
as current or not. Body mass index (BMI) was calculated 
by dividing body weight by height squared. Hypertension, 
diabetes, dyslipidemia, and chronic kidney disease were 
each assessed as past history.

In blood examinations, arterial pH, arterial blood base 
excess (BE), arterial blood bicarbonate, hemoglobin, hema-
tocrit, blood glucose, potassium, lactic acid, and calcium 
were determined from blood collected from the radial or 
femoral artery on initial examination. We also evaluated 
blood urea nitrogen (BUN), serum creatinine, estimated 
glomerular filtration rate (eGFR), creatine kinase (CK), 
CK-MB, lactate dehydrogenase (LDH), C-reactive protein 
(CRP), aspartate aminotransferase (AST), alanine amino-
transferase (ALT), total bilirubin, and platelet and leuko-
cyte counts in the emergency room.

Information was also collected regarding the location of 
the cardiac arrest, and the cardiac arrest time was defined 
as the time from CPR to the start of VA-ECMO in minutes. 

Figure 1.  Kaplan-Meier analysis of all patients for all-cause mortality. ECMO, extracorporeal membrane oxygenation.
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association with outcome. This analysis decreased the 
number of parameters from 14 to 2, based on mortality risk, 
enabling patients to be stratified into 3 groups. Kaplan-
Mayer curves were then used to estimate the median sur-
vival time or the survival rate for each group. The Cox PH 
model and 10,000 bootstrap replications were then used to 
evaluate associations between these groups and all-cause 
mortality. Wald tests were used to compare the coefficients 
of each group obtained in the Cox PH models.

Analyses were performed using Stata/MP 16.0 (StataCorp, 
College Station, TX, USA). Two-sided P<0.05 was consid-
ered significant.

Results
Clinical information relevant to the patients’ background 
at baseline is presented in Table 1. The prognosis of all 
patients was followed during the in-hospital period, and 

To identify candidate variables with a significant asso-
ciation with outcomes, a univariate Cox proportional haz-
ards (PH) model was used to analyze all 43 routine clinical 
parameters during the period between the first medical 
examination at the hospital and the start of VA-ECMO. 
The associations between these parameters and patients’ 
mortality risk after starting VA-ECMO were then assessed 
(Supplementary Figure). We then selected 12 variables 
evaluated as significant risk factors in the univariate Cox 
PH model. Next, in survival tree analyses, we used a clas-
sification and regression tree to decrease the number of 
variables and stratify subjects based on combinatorial risk 
factors. In these analyses, we used age, sex, and 8 clinical 
categories of 12 variables found to be statistically signifi-
cant in the univariate Cox PH model as explanatory vari-
ables. Outcomes were evaluated as time to event survival 
data.16–18 The classification tree groups subjects on the 
basis of minimizing the impurity of the data in view of the 

Table 2. Patient Characteristics Prior to Induction of Veno-Arterial Extracorporeal Membrane Oxygenation 
(Continuous Variables) and Results of Univariate Analyses Using Cox Proportional Hazard Models

Continuous variable Median [IQR] HR (95% CI) P value

Age (years) 68 [52, 74]　　　　　 1.01 (0.98, 1.03) 0.617

BMI (kg/m2) 24.5 [22.2, 27.8]　　 1.03 (0.97, 1.10) 0.335

Creatinine (mg/dL) 1.19 [0.84, 1.68]　　   1.7 (1.13, 2.54) 0.011

BUN (mg/dL)  19 [14.5, 30.2] 1.16 (0.73, 1.83) 0.534

eGFR (mL/min/1.73 m2) 45.4 [30.5, 60.9]　　 0.63 (0.44, 0.91) 0.013

CK (U/L) 188 [104, 828]　　　 0.88 (0.71, 1.07) 0.195

CK-MB (U/L) 20 [3.5, 55]　　　　 0.94 (0.80, 1.09) 0.399

LDH (U/L) 472 [303, 730]　　　 1.04 (0.77, 1.41) 0.785

AST (U/L) 96 [37, 257]　　　 0.99 (0.82, 1.21) 0.954

ALT (U/L) 48 [31, 136]　　　 1.02 (0.83, 1.24) 0.848

T-Bil (mg/dL) 0.4 [0.3, 0.7]　　　　 0.92 (0.68, 1.23) 0.561

Leucocytes (/μL) 11,660 [9,900, 15,840] 1.36 (0.66, 2.79) 0.4　　　　
Platelets (×104/μL) 18.6 [12.6, 23.9]　　 0.96 (0.92, 1.00) 0.046

pH 7.19 [6.94, 7.30]　　 0.21 (0.05, 0.81) 0.023

BE (mmol/L) −10.2 [−17.6, −5.2]　　 0.96 (0.93, 1.00) 0.029

HCO3− (mEq/L) 17.6 [12.5, 20.6]　　 0.96 (0.91, 1.00) 0.064

Hb (g/dL) 12.1 [10.5, 13.9]　　 0.97 (0.86, 1.10) 0.648

Hct (%) 37.2 [30.8, 42.4]　　 1.01 (0.82, 1.24) 0.921

Blood glucose (mg/dL) 234.5 [162, 342]　　　　　　 1.03 (1.01, 1.05) 0.015

Lactic acid (mmol/L) 9.1 [5.2, 12.4]　　 1.66 (1.07, 2.56) 0.023

K (mEq/L) 4.3 [3.8, 5.3]　　　　   1.4 (1.04, 1.89) 0.026

Ca (mmol/L) 1.13 [1.02, 1.18]　　   1.64 (0.12, 22.59) 0.713

CRP (mg/dL) 0.49 [0.12, 3.79]　　 0.97 (0.85, 1.11) 0.66　　
Arrest time (min) 52 [35, 78]　　　　　 1.02 (0.96, 1.07) 0.545

Pump speed (r.p.m.) 2,147 [1,933, 2,405] 0.96 (0.89, 1.04) 0.32　　
Perfusion Index (L/min/m2) 1.88 [1.54, 2.23]　　 0.48 (0.26, 0.88) 0.017

FiO2 (%) 100 [100, 100]　　　 1.02 (0.98, 1.05) 0.354

Oxygen flow (L/min) 3 [3, 3]　　　　　　　 0.82 (0.50, 1.36) 0.447

Heparin (1,000 units) 7 [5, 10]　　　　　 0.90 (0.83, 0.99) 0.026

Norepinephrine (mg) 0 [0, 1]　　　　　　　 1.07 (0.81, 1.40) 0.643

Epinephrine (mg) 4 [1, 8]　　　　　　　 1.11 (1.03, 1.20) 0.008

Creatinine, blood urea nitrogen (BUN), estimated glomerular filtration rate (eGFR), creatine kinase (CK), CK-MB, 
lactate dehydrogenase (LDH), aspartate aminotransferase (AST), alanine aminotransferase (ALT), leukocyte count, 
lactic acid, and C-reactive protein (CRP) data were log transformed and put in each univariate Cox proportional 
hazard model. Hazard ratios (HRs) were estimated for 5% increases in hematocrit (Hct), 10-mg/dL increases in 
blood glucose, 10-min increases in length in arrest time, and 100-r.p.m. increases in pump speed. BE, blood base 
excess concentration; BMI, body mass index; CI, confidence interval; FiO2, fraction of inspiratory oxygen; Hb, hemo-
globin; Hct, hematocrit; IQR, interquartile range; T-Bil, total bilirubin.
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(Table 2). Of the arterial blood gas analysis parameters, 
pH, BE, and lactate at the initial medical examination were 
significantly associated with mortality risk (Table 2). The 
perfusion index at the start of VA-ECMO was also associ-
ated with mortality (Table 2). The use of dual antiplatelet 
therapy and treatment with heparin and low-dose epineph-
rine were associated with a benign prognosis.

Next, patients were assigned to subgroups based on mor-
tality risk using survival tree methodology with age, sex, 
and 8 categories of 12 selected parameters that were signifi-
cantly associated with mortality risk based on a univariate 
Cox PH model. Those 8 categories were renal function 
(eGFR or serum creatinine), circulating glucose concentra-

Kaplan-Meier analysis revealed that the median survival 
time from the start of VA-ECMO was 6.3 days (95% con-
fidence interval [CI] 2.9–9.5 days). Overall, 77.8% (n=49) 
of patients died (Figure 1), with 25 (51.0%) dying of AMI, 
5 (10.2%) dying of ventricular fibrillation, and 5 (10.2%) 
dying of heart failure according to information contained 
in the death certificates.

To evaluate potential associations between clinical 
parameters and mortality risk, we performed univariate 
analysis using the Cox PH model. These analyses revealed 
that circulating creatinine concentrations, eGFR, glucose, 
potassium, and platelet counts at the time of the initial 
medical examination were associated with mortality risk 

Figure 2.  Results of classification and 
regression tree analysis. Patients were 
divided into three groups based on 
the presence of hyperglycemia and 
thrombocytopenia: Group 1, patients 
with neither hyperglycemia nor throm-
bocytopenia; Group 2, patients with 
hyperglycemia; and Group 3, patients 
with hyperglycemia plus thrombocyto-
penia.

Figure 3.  Kaplan-Meier analysis of the risk 
of all-cause mortality in Groups 1–3. ECMO, 
extracorporeal membrane oxygenation; 
Group 1, patients with neither hyperglycemia 
nor thrombocytopenia; Group 2, patients 
with hyperglycemia; Group 3, patients with 
hyperglycemia plus thrombocytopenia.
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formed using hyperglycemia (≥213 mg/dL) and thrombo-
cytopenia (platelets ≤145,100/μL) as independent risk 
factors for mortality in patients undergoing VA-ECMO. 
That analysis confirmed that these 2 risk factors have a 
combinatorial effect in terms of patients’ mortality risk 
(Supplementary Table 3).

Discussion
This single-center retrospective cohort study analyzed sur-
vival data of patients to identify clinical factors significantly 
associated with mortality after VA-ECMO in patients with 
AMI. The estimated median survival time of patients was 
6.3 days, and the estimated survival rate during the in-
hospital period was 22.2%. In this study, a reported history 
of diabetes or chronic kidney disease was not significantly 
associated with mortality, nor was AMI location. It is pos-
sible that these parameters are common risk factors for 
mortality in all AMI patients, including those with lethal 
conditions requiring VA-ECMO and those with non-lethal 
conditions not requiring VA-ECMO.15 We note that our 
results are in accord with previous studies analyzing only 
patients with lethal conditions who underwent VA-ECMO.9,19

Exploratory survival tree analysis after variable selection 
using univariate Cox PH models revealed 3 patient groups 
based on mortality risk after VA-ECMO started. These 
categories were determined by first subdividing patients 
based on circulating glucose concentrations, with patients 
with serum glucose concentrations ≥213 mg/dL categorized 
as having a relatively poorer prognosis (Figure 3). We then 
further subdivided the high-glucose group based on plate-
let counts at the time of initial examination. Subjects with 
combined hyperglycemia (glucose ≥213 mg/dL) and throm-
bocytopenia (platelet count ≤145,100/μL) were classified as 
having the worst prognosis (Group 3 in Figure 3). Hyper-
glycemia is often clinically defined as circulating glucose 
concentrations ≥200 mg/dL and thrombocytopenia is 
defined as platelet counts <150,000/μL.20,21 Thus, our cri-
teria represent reasonable values relative to the clinical 
situation. We conclude that our model could be used to 
predict outcomes of patients receiving VA-ECMO due to 
AMI. Interestingly, an association between groups defined 
here and mortality risk was relatively clear, particularly in 
patients who underwent revascularization therapy after 
successful induction of VA-ECMO, as opposed to those 
who were unable to undergo revascularization therapy.

Clinically, patients with high blood glucose concentra-
tions are reportedly more likely to have a higher incidence 
of coronary no reflow by echocardiography after success-
ful reperfusion by percutaneous coronary intervention, 
regardless of diabetes complications.22,23 Furthermore, 

tions, potassium levels, platelet counts, levels of acidosis-
related parameters (pH, BE, or lactate) at the initial medical 
examination, VA-ECMO perfusion index, antiplatelet ther-
apy or heparin use, and low-dose epinephrine use. This 
analysis reduced the number of explanatory variables to 2, 
and hierarchically categorized patients into 3 groups based 
on combinatorial effects of risk factors on patient mortality 
(Figure 2). Specifically, in this analysis, patients were divided 
at the first node into hyperglycemic (glucose ≥213 mg/dL) 
and normal blood glucose prognostic groups (Figure 2). 
Patients with high glucose levels (≥213 mg/dL) were then 
divided into groups based on the presence of mild throm-
bocytopenia (platelets ≤145,100/μL) as the second node of 
the tree (Figure 2). At that point branching stopped, and 
only these 2 parameters were used as nodes to further sub-
group patients, leading to the creation of 3 groups: Group 
1, patients with neither hyperglycemia nor thrombocyto-
penia; Group 2, patients with hyperglycemia; and Group 
3, patients with hyperglycemia plus thrombocytopenia. 
The subgroups remained unchanged even when alternative 
survival tree analyses were performed, replacing eGFR 
with serum creatinine levels, pH with BE or lactate, or 
antiplatelet therapy with heparin use.

Kaplan-Meier curves for each of the subgroups defined 
by survival tree analysis are shown in Figure 3. The median 
survival time was estimated to be 16.3 days (95% CI 4.65 
days–upper bound not reached) for Group1, 7.8 days (95% 
CI 2.2–12.8 days) for Group 2, and 1.5 days (95% CI 0.4–
2.9 days) for Group 3.

The Cox PH model revealed that the hazard ratio (HR) 
for all-cause mortality in each group increased with increas-
ing category number (Table 3). Specifically, compared with 
Group 1, Group 2 had a significantly higher risk of in-
hospital mortality (HR 2.25; 95% CI 1.13–4.46), and that 
risk increased further in Group 3 (HR 7.60; 95% CI 3.21–
17.95; P=0.0016, Wald test comparing coefficients of 
Groups 2 and 3; Table 3). Internal validation using boot-
strap replication analysis of the Cox PH model indicated 
that the categories significantly associated with mortality 
risk in patients undergoing VA-ECMO were Group 2 (HR 
2.24; 95% CI 1.12–4.84) and Group 3 (HR 7.91; 95% CI 
3.61–7.91; Table 3). In addition, using the Cox PH model 
to analyze 46 subjects who underwent revascularization 
therapy (stenting) revealed that subgrouping (Figure 2) 
was significantly associated with increased mortality risk 
(Supplementary Table 1), whereas these associations were 
not significant when 18 subjects who did not undergo 
revascularization therapy were analyzed (Supplementary 
Table 2).

In addition to survival tree analysis with hierarchical 
subgrouping, a different type of survival analysis was per-

Table 3. Relationships Between Risks for All-Cause Mortality in Each Group Based on Group Classification 
and Regression Tree Survival Analysis (n=63)

No. at risk No. deaths HR (95% CI) P value Bootstrap replication 
HR (95% CI)

Group 1 25 13 1.00 – 1.00

Group 2 25 23 2.25 (1.13, 4.46)   0.021 2.24 (1.12, 4.84)

Group 3 13 13   7.60 (3.21, 17.95) <0.001   7.91 (3.61, 20.69)

Patients were divided into different groups based on the presence of hyperglycemia and thrombocytopenia: Group 1, 
patients with neither hyperglycemia nor thrombocytopenia; Group 2, patients with hyperglycemia; and Group 3, 
patients with hyperglycemia plus thrombocytopenia. CI, confidence interval; HR, hazard ratio.
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the locations of the cardiac arrest (IHCA vs. OHCA) and 
the absence of cardiac arrest did not differ significantly 
across our prognostic groups (Supplementary Table 4; 
P=0.817, Fisher’s exact test), a study enrolling subjects 
with comparable clinical backgrounds may be preferable. 
Finally, we did not assess an association between sub-
groups and mortality risk in patients who did not undergo 
revascularization therapy after the induction of VA-
ECMO because of the small sample size. Thus, additional 
multicenter studies with large sample sizes are needed to 
validate our findings.

Conclusions
In the present study targeting patients receiving VA-
ECMO for cardiogenic shock due to AMI, we found that 
hyperglycemia and thrombocytopenia at the initial medical 
examination were combinatorial risks for increased mor-
tality, especially in subjects who underwent revasculariza-
tion therapy after successful induction of VA-ECMO.
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