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In Brief
Thuy-Boun et al. quantitatively
compare the stool microbiomes
of healthy and ulcerative colitis
patients with label-free data-
dependent LC-MS/MS
proteomics. Their analyses
identified 176 significantly
enriched protein groups between
the two cohorts, and serine-type
endopeptidase activity was one
such functionality
overrepresented in UC patients.
Pre-enrichment of the clinical
samples with a biotinylated
fluorophosphonate probe further
demonstrated that serine
endopeptidases are active within
the patient fecal samples and
that additional putative serine
hydrolases were identified by
this approach compared with
unenriched profiling.
Highlights
• Identified 176 significantly altered protein groups between healthy and UC patients.• Serine-type endopeptidase activity is overrepresented in UC patients.• Fluorophosphonate ABPP shows that endopeptidases are active in fecal samples.• ABPP enrichment helps identify additional putative serine hydrolases in samples.• De novo sequencing used to estimate number of MS2 spectra unidentified by ComPIL.
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RESEARCH
Quantitative Metaproteomics and Activity-
based Protein Profiling of Patient Fecal
Microbiome Identifies Host and Microbial
Serine-type Endopeptidase Activity Associated
With Ulcerative Colitis
Peter S. Thuy-Boun1 , Ana Y. Wang1, Ana Crissien-Martinez2, Janice H. Xu1,
Sandip Chatterjee1, Gregory S. Stupp3 , Andrew I. Su3, Walter J. Coyle2, and
Dennis W. Wolan1,3,*
The gut microbiota plays an important yet incompletely
understood role in the induction and propagation of ul-
cerative colitis (UC). Organism-level efforts to identify UC-
associated microbes have revealed the importance of
community structure, but less is known about the molec-
ular effectors of disease. We performed 16S rRNA gene
sequencing in parallel with label-free data-dependent LC-
MS/MS proteomics to characterize the stool microbiomes
of healthy (n = 8) and UC (n = 10) patients. Comparisons of
taxonomic composition between techniques revealed
major differences in community structure partially attrib-
utable to the additional detection of host, fungal, viral, and
food peptides by metaproteomics. Differential expression
analysis of metaproteomic data identified 176 significantly
enriched protein groups between healthy and UC patients.
Gene ontology analysis revealed several enriched func-
tions with serine-type endopeptidase activity over-
represented in UC patients. Using a biotinylated
fluorophosphonate probe and streptavidin-based enrich-
ment, we show that serine endopeptidases are active in
patient fecal samples and that additional putative serine
hydrolases are detectable by this approach compared
with unenriched profiling. Finally, as metaproteomic da-
tabases expand, they are expected to asymptotically
approach completeness. Using ComPIL and de novo
peptide sequencing, we estimate the size of the probable
peptide space unidentified (“dark peptidome”) by our large
database approach to establish a rough benchmark for
database sufficiency. Despite high variability inherent in
patient samples, our analysis yielded a catalog of differ-
entially enriched proteins between healthy and UC fecal
proteomes. This catalog provides a clinically relevant
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jumping-off point for further molecular-level studies aimed
at identifying the microbial underpinnings of UC.

Inflammatory bowel disease (IBD) is a chronic medical
condition characterized by relapsing inflammation of the
gastrointestinal (GI) tract. This disease is broadly divisible into
two categories based on where inflammation occurs. In ul-
cerative colitis (UC), inflammation is restricted to the large
intestine, while in Crohn’s disease (CD), inflammation can
occur anywhere along the GI tract (1, 2). In addition to reduced
life expectancy, IBD patients can suffer dramatic quality-of-life
reductions and are at increased risk to develop gastrointes-
tinal tract malignancy (3). The incidence and prevalence of IBD
in developed countries have steadily increased in the last few
decades, making this disease a public health concern with a
potentially heavy cost burden due to a requirement for long-
term management (4). Targeted cures for UC and CD are
highly desirable, but the search for such treatments is
hampered by our incomplete understanding of disease
development. Genome-wide association studies (GWAS) have
identified over 200 genetic loci associated with UC and CD,
but the polygenic nature of these conditions explains only a
minor portion of disease incidence (5–7). Concordance rates
of about 30% for CD and 15% for UC among monozygotic
twins suggest a significant nongenetic contribution to disease
development (8). Because our gut microbes are in perpetual
contact with our GI tracts, they comprise important but ill-
defined environmental variables that many studies have
implicated in IBD development. IBD triggers are unknown, but
its progression is hypothesized to be amplified by
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Fecal Metaproteomics in Human Ulcerative Colitis
inappropriate host–microbe interactions that lead to dysbiosis
and, eventually, observable gross pathology (9–13).
Efforts to identify potential microbial drivers of IBD are

ongoing but stymied by the immense taxonomic complexity of
the gut microbiota. The gut harbors hundreds of distinct
species per individual, which can change over time and with
perturbations to host lifestyle or xenobiotic exposure (14–16).
Campaigns to characterize and monitor the gut microbiota
frequently utilize amplicon and metagenomic sequencing
technologies, which can provide information about microbial
community structure, genetic potential, and transcriptional
activities (17, 18). As the collective size of shotgun meta-
genomic sequence space has expanded from these efforts, so
too have the opportunities for liquid chromatography tandem
mass spectrometry (LC-MS/MS)-based metaproteomics (19),
which rely on protein reference databases constructed from
translated genome sequences (20). Host protein profiling is a
straightforward process given the relative completeness of
host (e.g., human, mouse, etc.) genome assemblies, but
microbiome protein profiling is more difficult due to the high
strain diversity and presence of unculturable microbes in the
gut (21). Sample-matched MAGs (metagenome assembled
genomes) delivering good spectrum match rates have
become an effective solution but can be cost-limiting and
require expertise (15, 22–25). In addition, manual reference
database curation has proven to be an important consider-
ation in metaproteomics but becomes computationally
burdensome as community diversity expands (26). To address
this problem, we developed the Comprehensive Protein
Identification Library (ComPIL), a large and scalable prote-
omics database generally intended for metaproteomics
studies (27). In its current iteration (ComPIL 2.0), it houses
>4.8 billion unique, tryptic peptides derived from >113 million
bacterial, archaeal, viral, and eukaryotic parent protein se-
quences assembled from public sequencing repositories (28).
With periodic incorporation of new sequences from shotgun
metagenomics repositories, we envision that ComPIL will help
enable interlaboratory consonance in the global interpretation
and communication of bottom-up metaproteomics results. In
addition to enabling the direct, large-scale observation of
proteins in a complex mixture, LC-MS/MS-based meta-
proteomics techniques obviate a requirement for intact cells,
facilitate the observation of posttranslational protein modifi-
cations, and enable functional interrogation of new or
incompletely annotated proteins through such cognate tech-
niques as activity- and affinity-based protein profiling (ABPP)
(29, 30).
Relative to metagenomics, LC-MS/MS-based meta-

proteomics are less commonly applied and more rarely
employed in IBD studies. In fact, the first large-scale endeavor
to identify proteins from a microbial biofilm community was
only disclosed by Banfield, et al. in 2005 (31–33). In 2009,
Jansson, et al. leveraged high-resolution LC-MS/MS to
demonstrate the viability of large-scale metaproteomics in
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fecal samples collected from a twin pair (34). The aforemen-
tioned study demonstrated for the first time that bottom-up
LC-MS/MS-based proteomics technology is suitable for
such a complex environment and that it could generate a
model of the gut microbiome that is orthogonal to that pro-
duced by metagenomics. Since then, several groups have
deployed bottom-up metaproteomics to investigate the etiol-
ogy of IBD in humans by examining patient fecal extracts,
intestinal biopsy tissue, and/or blood samples (35–44). Addi-
tionally, several groups including our own have paired tradi-
tional proteomic profiling with ABPP techniques in
microbiome samples to detect and annotate key protein
functionalities often undetectable without preenrichment
(45–48).
The insights garnered from previous metaproteomics

studies are valuable for forming a consensus about the
constellation of IBD-related environmental factors. We aim to
contribute to this nascent pool by presenting a combined
16S rRNA gene amplicon sequencing and metaproteomics
analysis of fecal samples from healthy volunteers and ul-
cerative colitis patients to identify novel proteins associated
with health or disease. Using a pipeline that incorporates a
novel, strong-acid sample preparation procedure (49), label-
free high-resolution LC-MS/MS, and the ComPIL database
coupled to the ProLuCID/SEQUEST search engine (20, 50,
51), we identify 176 protein groups and several gene
ontology (GO) terms enriched in either cohort (52). We show
that proteomics can provide a more complete picture of gut
microbiome taxonomy that includes host, microbial, and
even dietary proteins. Using ABPP, we demonstrate that not
only are microbiome proteins enzymatically active after
collection, but additional proteomic depth can be achieved
using ABPP enrichment strategies. Finally, using de novo
peptide sequencing tools, we provide a means for estimating
the size of database-elusive peptide space in our LC-MS/MS
data, enabling a rough estimation of metaproteome
completeness. This measure can help shape future decision-
making processes regarding the need for additional shotgun
metagenomic work to support a given metaproteomics
study.
EXPERIMENTAL PROCEDURES

Patient Sample Collection

Collection and use of all patient samples were approved by the
Office for the Protection of Research Subjects at Scripps Research
and Scripps Green Hospital (IRB protocol IRB-14-6352). The written
informed consent was obtained from all subjects in accordance with
the Declaration of Helsinki.

Volunteers self-collected their own stool samples using adminis-
tered standardized in-home sample collection kits and were instructed
to immediately freeze specimens at −20 ◦C. Samples were stored in
provided consumer-grade −20 ◦C minifreezers immediately after
collection, transported by courier services on dry ice, and stored in
laboratory-grade freezers at −20 ◦C until microbial extraction.
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Collected stool samples were highly heterogeneous in color, texture,
and viscosity both before and after microbial extraction.

Microbe Extraction

Stool samples were thawed to room temperature, diluted in PBS
(pH 7.4), vortexed thoroughly to yield slurries, and then centrifuged at
100g for 1 min. The flocculent upper layer was extracted, filtered over
70 μm nylon mesh cell strainers to remove large, recalcitrant masses,
and then centrifuged at 8000g for 5 min to pellet. Pellets were rinsed
twice with PBS, then resuspended in PBS to a density of 100 mg wet
microbial pellet per 500 μl of suspension.

DNA Extraction, 16S rRNA Gene Sequencing, and Data
Processing

Microbial DNA was extracted from thawed fecal microbe aliquots
using a fecal/soil extraction kit (Zymo Research, Irvine, CA, USA). In
total, 50 to 100 ng of DNA per patient sample was submitted to the
Scripps Research genomics core for next-generation sequencing,
which was performed using the MiSeq platform (Illumina Inc). For
taxonomy based on 16S rRNA gene amplicon sequencing, we tar-
geted the bacterial 16S V4 region using a 300 bp paired-end
approach aiming for 100,000 reads per sample. Reads were taxo-
nomically mapped using QIIME2 (and associated plug-ins) and
classifiers created from the SILVA 132 database (53, 54). For access
to raw data, see Zenodo repository (55). For detailed methods, see
Additional File 1.

Protein Extraction, Protein Digestion, Proteomics Data Collection

Protein was extracted according to a previously described protocol
(49). Extracted protein was resuspended in H2O, and concentration
was measured by BCA assay (ThermoFisher). Extracted microbiome
protein (100 μg) was reduced, alkylated, trypsinized, and desalted
(ZipTip C18, MilliporeSigma) prior to LC-MS/MS analysis. Desalted
peptides (1 μg) were separated using a 4-h C18 gradient by nano-flow
liquid chromatography coupled to an Orbitrap Fusion Tribrid (Thermo
Fisher) operating in data dependent mode. Both MS1 and MS2
spectra were recorded in the Orbitrap at 120K and 30K resolution,
respectively. For detailed methods, see Additional File 1.

Proteomics Data Analysis

We collected a total of 2,829,920 MS2 spectra between all 18
patient samples. These spectra were searched against the ComPIL
2.0 database (contains 4.8 billion unique tryptic peptides from >225
million forward and reverse protein sequences) (27, 28) using the
ProLuCID/SEQUEST search engine (20, 50, 51). In total, 523,155
(18.5%) MS2 spectra were mapped to 54,378 distinct peptides at a
1% peptide false discovery rate (two peptide per protein minimum)
using a target-decoy strategy (56). In total, 576,625 protein se-
quences were identified and clustered into 95,000 protein groups at
a 95% sequence similarity cutoff using CD-HIT (57, 58). Quantifica-
tion at the MS1 level was performed using FlashLFQ with a match-
between-runs strategy enabled (10 ppm precursor tolerance,
15 min window) (59). Peptide MS1 area-under-the-curve intensities
were mapped to protein groups. Intensity belonging to peptides that
mapped to >1 protein group were excluded. After removing protein
groups with too many missing values (protein groups were removed
if: (1) both conditions contained only null values, (2) one condition
contained null values and the other contained <4 non-null values, or
(3) both conditions contained <4 nonnull values each), 4622 protein
groups remained for differential expression analysis, which was
performed using Limma as part of the DEP package in the R sta-
tistical environment (60, 61). Protein groups were annotated with GO
terms using InterProScan; these annotations were used for GO
enrichment analysis in the GOstats package. GO relative abundance
analysis was performed before removal of protein groups with too
many missing values (62–64). Peptides were mapped to their
respective taxa of origin using Unipept (65–67). Note that ideally,
metaproteomics should be performed in conjunction with meta-
genomic sequencing to generate matched customized proteome
databases. Protein provenance could more confidently be traced in
this scenario enabling greater precision during taxonomy analysis. In
the absence of matched metagenomic data, Unipept can provide
peptide-based taxonomic mapping information but may do so with
less accuracy. Peptides were then mapped to taxa to construct
relative abundance tables and plots. Finally, de novo peptide
sequencing was performed in Novor (68) and database-de novo
peptide comparisons were performed using the Scikit-bio Python
library. For more detailed methods, see Additional File 1. For access
to LC-MS/MS data, see PRIDE repository PXD022433 (69). For de
novo datasets, protein fasta files, and protein group files (CD-HIT
clusters), see Zenodo repository (55) 10.5281/zenodo.5717460.

Experimental Design and Statistical Rationale

Single time-point stool samples from 18 patient volunteers were
collected and analyzed. Healthy (n = 8, M/F ratio = 5:3, mean age =
44 years) and UC (n = 10, M/F ratio = 8:2, mean age = 46 years)
volunteers consisted of a mixture of males and females between the
ages of 21 to 76 years (global mean age = 45 years, global median
age = 39 years) at the time of enrollment. UC patients presented with
mild to severe symptoms and a range of Mayo scores (0–9) during
enrollment. Individuals with BMI values >60, as well as any recent
antibiotics usage (<3 months prior to sample collection), severe diar-
rheal illnesses, or Clostridium difficile infections were excluded.

For unenriched proteomics experiments, eight healthy biological
replicates were compared against ten UC biological replicates (one
technical replicate per biological replicate). Analyses did not rely on
isotopic labels or internal standards. Instead, total protein and peptide
concentrations were measured and normalized by BCA assay prior to
LC-MS/MS. We chose to normalize samples by protein concentration
to simplify comparisons, as collected patient stool samples were
highly variable in volume, hydration, and consistency. This implies that
in this study, proteins/protein group compositional fractions rather
than absolute protein concentrations were compared between pa-
tients. ProLuCID/SEQUEST and DTASelect were used for peptide
identification at a peptide-level FDR setting of 1% using a target-
decoy strategy (20, 50, 51, 56, 70). Quantification was performed by
MS1 peak intensity using a match-between-runs strategy. All protein
sequences were grouped/clustered at a 95% sequence similarity
cutoff using CD-HIT, then peptide intensities were mapped to protein
groups/clusters (58). Peptides mapping to >1 group/cluster were
excluded. Peptide intensities were summed within protein groups/
clusters unless otherwise noted. Protein group/cluster intensities were
normalized using the Limma/DEP package function “normalize_vsn”
(variance stabilizing normalization) within the R statistical computing
environment (60, 61). Protein group differential enrichment testing was
performed using the “test_diff” function within the Limma/DEP pack-
age within the R statistical computing environment (60, 61). Differential
testing q-values were calculated using the “qvalue” package in the R
statistical environment, and a threshold of q < 0.1 was chosen as a
relevant cutoff value for further analysis and discussion (71). Note that
at more strict q-value thresholds, several protein groups were found to
be significant (68 protein groups significant at q < 0.01, 55 protein
groups at q < 0.001), but the modest q < 0.1 threshold was chosen to
enable a more broad view of potential disease-associated protein
functions with the acknowledged caveat that approximately 18 of 176
significantly enriched protein groups are false positives. Please see
Additional File 1 for more details.
Mol Cell Proteomics (2022) 21(3) 100197 3
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For FP-probe-enriched proteomics experiments, one healthy bio-
logical replicate and two UC biological replicates were analyzed by
LC-MS/MS (one technical replicate for each sample). The stool sam-
ples used for these FP-enriched experiments were identical to patient
stool used earlier for unenriched experiments. These FP-enriched
experiments were qualitative and not statistically powered.
RESULTS

Metaproteomics Yields a More Comprehensive Taxonomic
Diversity Than 16S rRNA Gene Analysis

At the kingdom level, LC-MS/MS-based proteomics iden-
tified peptides mapping to bacteria (38.3%), eukaryotes
(43.5%) (including host), archaea (<0.1%), and viruses as well
as a significant proportion of unassigned peptide (18.2%)
[Additional File 1, supplemental Fig. S1]. In contrast, a majority
of 16S reads (>99%) were attributable to bacteria with a much
smaller proportion attributable to archaea (<0.1%) and <0.1%
remaining unassigned [Additional File 1, supplemental
Fig. S1].
Large discrepancies in taxonomic resolution begin to

emerge at the phylum level. By LC-MS/MS proteomics, we
identified 46 phyla, including Ascomycota, Basidiomycota,
Spirochaetes, Chordata, and Streptophyta in addition to the
eight identified by 16S rRNA gene sequencing alone (Eur-
yarchaeota, Actinobacteria, Bacteroidetes, Cyanobacteria,
Firmicutes, Fusobacteria, Proteobacteria, and Verrucomicro-
bia) (Fig. 1). Firmicutes account for only 22.7% of the sample
FIG. 1. Relative abundance plots for all 18 patient samples. Com
amplicon sequencing (lower 18 bars; based on sequence counts) agains
intensities, note that shared peptides were grouped in the “Unassigned/u
spectrometry.
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composition according to the LC-MS/MS; however, this
phylum dominates the composition of patient microbiota ac-
cording to 16S amplicon sequencing and accounts for 86.2%
of all reads. Interestingly, the abundance of Bacteroidetes was
relatively minimal by 16S rRNA gene sequencing (except for
samples H5, UC9, UC15, UC23) yielding a Bacter-
oidetes:Firmicutes ratio of approximately 1:100 (Fig. 1). In
contrast, Bacteroidetes account for an average of 4.2% of the
microbiota peptide content by LC-MS/MS-based proteomics
yielding a Bacteroidetes:Firmicutes ratio of approximately 1:5.
The majority of identified peptides identified via meta-
proteomics predominantly originate from the Chordata phylum
and are presumably host-derived. Additionally, a significant
number of peptides are derived from the Streptophyta and are
attributable to a variety of dietary plants, including Solanum
tubersum (potato), Seasum indicum (sesame), Theobroma
cacao (chocolate), Zea mays (corn), and Oryza sativa (rice)
among many others [see Additional File 2]. Where compara-
ble, we posit that differences in DNA extraction efficiencies
(e.g., Gram+ versus. Gram-), differences in metabolic/secretory
activities, and shared tryptic peptides between microbes likely
contribute to the discrepancy in taxonomic compositions
between 16S gene sequencing and proteomics methods.
The trend of increased taxonomic diversity across micro-

biota samples observed by LC-MS/MS proteomics over 16S
amplicon sequencing is conserved at each classification tier
[Additional File 1, supplemental Figs. S1–S7]. At the species
parison of microbiome phylum-level taxonomy by 16S rRNA gene
t LC-MS/MS bottom-up proteomics (upper 18 bars; based on peptide
nknown” category). LC-MS/MS, liquid chromatography tandem mass
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level, we detected a total of 848 species/strains by LC-MS/MS
and only 38 by amplicon sequencing. Despite the predicted
increase in diversity by LC-MS/MS, an average of 85.9% of
the identifiable peptides are not mappable to a particular
species. This observation is due to the redundancy and con-
servation of microbial proteins across distinct and divergent
species. Thus, taxonomic predictions based on the peptide
composition in samples become increasingly difficult with
more granular classification levels.

176 Protein Groups Are Significantly Altered Between the
Healthy and UC Cohorts

Differential expression analysis yielded 176 protein groups
(from host, microbes, and diet) significantly altered between
healthy and UC patients (p ≤ 0.005 and q < 0.1), with 65
groups enriched in healthy volunteers and 111 protein groups
enriched in the UC volunteers (Fig. 2A and Additional File 3).
Principal components analysis (PCA) of the dataset revealed a
modest but distinguishable separation between the proteomic
composition of healthy and UC fecal samples (Fig. 2B), which
FIG. 2. Differential expression and protein network analysis of h
detected protein groups from patient fecal samples; whole plot (left), zoom
significant (q > 0.1, foldchange > 2), gray = N.S. (q > 0.1, foldchange ≤
corresponding to Additional File 4 labels. B, principal component analysis
healthy individuals, blue = UC patients. C, euclidean distance plot of all 1
similarity, orange/red = less similarity. D, STRING protein network analy
samples at medium confidence (0.400); edges: known interactions (aqu
dicted interactions (green: gene neighborhood, red: gene fusions, blue
pression, lavender: protein homology). UC, ulcerative colitis
is in agreement with the Euclidean distance matrix generated
for the same dataset (Fig. 2C).
Twenty nine of the 111 protein groups significantly enriched

in UC fecal samples were host-derived; however, no host
protein groups were enriched (q-value < 0.1) in the healthy
individuals. STRING analysis of significantly enriched UC host
proteins yielded 26 edges among 25 nodes and a highly sig-
nificant protein–protein interaction (PPI) enrichment p-value of
1.84 × 10−12 at medium confidence (0.400) suggesting a
strong association between tested proteins (Fig. 2D and
Additional File 4) (72). At highest confidence (0.900), 13 edges
between 25 nodes were found reinforcing a significant PPI
enrichment p value of 2.0 × 10−11. At medium confidence, the
most significant reactome pathways (fdr <0.001) were
neutrophil degranulation, innate immune system, antimicrobial
peptides, immune system, and metal sequestration by anti-
microbial proteins. GO biological process terms (fdr <3.3 ×
10−8; regulated exocytosis, neutrophil degranulation, secre-
tion by cell, transport, leukocyte mediated immunity, and
antimicrobial humoral response) and GO cellular component
ost and microbial proteins. A, volcano plot depicting differentially
ed-in plot (right), red = significant (q < 0.1, foldchange > 2), green = not
2), number adjacent red points represent unique “ClusterID” values
of all 18 patient samples across all differentially tested contrasts; red =
8 patient samples across all differentially tested contrasts, blue = more
sis of host protein groups differentially enriched in UC patients’ fecal
a: from curated database, magenta: experimentally determined), pre-
: gene co-occurrence), others (chartreuse: text mining, black: coex-

Mol Cell Proteomics (2022) 21(3) 100197 5
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terms (fdr < 2 × 10−7; cytoplasmic vesicle lumen, secretory
granule, secretory granule lumen, vesicle, cytoplasmic vesicle
part, and cytoplasmic vesicle) associated with host proteins all
support the assertion that host immune-related secretory
events are prevalent in the gastrointestinal tracts of UC pa-
tients. Interestingly, because no host proteins were signifi-
cantly enriched across healthy fecal samples, we posit that
host-centric biological pathways associated with colitis
occur in addition to rather than in lieu of processes associated
with homeostasis.
More than half of the nonhost protein groups have limited to

no annotations despite being significantly altered. For
example, 37 of 65 and 48 of 82 nonhost protein groups
enriched in the healthy and UC cohorts, respectively (p ≤
0.005 and q < 0.1), were poorly annotated in the ComPIL
database (i.e., no annotation, annotated as hypothetical pro-
teins or as domain of unknown function-containing proteins).
While additional BLAST homology searches and InterProScan
analyses were performed on each poorly annotated protein
group, we were unable to make significant additional anno-
tations for 11 of 37 protein groups enriched in the healthy
cohort and 15 of 48 protein groups enriched in the ulcerative
colitis cohort [see Additional File 4] (62, 63, 73). Such protein
groups represent interesting targets for structural and
biochemical validation as further inquiry could elucidate their
possible roles, in the propagation of inflammatory or anti-
inflammatory processes.
Significantly enriched and annotated nonhost protein

groups among both healthy and UC cohorts had predicted
and/or biochemically verified functions ranging from meta-
bolism (glyceraldehyde-3-phosphate dehydrogenase and
translation elongation factor Tu) to defense (type II secretion
system protein). Notable nonhost entries that were increased
in healthy volunteers include an acid-soluble spore protein
(WP_071120403.1), methylene tetrahydrofolate reductase
(SRS064276.159392-T1-C), and fruit bromelain (BROM1_A-
NACO). The enriched small spore protein is the only entry in its
protein group and originates from the recently described
bacterium Romboutsia timonensis, whose depletion has been
associated with colorectal cancer incidence (74, 75). The
methylene tetrahydrofolate reductase protein group enriched
in the healthy cohort contains 29 members possessing simi-
larity scores in the range of 98.6 to 100%. By BLAST analysis,
these reductases likely originate from the Lachnospiraceae
family of bacteria, and their examination could provide a
glimpse into the microbial B-vitamin economy that importantly
underpins host homeostasis, as humans are unable to de
novo synthesize many essential B vitamins (76–78). Interest-
ingly, fruit bromelain detected in four of eight healthy patient
fecal extracts is a pineapple-derived cysteine protease we did
not expect to encounter (79, 80). This protease is commonly
sold as an over-the-counter supplement or as a component of
meat tenderizers, and its detection may be an artifact intro-
duced through patients’ diets.
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With respect to protein groups enriched in UC patients,
notable annotated nonhost entries include hyaluronan gluco-
saminidase (CLONEX_02,131), a transglycosylase SLT
domain-containing protein (HMPREF0462_0704), and a met-
allohydrolase (WP_081140786.1). The enriched hyaluronan
glucosaminidase group contains four members with almost
identical sequences (99.95–100% identity). These proteins
likely originate from the Lachnospiraceae family members
Tyzzerlla or Coprococcus. Hyaluronan is a high-molecular-
weight carbohydrate component of the human extracellular
matrix that can serve as an inflammatory/injury signal for host
immune receptors when degraded by host hyaluronidases
(81). Hyaluronan glucosaminidase activity may exacerbate
host inflammatory processes and contribute to UC-related
inflammation, as well as afford microbes the ability to infil-
trate host barriers. The transglycosylase SLT (lytic) domain-
containing protein group includes 70 members with
sequence identities of 95.71 to 100% compared with the
Helicobacter pylori (H. pylori) enzyme. These enzymes cata-
lyze the nonhydrolytic intramolecular cyclization of N-ace-
tylmuramyl residues on bacterial cell walls propagating the cell
wall remodeling process (82, 83). For H. pylori, previous
studies demonstrate the importance of transglycosylase-
generated cell wall muropeptide fragments to inducing host
inflammation, which can in turn promote gut colonization (84,
85). Finally, the enriched metallohydrolase originates from
Pantoea latae and is annotated as a nonpeptide amide C–N
bond hydrolase that may inactivate amide-containing mole-
cules such as lactams, which are contained in an important
class of antibiotics (86, 87). A complete list of protein groups
found differentially expressed in this patient cohort can be
found in the supplement [see Additional File 4].

Serine-type Endopeptidase Activity is Significantly
Enriched in UC Samples

For GO term relative abundance analysis, we used mean
peptide intensities for peptides within the same protein group
to account for comparisons between proteins of different
lengths. Of the 8538 quantifiable protein groups selected for
relative abundance plotting, we identified 575, 394, and 85
terms for the molecular function, biological process, and
cellular component GO namespaces, respectively. In general,
GO relative abundance breakdowns between all samples for
each namespace appear similar by unweighted (count-based)
assembly (Fig. 3B and Additional File 1, supplemenal
Figs. S8–S10). However, when weighted by corresponding
ion intensities, GO term relative abundances between samples
differ dramatically (Fig. 3A and Additional File 1, supplemental
Figs. S8–S10). The “None” and “Other” categories occupy the
largest areas both by unweighted and weighted assembly for
all three GO namespaces. With respect to molecular function,
global relative abundances (when averaged over all samples)
for the terms glutamate-cysteine ligase activity (GO: 0004357),
aminopeptidase activity (GO: 0004177), and serine-type



FIG. 3. GO molecular function relative abundance plots for all 18 patient samples. Comparison of microbiota GO molecular function
breakdown by LC-MS/MS using either (A) weighted measures (upper 18 bars; peptide intensity-based; to control for protein length, each GO
term’s constituent protein group/cluster contributes the mean intensity of its constituent peptides, see Additional File 1 for more detail) or (B)
unweighted measures (lower 18 bars; count-based; each GO term’s constituent protein group/cluster contributes one count). Bar segments
represent the proportion of each GO term’s intensity or count relative to the total intensity or count (respectively) for each patient sample.
Loosely, (A) represents GO terms as a function of protein copy number and (B) represents GO terms as a function of protein sequence diversity.
GO, gene ontology; LC-MS/MS, liquid chromatography tandem mass spectrometry.

Fecal Metaproteomics in Human Ulcerative Colitis
endopeptidase activity (GO: 0004252) expand 31-, 18-, and
14-fold respectively going from an unweighted to weighted
assembly. Conversely, global relative abundance for the terms
enoyl-[acyl-carrier-protein] reductase (NADH) activity (GO:
0004318) and mismatched DNA binding (GO: 0030983) con-
tract >50-fold going from unweighted to weighted assembly.
Similar relative abundance expansions and contractions going
from unweighted to weighted assemblies were observed for
the biological process and cellular component namespaces
[see Additional File 1, supplemental Figs. S9 and S10].
The large 31-fold unweighted-to-weighted relative abun-
dance expansion of glutamate-cysteine ligase activity could
be attributed to one protein group with one member
(WP_027345637.1). This enzyme originates from Hamadaea
tsunoensis and catalyzes a key step in the synthesis of
glutathione, a key antioxidant for the microbiota (88). The 18-
fold unweighted-to-weighted relative abundance expansion
observed for the aminopeptidase activity term originated from
19 protein groups with one very dominant protein group
(WP_027209280.1) representing 96.2% of the GO term
Mol Cell Proteomics (2022) 21(3) 100197 7
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namespace’s relative abundance. This predicted M18 family
protease originates from Butyrivibrio hungatei but currently
has no structural or biochemical annotation. Finally, the 14-
fold expansion observed for the serine-type endopeptidase
activity GO term is attributable to 38 protein groups with the
majority share originating from host (85.7%) and minor shares
originating from pig (13.5%) and microbes (0.8%). The serine-
type endopeptidase from pig is an artifact, as it originates
from the sequencing grade porcine trypsin used to
generate peptides for LC-MS/MS analysis. Interestingly, hu-
man chymotrypsin-like elastase 3A (CEL3A_Human) and
chymotrypsin-C (CTRC_human) are more abundant than
porcine trypsin, resulting in 35.8% and 14.9% of the GO term
share compared with porcine trypsin. Other prominent protein
groups (less abundant than porcine trypsin) include
chymotrypsin-like elastase 3B (CEL3B_human), cathepsin G
(CATG_human), and trypsin-1 (TRY1_human) and comprise
11.3%, 5.1%, and 3.0% of the serine-type endopeptidase
activity GO term, respectively.
We performed GO enrichment analysis in the R GOstats

package with GO terms corresponding to differentially
expressed protein groups serving as the enriched GO term set
and GO terms mapping to all nondifferentially expressed
protein groups as the “universe” set (64). GO terms over-
represented in either healthy or UC cohorts for each GO
namespace (p < 0.01) are listed in the supplement [see
Additional File 1, supplemental Figs. S11–S18].
For the healthy patient cohort, nine molecular function GO

terms were enriched including hydrolase activity (hydrolyzing
O-glycosyl compounds) (GO:0016787), cysteine-type pepti-
dase activity (GO:0008234), rRNA binding (GO:0019843), and
oxidoreductase activity (acting on iron–sulfur proteins as do-
nors) (GO:0016730) among the most significantly enriched (p
< 0.001, odds ratio >10). The biological process namespace
contained nine GO terms enriched in healthy patients with
polysaccharide catabolic process (GO:0000272), homeostatic
process (GO:0042592), sulfur amino acid metabolic process
(GO:0000096), nitrogen fixation (GO:0009399), and asexual
sporulation (GO:0030436) among the most significantly
enriched terms (p < 0.001, odds ratio >20). Only three GO
cellular component terms were found to be enriched in healthy
patients including oxidoreductase complex (GO:1990204),
vanadium–iron nitrogenase complex (GO:0016613), and
endospore-forming forespore (GO:0042601) (p < 0.001, odds
ratio >100). Together the three GO namespaces strongly
associate carbohydrate processing and microbial sporulation
activities with healthy patients.
For the ulcerative colitis cohort, 21 terms were enriched in

the molecular function GO namespace including calcium ion
binding (GO:0005509), peptidase activity (acting on L-amino
acid peptides) (GO:0008233), lipid binding (GO:0008289),
catalytic activity (acting on a protein) (GO:0140096), serine-
type endopeptidase activity (GO:0004252), serine hydrolase
activity (GO:0017171), and calcium-dependent phospholipid
8 Mol Cell Proteomics (2022) 21(3) 100197
binding (GO:0005544) (p < 0.001, odds ratio >10) [see
Additional File 5]. The biological process namespace contains
18 entries including proteolysis (GO:0006508), aromatic amino
acid family metabolic processes (GO:0009072), propionate
metabolic process (methylcitrate cycle) (GO:0019679), acetate
metabolic process (GO:0006083), short-chain fatty acid
metabolic process (GO:0046459), antibacterial humoral
response (GO:0019731), antifungal humoral response
(GO:0019732), regulation of cytokine production
(GO:0001817), and response to fungus (GO:0009620) among
the most enriched terms (p < 0.003, odds ratio >10). The
enriched cellular component term list was much shorter with
only five entries, including extracellular space (GO:0005615),
organelle lumen (GO:0043233), endoplasmic reticulum lumen
(GO:0005788), intracellular membrane-bound organelle
(GO:0043231), and extracellular region (GO:0005576) (p <
0.008, odds ratio >10). Together, these enriched GO terms
associate the extracellular space/secretome, antimicrobial
host responses and serine protease activity with UC patients
in our study [see Additional File 1, supplemental Figs. S11 and
S17]. Interestingly, serine proteases, and more broadly serine
hydrolases, are an intensely studied class of enzymes with
exquisitely selective mechanism-based fluorophosphonate
probes described in the literature (89). These probes present
an opportunity to better examine this class of enzyme in the
context of human UC.

ABPP Confirms the Presence of Active Serine-type
Endopeptidases and Identifies Previously Undetected

Serine-type Endopeptidases

We treated three patient fecal samples with a biotinylated
fluorophosphonate-based (FP-based) serine-reactive probe to
label and thus establish whether serine hydrolases were active
in patient fecal samples (Fig. 4A) (89). Biotinylated fluo-
rophosphonate probe (FP probe)-labeled proteins were
enriched with streptavidin-agarose beads, visualized by
Western blot (Fig. 4B) and identified by LC-MS/MS analysis
using a previously described two-step large-to-focused
database search strategy (90). Analysis of the LC-MS/MS data
revealed several hundred noncontaminant protein sequences.
These sequences were clustered into 104 distinct protein
groups (95% similarity cutoff using CD-HIT) and further
reduced to 63 protein groups with highly homologous host
proteins condensed together. Of note, 27 and 35 protein
groups derived from host (Fig. 4C) and nonhost (Fig. 4D) were
identified, respectively.
The majority of host-derived protein groups labeled and

enriched with the FP probe were also identified within the
unenriched LC-MS/MS datasets [see Additional File 4]. Four-
teen of 27 FP probe-enriched host proteins are known serine
hydrolases including the chymotrypsin-like elastase family
(2A, 2B, 3A, 3B), cathepsin G, dipeptidyl peptidase 4,
neutrophil elastase, myeloblastin, trypsin 1, and phospholi-
pase A2 (Fig. 4C). Enrichment of these particular hydrolases



FIG. 4. Targeting serine hydrolases via activity-based protein profiling. A, FP probe structure and reaction schematic for covalent
attachment to nucleophilic active-site serine in hydrolases. B, Western blot of three patient fecal lysates treated and enriched with FP probe
followed by streptavidin bead enrichment visualized with fluorophore-conjugated streptavidin. Host (C) and nonhost (D) proteins from patient
fecal samples enriched by FP probe and detected by LC-MS/MS (blue = protein detected in corresponding patient sample, orange = protein not
detected in corresponding patient sample, green highlights = annotated proteases). FP, fluorophosphonate; LC-MS/MS, liquid chromatography
tandem mass spectrometry.
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over all other host proteins provides confidence that the FP
probe is selective for nucleophilic serine hydrolases in the
tremendously complex fecal protein matrix. Aside from
demonstrating that the hydrolases are active, these results
also suggest that this fraction of proteases remain uninhibited
by antiproteolytic proteins often found in the gut (91–93).
Most nonhost proteins are microbial in origin with the
exception of streptavidin and porcine trypsin introduced dur-
ing sample preparation (Fig. 4D). The most promising FP
probe-susceptible proteins include protease Do entries
(DegP), S9 family peptidases, and a beta-lactamase, as
determined by sequence analysis. Interestingly, of the ten
Mol Cell Proteomics (2022) 21(3) 100197 9
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identified nonhost serine hydrolase protein groups, only one
(SRS019397.59782-T1-C) was detected without FP-probe
demonstrating the utility of chemical-based enrichment stra-
tegies for the identification of novel proteins in a complex
environment. Of the 167,554 MS2 spectra collected for all FP-
enriched LC-MS/MS data sets, only 5352 (3.2%) were
assigned by ComPIL database searches. There is a strong
likelihood that other serine hydrolase-derived peptides are
present in our microbiota samples, but they remain unidenti-
fied due to limitations imposed by the incompleteness prob-
lem associated with metaproteomics database searching (26).
Unfortunately, the techniques for database-independent,
high-confidence identification of these peptides and their
parent protein sequences are currently not well established.

De Novo Peptide Sequencing Enables Glimpses into the
Dark Peptidome

Of the 2,829,920 MS2 fragmentation spectra we collected
overall, 523,155 (18.5%) were matched to a corresponding
peptide with a 1% peptide false positive rate using a target-
decoy search strategy paired with the ComPIL database.
The modest number of peptide spectrum matches we
observed is likely attributable to [1] a loss in filtering sensitivity
that often accompanies database expansion (90, 94) and [2] a
never-complete database that is perennially associated with
metaproteomics. We posit that a nontrivial portion of un-
matched MS2 spectra map to either known or unknown
peptide sequences, and we aim to estimate the size of un-
matched MS2 spectrum space or “the dark peptidome,” using
a complimentary de novo peptide sequencing approach (95).
We subjected MS2 spectra from all patient fecal sample LC-

MS/MS datasets to de novo peptide sequencing using the
Novor algorithm (96). Novor attempts to deduce peptide
sequence from MS2 fragmentation spectra, generating a de
novo peptide spectrum match (PSM) and an accompanying
confidence score (Novor score; higher scores indicated better
predicted matches). Where available, we paired de novo
PSMs with their corresponding database PSMs (ComPIL2-
assigned) and calculated an additional Novor-ComPIL2 simi-
larity score (de novo database similarity score) based on the
Needleman–Wunsch comparison algorithm (raw scores were
scaled to 100, where 100 represents a perfect match) (68). We
used these values to construct overlapping histograms
[Fig. 5A and Additional File 1, supplemental Figs. S19 and
S20] and joint plots [Fig. 5B and Additional File 1,
supplemental Figs. S21 and S22] depicting possible uniden-
tified peptide space in patient fecal microbiota samples.
ComPIL database-assigned PSMs were nonuniformly

distributed along the Novor score axis with a larger proportion
of database PSMs grouped near the high-confidence de novo
sequencing Novor scores (69–99) (Fig. 5A). While perfect de
novo database agreements were rare, a large proportion of
database PSMs possessed strong similarity to de novo PSMs,
a relationship best depicted by a Novor score versus Novor-
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ComPIL2 similarity score joint plot (Fig. 5B). Thus, it is
reasonable to expect that above a conservative cutoff value
(Novor score = 75), significant numbers of MS2 spectra
without database assignments correspond to peptides that
either are not contained in the ComPIL2 database or were
rejected due to our high search-filter stringency. Based on this
assessment, it is estimated that an average of 14,075 MS2
spectra with a Novor score of 75 or greater remain unidentified
per sample (Fig. 5C). This corresponds to approximately 9%
of all MS2 spectra per patient sample, which could increase
global identifications by approximately 50%. Note that 9% is a
lower limit estimate for global unidentified MS2 spectra as this
value is based only on MS2 spectra with Novor scores >75. A
significant fraction of MS2 with Novor scores <75 have been
identified by ComPIL and further suggest that the upper limit
of unidentified MS2 is much larger than 9% (Fig. 5A, left of red
vertical dashed line). BLAST analysis of several de novo
PSMs, which do not have corresponding database PSMs,
returned reasonable, high-similarity score matches to micro-
bial peptides from the NCBI nonredundant database sup-
porting this assertion. Below a Novor score of 75, there are
likely many unidentified peptide-MS2; however, these pep-
tides are also likely intermixed with many non-peptide-MS2.
DISCUSSION

16S rRNA gene amplicon sequencing has been a workhorse
technique for microbiota studies over the last decade due in
large part to the simplicity of material extraction and the broad
availability of resources needed to generate meaningful data.
In contrast, the use of LC-MS/MS-based metaproteomics
profiling has been more sparse for the opposite reasons. While
functional proteomic interrogation of the microbiome by LC-
MS/MS was our main goal, we considered it important to
contrast our proteomics-based taxonomy findings with those
generated by 16S sequencing, a technique more familiar to
the microbiome research community. Gut microbiome tax-
onomy through the lens of 16S gene analysis versus LC-MS/
MS-based proteomics is expectedly different, but in some
unexpected ways (34). At the phylum level, we expected to
see a similar configuration by both techniques with the
exception that proteomics would include a small concession
for host proteins. Unexpectedly, we observed both host and
diet-derived (potato, rice, corn, etc.) proteins in great relative
abundance to microbial proteins. Our analyzed samples were
pre-enriched for microbes by filtration, differential centrifuga-
tion, and several washing steps, yet nearly half of the detected
proteome was mapped back to host or dietary plant proteins.
Another unexpected finding was a discrepancy between the
relative abundance ratios of Bacteroidetes and Firmicutes.
This discrepancy could be artifactual and originate from dif-
ferences in DNA extraction efficiencies between microbes, but
it could also be the result of biologically relevant phenomena.
For example, overrepresentation of Firmicutes by 16S



FIG. 5. Estimating the size of database-elusive peptide (“dark peptidome”) space via de novo peptide sequencing. A, overlapping
histograms of all H2 patient sample MS2 spectra by Novor score (0–100, x-axis); darkest green area represents MS2 correctly assigned by Novor
determined by comparison to ComPIL (database) result; lightest green area represents MS2 without ComPIL peptide assignments; dashed
vertical red line represents Novor score = 75 cutoff and MS2 to the right of this line were used to estimate the size of unassigned peptide space.
B, joint plot of H2 patient sample MS2 spectra depicting correlation between Novor score (0–100) and Novor-ComPIL similarity score (0–100). C,
number of MS2 spectra from all patient samples with Novor scores >75 that likely represent peptides but do not have ComPIL peptide matches
(“dark peptidome”). With duplicates removed, the total number of proteins detected between all 18 samples is 576,625. ComPIL, comprehensive
protein identification library.

Fecal Metaproteomics in Human Ulcerative Colitis
sequencing could stem from an abundance of Firmicutes cells
that are metabolically inactive (spores) relative to Bacter-
oidetes cells (97). This would be in agreement with our finding
that the asexual sporulation GO term is enriched in healthy
patient samples. Finally, we found that at more granular
taxonomic strata [see Additional File 1, supplemental
Figs. S1–S7], the number of identifiable organisms was un-
expectedly greater for proteomics (using unique peptides as a
proxy) than for 16S sequencing. By proteomics, we observed
peptides originating from hundreds of organisms at the
species level versus several dozen by 16S. Note that in our
case, a standard 16S V4 analysis by paired-end short-read
sequencing was performed; however, other higher-resolution
techniques are becoming more accessible (98–100). Expect-
edly, the proportion of uniquely mappable peptides progres-
sively decreased at more granular taxonomic levels such that
at the species level, about 75% of all peptide intensity could
not be mapped to a particular species. Because peptides are
proxies for both taxonomy and function, this observation hints
at a functional redundancy among microbes in the gut, which
Mol Cell Proteomics (2022) 21(3) 100197 11



Fecal Metaproteomics in Human Ulcerative Colitis
could be better examined by differential expression and GO
term analysis of proteomics data.
One of the leading motivations for performing differential

expression analyses on microbiome samples is to identify
specific biomarkers or disease-associated microbial proteins
for further examination. Toward this goal, we identified 176
protein groups significantly enriched (q < 0.1) in either healthy
or UC volunteers, with a major share originating from mi-
crobes. Interestingly, no host proteins were identified as
significantly enriched in the fecal extracts of healthy volun-
teers while several were found enriched in the fecal extracts of
UC patients. Among the host proteins enriched in UC patients,
we identified the calibrating entry, protein S100-A9 (p < 0.004,
q < 0.07), a component of fecal calprotectin and established
IBD biomarker (101, 102). According to STRING and reactome
analyses, many host proteins enriched in UC patients are also
inflammation-aligned lending more credibility to the prospect
that the enriched proteins we have identified are truly UC-
associated. For a comprehensive list of enriched protein
groups, see Additional File 4. While most enriched protein
groups had some annotation, a significant portion had little to
none. This finding presents an exciting opportunity for the
structural and biochemical study of novel sequences. Given
the enormous number of domains of unknown function (DUF)
and unknown function-type proteins catalogued from micro-
biome metagenomic sequencing efforts, we are faced with a
prioritization problem wherein the most disease-relevant se-
quences are obscured by less impactful ones (103). LC-MS/
MS-based proteomics appears in this context to be an
important tool for identifying sequences that are both
expressed and biologically relevant, which will help focus our
future studies. Lastly, it is important to point out that poorly
annotated proteins (i.e. proteins without GO assignments)
factor weakly or not at all into broader functional analyses like
GO enrichment simply due to the nature of enrichment testing
(i.e. hypergeometric). Therefore, novel sequences without
known biological- or disease-relevance are important to
eventually characterize.
Within the detected microbiome proteome, known func-

tional diversity is high with several hundred molecular function
GO terms represented. A flat depiction of molecular function
wherein a 1-sequence-1-count paradigm is applied reveals a
consistent relative abundance configuration between all
samples. We reasoned that count-based GO term depictions
effectively reveal molecular diversity as each GO term’s con-
stituent protein group/cluster equally contributes to a term’s
size. However, this measure alone fails to capture material
abundance. To depict material abundance, we have instead
weighted GO terms by the peptide intensities (a very loose
proxy for protein copy number) of their constituent protein
groups/clusters (see Additional File 1 for details regarding this
calculation procedure). Interestingly, when this paradigm is
applied, a very different picture emerges. The relative abun-
dance of many molecular function GO terms shifts, sometimes
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dramatically. One of the most conspicuous terms to us was
“serine-type endopeptidase activity” that expanded an
average of 14-fold among all patient samples going from
count-based to intensity-based representation. Additionally,
we found this same term enriched in UC patient fecal samples
by hypergeometric testing, warranting a closer inspection of
the protein groups that contribute to this term. We found that
the major contributors were host-derived serine proteases
(85.7%) such as chymotrypsin-C and the chymotrypsin-like
elastase family with minor contributions from porcine trypsin
(13.5%) (an artifact of sample preparation) and microbial
serine proteases (0.8%). The high relative abundance of serine
proteases in fecal samples is not surprising given that they are
important components of host digestive enzyme cocktails
secreted into the gut lumen. We were, however, surprised to
find both host and microbial serpins, which are known active-
site directed suicide inhibitors for serine/cysteine proteases, in
fecal samples. This observation suggests that there might be
important regulatory host–microbe cross talk with respect to
proteolytic activity that occurs in the gut. By comparing the
abundance of proteases or serpins, it would still be difficult to
determine which and what fraction of serine proteases
remained active upon fecal sample collection. To identify
active serine proteases, we treated fecal samples with an
active-site directed serine-hydrolase selective chemical probe
(FP probe) for labeling, enrichment, and target identification
via LC-MS/MS (ABPP) (29, 30, 89). We examined three patient
fecal samples (one healthy, two UC) and qualitatively found
human chymotrypsin-like elastases 3A and 3B and
chymotrypsin-C enriched and therefore active in all samples.
For one UC sample (UC2), we identified additional FP probe-
enriched host proteases including cathepsin G, chymotrypsin-
like elastase 2A and 2B, dipeptidyl peptidase 4, neutrophil
elastase, and trypsin 1, lending support to the idea that
aberrantly increased protease activity is associated with IBD
(92, 104). In addition to host proteases, we identified several
microbial proteases from all three patient samples upon FP
probe enrichment. Surprisingly, we found that nine of ten
microbial proteases were not detected by LC-MS/MS at all
without FP probe enrichment. This finding suggests that there
are likely many microbial proteases expressed in the gut
microbiota and that they are likely below the limit of detection
by most current sampling and LC-MS/MS profiling strategies.
We speculate that this sentiment also holds true for other low-
abundance, high-impact protein functionalities, underscoring
the importance of pre-enrichment strategies for future prote-
omics studies.
In addition to sampling limits, many microbial peptides that

are sampled by LC-MS/MS are liable to go undetected due in
large part to database-completeness limitations. We attemp-
ted to estimate the number of peptide-likely fragmentation
spectra per LC-MS/MS experiment using a de novo
sequencing tool (Novor) in order to define a rough boundary
around the amount of unassigned peptide space captured by
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the mass spectrometer but unidentified by our database
workflow. Homology searching of high-confidence peptide-
like fragmentation spectra revealed high numbers of exact and
near-matches to peptide sequences in the NCBI nonredun-
dant database. Though de novo peptide sequencing coupled
to homology searching can help capture database-elusive
peptides in more defined contexts (95), we were reluctant to
rely more heavily on this strategy without a stringent meth-
odology for distinguishing between sequencing errors and
truly homologous peptides, especially in a context as taxo-
nomically diverse as the gut microbiota. An additional layer of
difficulty rests in determining how to treat de novo only pep-
tides that are constituents of completely unknown parent
protein sequences. Deep genome sequencing and the use of
custom MAGs are an obvious path forward especially as long-
read technologies become more accurate and accessible (15,
22–25, 105–108). Notably, long-read technologies are ex-
pected to yield more contiguous genome assemblies, thus
accelerating the functional annotation process for novel se-
quences by enhancing our ability to contextualize these novel
sequences within their respective genomes. For peptides/
proteins that elude this approach, however (low abundance
microbes, heavily posttranslationally modified peptides/pro-
teins, nonribosomal peptides/proteins, etc.), perhaps
genomics-agnostic, middle- and top-down proteomics
sequencing could be applied (109, 110). We anticipate that the
expanded use of ABPP techniques in the microbiota will
enrich for many protein sequences not contained in large
databases such as ComPIL, and robust high-throughput
methods for identifying these whole novel protein sequences
will be needed.
In summary, we identified 176 discrete host and microbial

protein groups differentially enriched between healthy and UC
patients. Our analysis revealed several protein functions
associated with ulcerative colitis, with the function “serine-
type endopeptidase activity” featuring prominently. We also
identified host and microbial serine protease inhibitors in
concert with serine proteases. Using an activity-based
chemical tagging strategy, we were able to enrich for serine
hydrolases/proteases and showed that these enzymes are still
active in the gut despite the presence of active-site directed
protease inhibitors. This strategy also revealed the presence
of previously undetected serine proteases demonstrating the
utility of activity-based tagging for the amplification of low-
abundance proteins. Finally, we paired our database meta-
proteomics strategy with de novo peptide sequencing to es-
timate the size of high-confidence peptide space in our
samples that remains unidentified despite the use of a large
comprehensive database. Our data suggests that at the lower
bound, at least an average of 9% of all our collected frag-
mentation spectra per run likely correspond to peptides, but
remain unmatched.
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