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Abstract: This paper discusses the exploitation of a cooperative navigation strategy for improved
in-flight estimation of inertial sensors biases on board unmanned aerial vehicles. The proposed multi-
vehicle technique is conceived for a “chief” Unmanned Aerial Vehicle (UAV) and relies on one or more
deputy aircrafts equipped with Global Navigation Satellite System (GNSS) antennas for differential
positioning which also act as features for visual tracking. Combining carrier-phase differential GNSS
and visual estimates, it is possible to retrieve accurate inertial-independent attitude information,
thus potentially enabling improved bias estimation. Camera and carrier-phase differential GNSS
measurements are integrated within a 15 states extended Kalman filter. Exploiting an ad hoc
developed numerical environment, the paper analyzes the performance of the cooperative approach
for inertial biases estimation as a function of number of deputies, formation geometry and distances,
and absolute and relative dynamics. It is shown that exploiting two deputies it is possible to improve
biases estimation, while a single deputy can be effective if changes of relative geometry and dynamics
are also considered. Experimental proofs of concept based on two multi-rotors flying in formation are
presented and discussed. The proposed framework is applicable beyond the domain of small UAVs.

Keywords: cooperative navigation; extended Kalman filter; dynamic inertial bias estimation;
relative motion geometry; visual tracking; carrier-phase differential GNSS

1. Introduction

Nowadays, Unmanned Aerial Vehicles (UAVs) represent a popular solution for executing
tasks in several markets and applications [1], such as delivery of goods [2], surveillance and
monitoring [3], inspection and mapping [4], precision agriculture [5], and cinematography [6].
The usage of flying platforms allows reducing time and cost of the mission, while guaranteeing
high flexibility. This improves mission performance and/or enables missions which were not
feasible at all. However, capability of UAVs to carry out their mission while autonomously
or remotely piloted, strictly depends on their navigation performance which may require to
be very accurate (at least in post processing stage) in several applications, such as mapping
and photogrammetry.

UAV navigation is usually tackled by fusing inertial and GNSS (global navigation
satellite system) measurements, which for their complementary properties are usually com-
bined in Kalman filters (KF). Inertial measurements consist of three axes gyroscopes’ and
accelerometers’ observables, retrieved with an inertial measurement unit (IMU). These mea-
surements are affected by different error sources including a time-varying in-run bias for
each channel, which if not correctly estimated, can spoil the performance in positioning,
velocity, and attitude estimate. Residual uncompensated inertial biases may also play a
key role in the positioning error growth rate in absence of reliable GNSS coverage.

The problem of in-run bias estimation has been widely tackled in the open literature.
It requires combining gyros and accelerometers measurements with additional information
which could be either measurements provided by other sensor sources, or information on

Sensors 2021, 21, 3438. https://doi.org/10.3390/s21103438 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-3547-6522
https://www.mdpi.com/article/10.3390/s21103438?type=check_update&version=1
https://doi.org/10.3390/s21103438
https://doi.org/10.3390/s21103438
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21103438
https://www.mdpi.com/journal/sensors


Sensors 2021, 21, 3438 2 of 27

the actual IMU/platform configuration. Several strategies have been developed in the last
few years which include static and dynamic inertial biases calibration.

Static calibration is the most used technique, since the assumption of static configu-
ration is effective in improving the bias estimation process. It requires the platform to be
steady for a time interval that can last several minutes (which can pose challenges in some
application scenarios). The zero velocity upload (ZUPT) [7,8] is the most used static tech-
nique. It uses, as an additional measurement within the navigation filter, the assumption
that the linear velocity is zero. This assumption allows correctly estimating the vertical
accelerometer bias and the x and y gyro biases [9,10]. Reference [11] studied the ZUPT
problem, demonstrating that in a 15 variables state (3 positions, 3 velocities, 3 attitude
angles, 3 accelerometers’, and 3 gyroscopes’ biases), 6 out of 15 variables are unobservable.
It also defined subspaces of individually observable errors, coupling the variables which
are dependent from each other.

To have a full estimate of all the accelerometer and gyro biases, a common solution
is to place the IMU sensor in a set of static positions (attitudes) to solve the full in-run
bias estimation problem [12–14]. This requires a longer estimation time for in-run bias
estimation than the ZUPT solution. Piecewise static position bias calibration concept has
been recently extended by [15], which creates a solution that exploits IMU rotation along
sensitive axes. Indeed, IMU calibration may benefit from platform maneuvers which
improve bias observability.

Due to this property, several studies deal with dynamic bias calibration, exploiting
several external sensors as reference for bias estimation. In addition, due to bias instabil-
ity, depending on mission duration, in-flight bias estimation may be needed also in the
case of accurate initialization. Kalman filters or non linear observers, which guarantee
global convergence [16] have been used for fusing IMU information with other sources of
measurements. Several authors integrate IMU measurements either with GNSS [10,17] or
odometry information [9,16] to improve biases estimation, and provide biases observability
analyses based on platform motion. Partial IMU bias observers (gyroscope only) have been
developed, accounting only for gyro measurements [18], or for full IMU measurements
sets [19–21], where GNSS information has also been accounted as positioning reference.
Reference [22] estimates position, velocity, attitude, and gyro biases by fusing IMU mea-
surements with altimeter, heading estimate, and line-of-sight (LOS) estimates given by a
camera. A full filter state with 15 variables is used in [23] for retrieving the full pose of
the platform with a camera, demonstrating that the 15 variables set is fully observable
when both position and attitude estimates are available. Therefore, in-run bias estimation
and IMU calibration can be performed, integrating IMU outputs with GNSS measure-
ments which provides a position reference, under dynamic and static configurations if
IMU-independent attitude information is available.

The authors proposed in [24,25] an attitude estimation strategy exploiting cooperative
navigation [26], which uses unit vectors estimated in geographic and body frame. One or
two vehicles, named deputies, have been used for improving the attitude accuracy of a
“chief” vehicle and LOS vector in the local frame and body frame have been retrieved
with carrier-phase differential GNSS (CDGNSS) and visual-based information, respectively.
This information has been used to retrieve an estimate of the chief attitude which is inde-
pendent from inertial (IMU) and magnetic measurements. A similar approach, consisting of
using LOS measurements only, has been used in [27], demonstrating that at least three LOS
directions are needed to provide the full observability of the 15 variables state.

Cooperative or networked navigation is intended as the operation of using networked
relative measurements (e.g., range-based, angle-based) to the aim of the navigation perfor-
mance increase [28]. This approach has been widely used in the open literature with promis-
ing outcomes especially when navigating under non-nominal GNSS coverage [29,30]. As an
example, a networked system of the GNSS ground receiver has been exploited in [31,32].
In the cooperative navigation framework, magnetometer bias calibration has been carried
out in [33], but no comprehensive studies concerning the potential and applicability of the
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concept for in-flight inertial biases estimation have been proposed in the open literature,
to the best of the authors’ knowledge.

This paper analyzes the potential of the cooperative strategies introduced in [24,25]
towards in-flight estimation of inertial biases, using extensive numerical analyses and
experimental results. Compared with recent literature, the main innovative points are:

• Using CDGNSS and LOS measurements makes the bias estimation technique inde-
pendent from the accurate knowledge of the cooperative targets’ absolute position,
unlike [27]. This reduces the set-up time required to precisely place the targets and es-
timate their absolute position, and makes the proposed solution independent from the
ground infrastructure and more adaptive for being applied to different environments.
In addition, retrieving positioning from GNSS measurements allows using cooperative
vehicles only for attitude estimate, which can reduce the number of minimum required
targets, from 3 [27] to 2.

• Differently from other solutions in literature [23,27], the proposed approach uses
moving targets whose trajectories can be planned and executed so that they always lie
in the chief camera field of view (FOV) [34], thus avoiding the need of a large set of
targets.

• The proposed method offers an innovative instrument to perform calibration during
the flight which can be required in case of relatively long flights, and/or when more
accurate observables are required during a specific segment of the flight.

• Despite full observability guaranteed by the usage of two deputy vehicles [25], the pa-
per investigates bias estimation performance with a single deputy combining platform
motion [10,17] with external cooperative aiding [23,24,27].

The paper is organized as follows. Section 2 introduces the cooperative navigation
strategy. Section 3 introduces the nomenclature used in the paper. Navigation state
estimation and its equations are detailed in Section 4. A numerical analysis of bias estima-
tion performance is presented in Section 5, while Section 6 presents experimental results
from flight experiment with multi-rotors. Finally, Section 7 draws the conclusion of the
present work.

2. Cooperative Navigation Strategy for Inertial Biases Estimation

This paper uses the cooperative navigation strategy firstly introduced in [35] and
then extended in [24,25]. Partial (in case of a single deputy) or full (in case of two or
more deputies) attitude information is provided by estimating reference directions in two
reference frames, i.e., the local frame defined as north east down (NED) frame and the body
reference frame (BRF) for the specific case of UAV navigation. The LOS direction in BRF is
estimated with a camera and a visual-tracking algorithm, able to track the deputy UAV(s)
during the flight. Relative azimuth and elevation are converted from camera reference
frame (CRF) to BRF with the known relative orientation of these two frames, which can
be obtained via off-line extrinsic calibration in strapdown camera installation. On the
other hand, a very accurate estimate of the baseline between the two vehicles in NED
is achievable under nominal GNSS coverage, using CDGNSS techniques. For the sake
of clarity, a conceptual image of the used framework with a single deputy is reported in
Figure 1, and a visual interpretation of the quantities measured by CDGNSS and visual
processing are reported in blue (CDGNSS baseline) and in orange (LOS unit vector retrieved
from camera), respectively. The cooperative measurement reported in this manuscript is
referred to as CDGNSS/vision measurement. Detailed information about the quantities
reported in the figure and their usage within the chief navigation architecture are reported in
Sections 3 and 4.
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Figure 1. Cooperative navigation concept. Blue quantities are measured by CDGNSS techniques,
orange quantities are estimated with cameras.

3. Nomenclature

Before analyzing the details of the algorithm for state estimation and its equations,
this section is in charge of defining the notation that will be used along in the manuscript.
Bold, a, and italic, a, variables indicate respectively vector and scalar quantities. The pro-
jection of a vector a in the reference frame i, is indicated with ai. This paper uses NED,
chief’s BRF, and CRF which are respectively indicated with the superscripts n, b, and c.
Chief BRF is centered in its center of mass (CoM), whereas CRF is centered at camera
location. See Figure 1, where camera and body frame axes are reported for the chief vehicle,
assuming a(l) is the l-th axis of the frame a.

The three components of the vector ai in the frame i are expressed as[
ai(1) ai(2) ai(3)

]
. To simplify the notation when the NED frame is accounted

for, the axis indices reported within the brackets are usually replaced with the letters
n, e, and d to indicate the north east and down direction, respectively. Therefore an =[

an(n) an(e) an(d)
]
. A matrix A, is reported in capital style. Cj

i indicates the rotation

matrix which allows transforming a vector from the frame i to the frame j, such as aj = Cj
i a

i.
The position can be represented with two conventions: p indicates the position ex-

pressed as geographic coordinates (latitude l, longitude λ, and altitude h) and ra→b indicates
the vector going from location a to location b, which unit vector is indicated with ua→b.
Referring to Figure 1, the center of mass location of the chief and the j-th deputy have been
indicated with s and dj, respectively. The vector measuring their distance which is given by
the CDGNSS processing is indicated with rs→dj

. Chief’s camera location is indicated with c,
and the vector connecting camera location with the deputy CoM is rc→dj

, whose associated
unit vector uc→dj

is measured by the camera. rs→c is the distance between the chief’s center
of mass and origin of the chief’s camera frame.

The derivative of a scalar a with respect to a vector vi is a 1 × 3 matrix indicated
with ∂a/∂vi, whose l-th component is the derivative of the scalar a, with respect to the l-th
component of the vector vi. Conversely, the 3 × 3 matrix indicating the derivative of a
vector qi with respect to a vector vi is indicated with ∂qi/∂vi, and the element at the l-th
raw and j-th column is ∂qi(l)/∂vi(j).

4. Cooperative Navigation Filter

The navigation architecture used for estimating the state of the chief vehicle is repre-
sented in Figure 2. It is based on the extended Kalman filter (EKF) described in [36],
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and assumes the vehicle state is composed by position p in geographic coordinates,
velocity expressed in NED frame vn, attitude from NED to BRF parametrized by heading
ψ, pitch θ and roll ϕ angles (defined with a 3-2-1 rotation sequence of Euler angles), and the
3 × 1 vectors including the accelerometer and gyroscope biases, expressed in BRF, i.e.,
bb

a and bb
g, respectively. The filter propagates and corrects the state’s error δx, which is

given by:

δx =


δp
δvn

ρ

δbb
a

δbb
g

;
δp =

[
δl δλ δh

]T

δvn =
[

δvn(n) δvn(e) δvn(d)
]T

ρ =
[

ρ(n) ρ(e) ρ(d)
]T

, (1)

where ρ represents the attitude error vector expressed in the NED reference frame, as re-
ported in [36]. Its components are indicated with ρ.
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Figure 2. Cooperative navigation filter. Non cooperative measurements are depicted in gray. For each
deputy CDGNSS and vision, measurements are depicted respectively in blue and orange.

The filter propagates the state and its error with the widely known inertial navigation
equations, which uses IMU measurements to predict the UAV state and its error at the
current step k, starting from their best estimate at the previous step k-1. The WGS84 model
has been used for predicting the local gravity vector [7], to have a more accurate estimate of
the down component of the accelerometer bias, especially when experimental data are used.
Inertial propagation equations are not reported here for the sake of brevity. The interested
reader is referred to [36] for further details.

Correction steps use both cooperative and uncooperative measurements (reported in
gray in Figure 2). Non cooperative measurements consist of the magnetometer and GNSS
outputs, which are complemented with cooperative measurements coming from several
(J) deputies.

For each deputy, the cooperative measurement to be used for attitude estimate is
given by combining CDGNSS and visual output which are reported in blue and orange
in Figure 2, respectively.
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Correction equation expresses the state error as a function of the measurement residual
δy, through the measurement matrix H. It can be written as:

δy = Hδx + w. (2)

where w is the measurement noise associated with the residual, whose covariance matrix
is R.

Equation (2) can be rewritten for the specific filter reported in Figure 2, as:
δyGNSS
δyMAG

δy1
...

δyJ

 =


HGNSS,p 0m×3 0m×3 0m×3 0m×3

01×3 01×3 HMAG,ρ 01×3 01×3
H1
...

HJ




δp
δvn

ρ

δbb
a

δbb
g



R =


RGNSS 0m×1 0m×2 · · · 0m×2
01×m RMAG 01×2 · · · 01×2
02×m 02×1 R1 · · · 02×2

...
...

...
. . .

...
02×m 02×1 02×2 · · · RJ



(3)

where Ha,b is the matrix that connects the measurement a with the part b of the state
which could be position p, velocity v, and attitude ρ. Ra is the covariance matrix associ-
ated to the measurement a. 0a×b indicates a matrix composed by all zero elements with
a rows and b columns. δyGNSS and δyMAG are the GNSS and magnetometer residuals.
δyj is the residual associated to the cooperative measurement related to the j-th deputy,
with j = 1, . . . , J, and Hj and Rj are their associated measurement and covariance matrices.
Detailed derivation of δyj, Hj, and Rj are reported in Section 4.1.

GNSS pseudorange measurements are tightly integrated within the Kalman filter and the
GNSS residual number (m) depends on the number of available satellites. Pseudorange mea-
surements only depend on the chief position. Therefore, GNSS residual only combines with
position error.

Magnetometer residual is a scalar residual on the heading angle, which is coupled
only with the attitude part of the state. For the sake of brevity, details about magnetometer
and GNSS residual and covariance matrices are omitted from this manuscript. For further
details, the interested reader is referred to [29].

4.1. Cooperative Measurement Equation

From Equation (2), the measurement equation for the j-th deputy can be written as
δyj = Hjδx + wj. Where wj is a Gaussian noise with covariance Rj. This section is in
charge of deriving the terms composing the measurement equation for the cooperative
contribution of the j-th deputy. Detailed derivation of δyj, Hj, and Rj is presented hereafter.

The measured distance between the camera and deputy’s center of mass measured in
NED, i.e., rn

c→dj
, can be converted to the LOS direction in CRF thanks to the following formula:

uc
c→dj

= Cc
bCb

n

rn
c→dj∣∣∣rn
c→dj

∣∣∣ = Cc
bCb

nun
c→dj

, (4)

where|a| is the operator yielding the norm of the vector in the brackets. Observing from
Figure 1, that rn

c→dj
= rn

s→dj
− rn

s→c = rn
s→dj
− Cn

b rb
s→c, and assuming rs→c negligible in with

respect to rs→dj
when computing the norm, Equation (4) can be rewritten as:

uc
c→dj

≈ Cc
bCb

n

rn
s→dj
− Cn

b rb
s→c∣∣∣rn

s→dj

∣∣∣ = Cc
bCb

nun
s→dj
− Cc

b
rb

s→c∣∣∣rn
s→dj

∣∣∣ . (5)
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Indicating with [a×] the skew symmetric matrix associated with vector a, and with â
the predicted quantity and δa the error associated to that quantity so that the true value is
a = δa + â, Equation (5) becomes:

ûc
c→dj

+ δuc
c→dj

= Cc
bĈb

n(I− [ρ×])
(

ûn
s→dj

+ δun
s→dj

)
− Cc

b
rb

s→c∣∣∣r̂n
s→dj

∣∣∣ . (6)

The BRF to CRF rotation matrix is assumed to be perfectly known, therefore the
estimated parameters of camera calibration Cc

b and rb
s→c are assumed to be known without

errors. Rearranging Equation (6), so to find the CDGNSS/vision residual, i.e., ∆uc, yields:

∆uc = ûc
c→dj
− Cc

bĈb
nûn

s→dj
+ Cc

b
rb

s→c∣∣∣r̂n
s→dj

∣∣∣ = Cc
bĈb

n

[
ûn

s→dj
×
]
ρ+ Cc

bĈb
nδun

s→dj
− δuc

c→dj
. (7)

The CDGNSS/vision residual is a 3 × 1 vector, which includes two unit vectors
estimated in CRF and NED. The so obtained quantity has one component dependent
on the other two. To avoid dealing with linear dependent measurements, which makes
the associated covariance matrix rank-deficient, i.e., not invertible, a linear independent
measurement vector can be obtained converting the unit vector in Equation (7) in angular
residuals, i.e., Azimuth Az and elevation El residuals, so that:

∆ξ j = ξ
(

ûc
c→dj

)∣∣∣
cam
− ξ

Cc
bĈb

nûn
s→dj
− Cc

b
rb

s→c∣∣∣∣r̂n
s→dj

∣∣∣∣
∣∣∣∣∣∣

CDGNSS

= ∂ξ
∂uc

c→dj
Cc

bĈb
n

[
ûn

s→dj
×
]
ρ+ ∂ξ

∂uc
c→dj

Cc
bĈb

nδun
s→dj
− ∂ξ

∂uc
c→dj

δuc
c→dj

. (8)

where ξ could be either Az or El angle estimated starting from a unit vector. As an
example, considering a generic unit vector expressed in CRF uc, Az and El are:

Az(uc) = tan−1
(

uc(2)
uc(1)

)
; El(uc) = − sin−1(uc(3)) , (9)

where ∂ξ/∂uc represents the derivative of the angle ξ with respect to uc.
To highlight the source of measurement residual, the subscript cam and CDGNSS

have been reported in Equation (8). ξ
(

ûc
c→dj

)
can be obtained directly by converting

the pixel information of the deputy in the chief’s camera frame, using pinhole camera
model. Whereas, ξ

(
Cc

bĈb
nûn

s→dj
− Cc

brb
s→c/

∣∣∣r̂n
s→dj

∣∣∣) is obtained starting from the CDGNSS

measured baseline, i.e.,
(

r̂n
s→dj

)
, its associated unit vector

(
ûn

s→dj

)
and the knowledge of

the camera position with respect to BRF
(

rb
s→c

)
.

The errors δun
s→dj

and δuc
c→dj

are associated respectively to CDGNSS and visual
estimate. Converting δun

s→dj
as a function of δrn

s→dj
and expressing δuc

c→dj
in terms of

camera angular error (δcam), the right side of Equation (8) becomes:

∆ξ j =
∂ξ

∂uc
c→dj

Cc
bĈb

n

[
ûn

s→dj
×
]
ρ+

∂ξ

∂uc
c→dj

Cc
bĈb

n

∂un
s→dj

∂rn
s→dj

δrn
s→dj
− ∂ξ

∂uc
c→dj

∂uc
c→dj

∂ξ
δcam. (10)

δrn
s→dj

and δcam are respectively CDGNSS and camera error. The first represents
the vector including the error along each component of the baseline estimated with
the CDGNSS technique. Its standard deviation (STD) components in NED frame are
σCDGNSS(n), σCDGNSS(e), and σCDGNSS(d). On the other hand, δcam is the error in camera
identification of the target which coincides with the instantaneous field of view (IFOV)
and has as STD σcam. Equation (10) is the measurement equation for the CDGNSS/vision
observable. δyj, Hj, and Rj can be extracted from this equation, considering the left side
of the equation for the measurement residual, and the state dependent and state inde-
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pendent part of the right side of the equation for measurement and covariance matrix,
respectively. Therefore:

δyj =

[
Azj
Elj

]
=


Az
(

ûc
c→dj

)∣∣∣
cam
− Az

Cc
bĈb

nûn
s→dj
− Cc

b
rb

s→c∣∣∣∣r̂n
s→dj

∣∣∣∣
∣∣∣∣∣∣

CDGNSS

El
(

ûc
c→dj

)∣∣∣
cam
− El

Cc
bĈb

nûn
s→dj
− Cc

b
rb

s→c∣∣∣∣r̂n
s→dj

∣∣∣∣
∣∣∣∣∣∣

CDGNSS


Hj =

[
02×3 02×3 Hj,ρ 02×3 02×3

]
; Hj,ρ =

 ∂Az
∂uc

c→dj
∂El

∂uc
c→dj

Cc
bĈb

n

[
ûn

s→dj
×
]

Rj =


∂Az

∂uc
c→dj

Cc
bĈb

n

∂un
s→dj

∂rn
s→dj

∂El
∂uc

c→dj
Cc

bĈb
n

∂un
s→dj

∂rn
s→dj


 σCDGNSS(n) 0 0

0 σCDGNSS(e) 0
0 0 σCDGNSS(d)

2


∂Az
∂uc

c→dj
Cc

bĈb
n

∂un
s→dj

∂rn
s→dj

∂El
∂uc

c→dj
Cc

bĈb
n

∂un
s→dj

∂rn
s→dj


T

+

[
σcam 0

0 σcam

]2

.

(11)

5. Numerical Analysis

This section is in charge of assessing the potential of the proposed approach for bias
estimation via simulation-based analyses. The necessity of a numerical approach derives
from the problem dependency on the system dynamics, which makes bias estimation
performance dependent not only on cooperative navigation measurements but also on the
time evolution of position, velocity, and attitude, in a fully coupled fashion. Thus, a purely
analytical approach such as the one proposed in [29] for positioning accuracy prediction
cannot be applied. A custom camera/IMU/GNSS/magnetometer simulator has been
developed for this purpose in MATLAB®.

Results are presented for both the cases of one and two deputies. The two-deputies
case is analyzed first (Section 5.1) since in this case, full knowledge of the attitude is
available and satisfying results in bias estimation are expected. In the single deputy case
(Section 5.2), the attitude information is not fully available which makes some of the states
unobservable, but bias estimation by cooperation can be enhanced by providing relative
motion among the platforms and/or accelerated dynamics for the chief.

The following sub-sections assume the chief UAV moves along a quasi-straight-line
trajectory, which is depicted in Figure 3. Unless differently specified, the UAV is assumed
to proceed with a constant heading, with the nose pointed eastwards. To further remark
the benefit of using cooperative measurements in estimating attitude, the simulated magne-
tometer estimate is assumed to be biased (as it actually happens in typical flight scenarios).
IMU parameters used for simulating the gyroscopes and accelerometers outputs are reported
in Table 1. GNSS integration uses standalone measurements, as remarked in Section 4.
Results obtained by the cooperative filter are compared with those obtained when cooperative
measurements are not used, i.e., the filter reported in Section 4 is used without cooperative
measurements. The following sections analyze the IMU biases estimation performance.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 26 
 

 

cooperative measurements are not used, i.e., the filter reported in Section 4 is used without 
cooperative measurements. The following sections analyze the IMU biases estimation per-
formance. 

5.1. Two Deputies 
When two deputies are used, the full attitude information can be estimated if chief 

and the two deputies are not aligned with each other. Figure 4 shows the formation ge-
ometry, which is defined by the elevation of each deputy with respect to the chief, i.e., μj, 
its range (rj), the separation between the two deputies on the local horizontal plane (Δχ), 
and the angle between the projection of chief’s forward direction on the local horizontal 
plane, i.e., (1)b⊥ , and the center of deputy formation, i.e., χ, which is positive if defined 
clockwise along the down direction.  

Table 1. IMU parameters [37]. 

Velocity RW 1 
[m/s/√h] 

Acc. Bias Stability 
[mg] 

Acc. Bias Repeatability 
[mg] 

Angular RW 
[°/√h] 

Gyro Bias Stability 
[°/h] 

Gyro Bias Repeatability 
[°/h] 

0.04 0.03 5 0.3 10 260 
1 RW is the random walk. 

 

Figure 3. Trajectory of the chief vehicle in NED, top view. The heading angle is assumed to be 
equal to 90°, i.e., the vehicle is pointing eastward. The first and the second axes of the BRF are re-
ported in the figure in green and red, respectively. UAV altitude is 20 m. 

 
Figure 4. Formation geometry of a triplet of vehicles composed by one chief and two deputies. The 
local horizontal plane is depicted in blue. Projections on that plane are indicated with blue lines. 

Figure 3. Trajectory of the chief vehicle in NED, top view. The heading angle is assumed to be equal
to 90◦, i.e., the vehicle is pointing eastward. The first and the second axes of the BRF are reported in
the figure in green and red, respectively. UAV altitude is 20 m.
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Table 1. IMU parameters [37].

Velocity RW 1

[m/s/
√

h]
Acc. Bias Stability

[mg]

Acc. Bias
Repeatability

[mg]

Angular RW
[◦/
√

h]

Gyro Bias
Stability

[◦/h]

Gyro Bias
Repeatability

[◦/h]

0.04 0.03 5 0.3 10 260
1 RW is the random walk.

5.1. Two Deputies

When two deputies are used, the full attitude information can be estimated if chief and
the two deputies are not aligned with each other. Figure 4 shows the formation geometry,
which is defined by the elevation of each deputy with respect to the chief, i.e., µj, its range
(rj), the separation between the two deputies on the local horizontal plane (∆χ), and the
angle between the projection of chief’s forward direction on the local horizontal plane,
i.e., b⊥(1), and the center of deputy formation, i.e., χ, which is positive if defined clockwise
along the down direction.
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Figure 4. Formation geometry of a triplet of vehicles composed by one chief and two deputies.
The local horizontal plane is depicted in blue. Projections on that plane are indicated with blue lines.

Depending on the geometry, cooperative navigation can be less or more accurate
in terms of estimation of different attitude angles, which influences the process of bias
estimation, especially concerning the accelerometers. Reference [35] demonstrates that
using a formation of two UAVs centered along the UAV forward direction, i.e., roll axis
(χ = 0◦), cooperative aiding is more effective on pitch estimate if the horizontal angle
between the two deputies (∆χ) is smaller. On the contrary, when ∆χ increases, the roll
angle is characterized by a better accuracy. By posing χ = 90◦, the behavior inverts, giving a
more accurate roll estimate with small ∆χ. In this section, the influence of the triplet’s
formation geometry is analyzed by posing r1 = r2 = r, µ1 = µ2 = µ, and χ = 0, and varying µ
and ∆χ.

Figures 5 and 6 report the results in the case the trajectory depicted in Figure 3 has
been assumed for the chief vehicle, while the relative deputies’ geometry is given by
µ = 0◦, ∆χ = 70◦, r = 100 m. Figure 5a,b shows the accelerometer and gyroscope biases
estimated by the cooperative filter (in black) compared with those estimated without
cooperation (blue) and with the simulated biases, i.e., reference solution, in red. The 3σ
bound derived by estimating the error STD (i.e., σ) with the filter predicted covariance,
is also reported in gray. Root mean square (RMS) and maximum errors are reported for
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cooperation-aided and non-cooperative filter, removing the first 60 s needed for filter con-
vergence. As concerns gyroscopes, cooperative navigation measurements allow the filter to
converge to the true bias values faster, due to more accurate heading estimate provided by
CDGNSS/vision measurements compared with magnetometer. As far as accelerometers’
biases are concerned, the estimate is dramatically improved using cooperation. In fact,
cooperative measurements allow convergence to the reference value, which otherwise
would not be achieved.
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deputies, r = 100 m, μ = 0°, Δχ = 70°. Reference value is reported in red. Results obtained with cooperation and without 
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starting from t = 60 s. 

Figure 5. (a) Accelerometer and (b) gyroscope biases predicted by the filter. Chief trajectory is reported in Figure 3.
Two deputies, r = 100 m, µ = 0◦, ∆χ = 70◦. Reference value is reported in red. Results obtained with cooperation and without
cooperation have been reported in black and blue, respectively. RMS and maximum error value have been evaluated
starting from t = 60 s.

For the sake of completeness, Figure 6 shows the attitude errors, remarking the
effectiveness of cooperation especially in heading estimate, which is debiased due to the
IMU/magnetometer independent nature of the CDGNSS/vision measurement. RMS and
max errors are reported both for cooperative filter and for the filter which does not use
cooperative measurements.
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Figures 7 and 8 show respectively IMU biases and angular errors resulting when
the angular separation between deputies (i.e., ∆χ) is reduced from 70◦ to 20◦. The other
parameters have been assumed equal to the previous case. With respect to the previous
analyzed case (Figures 5 and 6), it could be seen that pitch error slightly reduces with an
increase of roll error as predicted by [35]. Whereas bias acceleration RMS decreases on the
first axis and increases along the second axis of the BRF. This behavior can be justified by
referring to the derivations of [11]. Reference [11] explicitly derives the connection between
the north angle error and east accelerometer bias, and between the east angle error and
the north accelerometer biases, grouping the two couples in two of the six unobservable
subsets in ZUPT calibration. Without loss of generality, for a quasi-leveled flight with
small pitch and roll angle (which holds true in quadrotor flight avoiding aggressive flight
conditions), one can extend the dependencies found in [11] in BRF. Using the rotation
matrix, one can find two couples (i.e., subsets) of linear dependent errors: pitch error and
accelerometer bias along the first axis of the BRF, i.e., bb

a(1), and roll error and accelerometer
bias along the second axis of the BRF, i.e., bb

a(2). Therefore, any attempt to improve pitch
accuracy (e.g., reducing ∆χ from 70◦ to 20◦) will reduce the error of one of the elements of
the first subset. Indeed, comparison between Figures 5 and 7 shows a reduction of bb

a(1),
and an increase of bb

a(2) RMS values. This is further highlighted by the increased value
of the covariance of bb

a(2), with respect to the previous case. Conversely, gyroscope bias
slightly varies with respect to the Figure 5 case. Indeed, horizontal gyroscopes’ biases
mostly depend on position covariance, while the bias of the gyroscope along the third axis
is proportional to the heading error [11].
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Figure 7. (a) Accelerometer and (b) gyroscope biases predicted by the filter. Chief trajectory is reported in Figure 3.
Two deputies, r = 100 m, µ = 0◦, ∆χ = 20◦. Reference value is reported in red. Results obtained with cooperation and without
cooperation have been reported in black and blue, respectively. RMS and maximum error value have been evaluated
starting from t = 60 s.
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Figure 8. Errors on angle estimated by the cooperative filter in blue and by the same filter without using
cooperation. Chief trajectory is in reported in Figure 3. Two deputies, r = 100 m, µ = 0◦, ∆χ = 20◦.

When µ increases up to 90◦, cooperative measurements have more impact on the
horizontal plane angles (pitch and roll) than on heading. Results obtained using ∆χ = 70◦



Sensors 2021, 21, 3438 13 of 27

and increasing µ up to 60◦, are reported in Figures 9 and 10 for IMU biases and angular
errors, respectively.
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Figure 9. (a) Accelerometer and (b) gyroscope biases predicted by the filter. Chief trajectory is reported in Figure 3.
Two deputies, r = 100 m, µ = 60◦, ∆χ = 70◦. Reference value is reported in red. Results obtained with cooperation and
without cooperation have been reported in black and blue, respectively. RMS and maximum error value have been evaluated
starting from t = 60 s.
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Comparing these results with those reported in Figures 5 and 6 (i.e., with the same
value of ∆χ, but with a null µ), one can notice an increase of heading RMS and covariance,
with a reduction on the horizontal angles covariances and RMS. Conversely, an improve-
ment in horizontal accelerometers’ biases estimation is provided. Additionally, down gy-
roscope bias estimation error, i.e., bb

g(3), slightly increases, due to the increase of heading
error and its covariance.

To highlight the benefit of having a large baseline, Table 2 compares the results
obtained with the same formation geometries described before, but with a distance between
deputies and chief, i.e., r, reduced from 100 to 40 m.

Table 2. RMS and maximum error by varying range of the formation. Only cooperative filter results RMS and maximum
error are reported.

Angular Geometry Range
[m]

Acc. Bias Errors
[m/s2]

Gyro Bias Errors
[m/s2]

Angle Errors (ψ, θ, ϕ)
[deg]

µ = 0◦, ∆χ = 20◦
100 RMS [3.5, 8.7, 0.43] × 10−3

Max [6.9, 15, 2.7] × 10−3
RMS [1.9, 1.5, 1.4] × 10−5

Max [9.6, 5.7, 4.7] × 10−5
RMS [0.04, 0.06, 0.11]
Max [0.15, 0.18, 0.30]

40 RMS [6.5, 9.1, 0.42] × 10−3

Max [12.0, 20, 2.6] × 10−3
RMS [1.8, 1.5, 1.4] × 10−5

Max [9.2, 6.1, 5.4] × 10−5
RMS [0.05, 0.09, 0.10]
Max [0.18, 0.25, 0.38]

µ = 0◦, ∆χ = 70◦
100 RMS [4.2, 3.6, 0.44] × 10−3

Max [8.0, 6.2, 2.7] × 10−3
RMS [1.4, 1.5, 1.3] × 10−5

Max [6.6, 6.0, 4.7] × 10−5
RMS [0.04, 0.07, 0.08]
Max [0.15, 0.19, 0.22]

40 RMS [8.6, 7.6, 0.43] × 10−3

Max [14.0, 12.0, 2.7] × 10−3
RMS [2.0, 1.5, 1.3] × 10−5

Max [10.0, 5.9, 4.6] × 10−5
RMS [0.05, 0.10, 0.10]
Max [0.16, 0.28, 0.28]

µ = 60◦, ∆χ = 70◦
100 RMS [2.5, 2.5, 0.44] × 10−3

Max [4.9, 5.2, 2.8] × 10−3
RMS [1.3, 1.9, 1.4] × 10−5

Max [5.7, 6.5, 7.3] × 10−5
RMS [0.09, 0.05, 0.07]
Max [0.25, 0.14, 0.18]

40 RMS [6.1, 4.2, 0.44] × 10−3

Max [9.6, 7.3, 2.8] × 10−3
RMS [2.7, 1.8, 3.4] × 10−5

Max [12.0, 7.1, 17.0] × 10−5
RMS [0.14, 0.08, 0.09]
Max [0.44, 0.22, 0.27]

5.2. One Deputy

The relative geometry between the chief and the single deputy, (if constant with time)
can be defined by referring to Figure 4, with ∆χ = 0. In this case, the position of the deputy
UAV coincides with the center of the formation and only χ, µ, and r are needed to uniquely
identify the relative formation geometry.

When only one deputy is available, the measurements provided to the filter,
i.e., CDGNSS/vision residuals for attitude, and GNSS observables for position, do not
give enough information to ensure full observability of the filter state. As an example,
the results obtained by routing the chief UAV along the trajectory reported in Figure 3,
and assuming a deputy with a fixed relative geometry with χ = 0◦, µ = 0◦, and r = 100 m
(i.e., deputy along the roll direction) are shown in Figures 11 and 12, for IMU biases and
angular error respectively. Since cooperative aiding is effective only in the directions
orthogonal to the LOS, roll angle error increases due to unobservability as well as the error
on the accelerometer bias of the second axis, as a consequence of the dependence among
these two variables, demonstrated in [11]. However, both the unobservable variables are
well within their 3σ bound.
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Figure 11. (a) Accelerometer and (b) gyroscope biases predicted by the filter. Chief trajectory is reported in Figure 3.
One deputy, r = 100 m, µ = 0◦, χ = 0◦. Reference value is reported in red. Results obtained with cooperation and without
cooperation have been reported in black and blue, respectively. RMS and maximum error value have been evaluated
starting from t = 60 s.
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To cope with these observability challenges in the case of a single deputy, different strate-
gies can be proposed. In particular, relative geometry variation and accelerated chief motion
are analyzed in the following. Section 5.2.1 reports the result with improved chief dynamics.
Whereas Section 5.2.2 reports the results obtained by making the relative geometry change
when the chief is routed along a straight line.

5.2.1. Accelerated Dynamics of the Chief Vehicle

In this section, it is assumed the chief moves along a zig-zag path, whose top view
is depicted in Figure 13. The chief (UAV 1 in the figure) is always pointed toward east,
with a 90◦ heading angle. The trajectory of the deputy (UAV 2) is also depicted in the
figure. The deputy moves along a straight line with a 90◦ heading angle. The two vehicles
fly at constant altitude equal to 20 m. Cooperative filter results in terms of IMU biases and
angular errors are reported in Figures 14 and 15.
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Figure 13. Trajectory of the chief and deputy vehicles, top view. For both the vehicles, the heading
angle is assumed to be equal to 90◦, i.e., the vehicles are pointing eastward. The first and the
second axes of the BRFs are reported in the figure, whereas the third axis is pointing downward.
UAVs altitude is 20 m.

Choosing a zero elevation (vehicles flying at the same altitude) allows the cooperative
measurements to give a significant contribution to heading angle estimation. Indeed, due to
the small heading angle covariance of CDGNSS/vision, magnetometer measurements are
filtered out by the filter, allowing the heading estimate to be debiased. As far as accelerom-
eter biases are concerned, after the initial excursion, which holds true for the accelerometer
bias on the first component, the relative geometry variation and the chief dynamics improve
the state observability, providing a very accurate estimation in accelerometer biases.
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Figure 14. (a) Accelerometer and (b) gyroscope biases predicted by the filter. One deputy. Chief and deputy move along
UAV 1 and UAV 2 trajectories reported in Figure 13, respectively. Reference value is reported in red. Results obtained with
cooperation and without cooperation have been reported in black and blue, respectively. RMS and maximum error value
have been evaluated starting from t = 60 s.

Sensors 2021, 21, x FOR PEER REVIEW 17 of 26 
 

 

 
Figure 15. Errors on angle estimated by the cooperative filter in blue and by the same filter with-
out using cooperation. One deputy. Chief and deputy move along UAV 1 and UAV 2 trajectories 
reported in Figure 13, respectively. 

Choosing a zero elevation (vehicles flying at the same altitude) allows the coopera-
tive measurements to give a significant contribution to heading angle estimation. Indeed, 
due to the small heading angle covariance of CDGNSS/vision, magnetometer measure-
ments are filtered out by the filter, allowing the heading estimate to be debiased. As far as 
accelerometer biases are concerned, after the initial excursion, which holds true for the 
accelerometer bias on the first component, the relative geometry variation and the chief 
dynamics improve the state observability, providing a very accurate estimation in accel-
erometer biases. 

5.2.2. Relative Geometry Variation 
Relative geometry variation allows the LOS direction to change during the motion, 

which introduces spatial diversity in the measurements and is useful to tackle the observ-
ability challenges which characterize a constant relative geometry. Three different relative 
geometries have been taken into account in this section, assuming the chief vehicle is al-
ways flown along a straight line. 
1. Chief and deputy vehicles move along the trajectories of UAV 2 and UAV 1 reported 

in Figure 13, respectively (i.e., they are inverted with respect to the Section 5.2.1); 
2. Chief flies along the quasi-straight-line path reported in Figure 3 by continuously 

rotating its heading with a 100 s period, starting from an initial heading angle, ψ = 
90°. The deputy moves along a trajectory parallel to the chief, which has been defined 
with r = 100, μ = 12°, and χ = 30° in the initial point of the trajectory; 

3. Chief flies along the quasi-straight-line path reported in Figure 3 with a constant 
heading angle assumed equal to 90°. The deputy is steady and its NED position vec-
tor is [−100 m, −20 m,−40 m]T. 
Cases 2 and 3 assume a large camera FOV, which can be achieved with omnidirec-

tional [38] or multiple cameras system mounted on the chief platforms. For the sake of 
brevity, only bias results are reported in the following subsections, whereas angular RMS 
errors are indicated in the text. 

Figure 15. Errors on angle estimated by the cooperative filter in blue and by the same filter without
using cooperation. One deputy. Chief and deputy move along UAV 1 and UAV 2 trajectories reported
in Figure 13, respectively.



Sensors 2021, 21, 3438 18 of 27

5.2.2. Relative Geometry Variation

Relative geometry variation allows the LOS direction to change during the motion,
which introduces spatial diversity in the measurements and is useful to tackle the observ-
ability challenges which characterize a constant relative geometry. Three different relative
geometries have been taken into account in this section, assuming the chief vehicle is
always flown along a straight line.

1. Chief and deputy vehicles move along the trajectories of UAV 2 and UAV 1 reported
in Figure 13, respectively (i.e., they are inverted with respect to the Section 5.2.1);

2. Chief flies along the quasi-straight-line path reported in Figure 3 by continuously
rotating its heading with a 100 s period, starting from an initial heading angle, ψ = 90◦.
The deputy moves along a trajectory parallel to the chief, which has been defined
with r = 100, µ = 12◦, and χ = 30◦ in the initial point of the trajectory;

3. Chief flies along the quasi-straight-line path reported in Figure 3 with a constant
heading angle assumed equal to 90◦. The deputy is steady and its NED position
vector is [−100 m, −20 m, −40 m]T.

Cases 2 and 3 assume a large camera FOV, which can be achieved with omnidirec-
tional [38] or multiple cameras system mounted on the chief platforms. For the sake of
brevity, only bias results are reported in the following subsections, whereas angular RMS
errors are indicated in the text.

Results of case 1 are reported in Figure 16. Angular RMS errors are 0.05, 0.08,
and 0.08 degrees for heading, pitch and roll angles, respectively. Accelerometer bias
estimation overperforms the one obtained in the case the two UAVs invert their trajectory
(presented in the previous section and reported in Figure 14), demonstrating that more that
ownership dynamics, relative geometry variation plays a significant role in cooperative
bias estimation. First axis bias still presents huge excursions in the first epochs, before the
convergence is encountered when a satisfactory set of measurements have been acquired
in terms of spatial diversity.

Result obtained by changing the heading of the chief, i.e., case 2, are reported in Figure 17.
Differently from the other cases, heading rotation negatively impacts the gyroscope bias
estimation along the horizontal axes if no cooperative measurements are provided. On the
other hand, using cooperation allows both accelerometer and gyroscopes measurements to
be debiased. Attitude RMS error obtained using cooperation are 0.06, 0.08, and 0.09 for
heading pitch and roll, respectively.

As concerns case 3, observability of the full state has been performed by providing
spatial diversity while making the chief UAV fly along the trajectory reported in Figure 3
and assuming a steady deputy UAV. This scenario can also model the case in which ground
GNSS antennas are used as fixed deputies. Results are reported in Figure 18. The formation
geometry provides the least advantage with respect to the solutions presented before,
because enough spatial diversity in the measurements is obtained after a long time
(i.e., 200 s). At that time, the relative azimuth variation between the chief and the deputy
vehicle is about 30◦, which provide sufficient spatial diversity to make the biases converge.
Before this time interval, the results present a very inaccurate accelerometers’ bias estima-
tion. However RMS value reduces to [13.0 7.6 0.11] × 10−3 m/s2 if estimated after this
time interval.

A solution which allows improving the performance in bias prediction when a steady
deputy is used consists of providing a null elevation between the chief and the deputy
so that the heading direction (which is the most inaccurate since it is based on biased
magnetometer estimates) is always observable with cooperative measurements. Figure 19
shows the result obtained with a steady deputy with the same horizontal position of case 3
(Figure 18), but with the same altitude of the chief vehicle. So that deputy NED position is
[−100 m, −20 m, −20 m]T.
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Figure 16. (a) Accelerometer and (b) gyroscope biases predicted by the filter. One deputy. Chief and deputy move along
UAV 2 and UAV 1 trajectories reported in Figure 13, respectively, as reported in case 1. Reference value is reported in red.
Results obtained with cooperation and without cooperation have been reported in black and blue, respectively. RMS and
maximum error value have been evaluated starting from t = 60 s.
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Figure 17. (a) Accelerometer and (b) gyroscope biases predicted by the filter. One deputy. Chief and deputy formation
identified by case 2. Reference value is reported in red. Results obtained with cooperation and without cooperation have
been reported in black and blue, respectively. RMS and maximum error value have been evaluated starting from t = 60 s.
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Figure 18. (a) Accelerometer and (b) gyroscope biases predicted by the filter. One deputy. Chief and deputy formation
identified by case 3. Reference value is reported in red. Results obtained with cooperation and without cooperation have
been reported in black and blue, respectively. RMS and maximum error value have been evaluated starting from t = 60 s.
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14.04. It embarks a PointGrey FleaTM FL3-U3-20E4C-C CCD camera (with 1600 × 
1200 resolution in pixels, maximum frame rate of 59 fps and an IFOV of about 0.030°) 
and a uBloxTM LEA-M8T GNSS single frequency multi-constellation receiver with 
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RMS and maximum error value have been evaluated starting from t = 60 s.



Sensors 2021, 21, 3438 21 of 27

6. Experimental Set-Up and Results

The efficiency of the proposed method for IMU bias estimation has been tested on
experimental data, acquired at a model aircraft airfield. The data acquisition setup is
composed by two DJITM M100 drones and a Trimble antenna. The flight has been carried
out by remotely piloting the two drones, which are shown in Figure 20. The drones,
named Eagle and Athena, have been equipped each with an onboard computer, a CCD
camera and an additional GNSS receiver with raw data capability. The latter is required
due to the impossibility of reading GNSS raw data directly from DJI autopilot telemetry.
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Figure 20. (a) Eagle and (b) Athena setup.

• Eagle has as onboard computer, an Intel NUCTM with an i7 CPU running Ubuntu
14.04. It embarks a PointGrey FleaTM FL3-U3-20E4C-C CCD camera (with 1600× 1200
resolution in pixels, maximum frame rate of 59 fps and an IFOV of about 0.030◦) and
a uBloxTM LEA-M8T GNSS single frequency multi-constellation receiver with raw
measurements capabilities.

• Athena has been equipped with an onboard computer (Intel NUCTM with an i5 CPU
running Ubuntu 16.04), a CCD camera, i.e., PointGrey BlackflyTM BFLY-U3-50H5C-C
(with 2448 × 2048 resolution in pixels, maximum frame rate of 7.5 fps, and an IFOV
of about 0.022◦) and the same GNSS receiver with raw data capability embarked on
Eagle, i.e., uBloxTM LEA-M8T.

uBloxTM receivers have been set with both GPS and Galileo receiver capability.
Whereas only GPS data were available at Trimble ground antenna. As Figure 20 shows,
the uBloxTM antenna has been mounted symmetrically to the DJI one, on each drone.
Both the DJI and uBlox antenna have been placed on a carbon fiber rod higher than the DJI
default, to avoid possible interference with the onboard computer.

Data acquisition software capable of retrieving DJI autopilot and IMU, camera and
raw GNSS data have been developed in ROS (robot operating system). Using ROS allows
easily time-tagging and synchronizing acquired data using custom and already developed
(DJITM and PointgreyTM proprietary) ROS nodes. A custom made node was developed
in C++ to acquire uBloxTM raw data [39] in user readable format. Camera calibration has
been performed indoor using the Kalibr software [40].

The data acquired during the flight campaign have been processed offline within
a MATLAB® implementation of the cooperative navigation filter reported in Section 4,
assuming Eagle as the chief vehicle and the two deputies being Athena and the Trimble
antenna. Accurate 3D positions of GNSS satellites have been calculated using the multi-
constellation broadcast ephemeris file in a customized version of the RTKLIB software [41],
able to provide multi-constellation satellite positions and pseudoranges corrected from
ionospheric and tropospheric errors. CDGNSS baselines have been retrieved by the “kine-
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matic” mode of the RTKLIB software [41], using GNSS raw data acquired on board the
chief and the two deputies. As concerns camera information, several techniques have been
developed by the authors in the framework of cooperative detection, e.g., using deep learn-
ing [42]. This strategy complemented with a supervised approach has been used to acquire
camera data, i.e., pixels of the deputies’ center, in this paper, being the focus set on the
cooperative filter. Camera and CDGNSS STDs have been retrieved from camera specifics
(i.e., IFOV) and from resulting STD of RTKLIB “kinematic solution”, respectively. IMU pa-
rameters needed to define the process noise covariance matrix, i.e., velocity and angular
random walk and gyroscope and accelerometer bias instabilities have been derived thanks
to IMU calibration based on Allan variance analysis performed with Kalibr software [40].

Figure 21a shows an image taken during the flight where the three platforms (two
deputies and one chief) are highlighted. A flight image taken by the chief vehicle including
both the deputies is reported in Figure 21b. Both one deputy and two deputies cases
are analyzed.

• The two deputies case uses Eagle as chief UAV, a flying deputy (Athena UAV) and
a ground antenna (Trimble) as surrogate deputy. The paths of the three “vehicles”,
estimated by uBlox receivers for the two drones and by RTKLIB processing for the
Trimble antenna are reported in Figure 22. Figure 22a shows the latitude longitude
coordinates of the paths reported on a satellite image. Whilst east north up (ENU) coor-
dinates are reported in Figure 22b, where top and 3D views are reported. These paths
are relevant to a limited segment (from 334 to 449 s) of the entire dataset acquired
during the flight campaign, where both the deputies are within the field of view of the
chief’s camera.

• The one deputy case uses Eagle as chief vehicle and Athena as deputy vehicle,
exploiting proper dynamics of the two platforms. Specifically, Athena holds an almost
steady position whilst Eagle is rotating around it and changing its heading with the
aim of always keeping the deputy in its camera FOV. The horizontal acceleration of the
chief and the variation of chief-deputy LOS in BRF both provide benefits to inertial bias
observability. Figure 23 reports the trajectory of the two vehicles in latitude-longitude
coordinates (Figure 23a) and in top and 3D view (Figure 23b). Eagle performs a circle
around Athena in the time epoch going from 476 to 551 s of the acquired dataset.
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To have a reference for accelerometer and biases estimated quantities, a ZUPT filter
has been used for the first 70 s of the test, where Eagle platform has been kept in static
conditions. The ZUPT filter uses inertial equations for propagation and correct the state by
informing the filter a zero velocity is experienced. To guarantee observability of the third
component of the gyroscope bias and heading angle, the ZUPT filter used in this paper also
uses the magnetometer measurement in correction step. However, both bb

a(1) and bb
a(2)
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are unobservable from the ZUPT filter, because their estimated covariance is far higher
than the estimated value for the biases, and cannot be used as a benchmark to evaluate the
effectiveness of cooperation. Therefore, only benchmarked values (i.e., the three gyroscope
and the down accelerometer biases) are reported in Figure 24. Figure 24 shows the IMU
biases estimated with the navigation filter reported in Section 4. Figure 24a,b depicts the
results obtained considering trajectories reported in Figure 22 (two deputies case) and
Figure 23 (one deputy case), respectively. As in the previous section, results with and with-
out cooperation have been reported by black and blue lines. Reference values, obtained as
the values to which the ZUPT filter converges, are also reported in red, and enclosed within
the gray 3σ bound.
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In the two deputies case, the chief UAV is always looking at the deputies and both
the multirotors exhibit a limited motion. This results in a scenario with constant geometry
and variable range, with the two deputies having a very small ∆χ and a χ near to 0◦. In the
single deputy case, the deputy is always within the chief FOV, providing a relative azimuth
variation of about 40◦.

In both cases, cooperative estimation allows rapidly estimating gyroscope biases and
yields a significant advantage with respect to the non cooperative filter especially on the
down axis gyroscope bias estimation, which would otherwise be negatively impacted by
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the wrong magnetometer estimation. Down accelerometer bias oscillates around the true
value within the covariance bound both for cooperative and uncooperative results.

7. Conclusions

This paper analyzed the potential of a cooperative navigation strategy based on
one or more deputy aircraft for improved in-flight estimation of inertial sensors biases.
Combination of relative LOS measurements provided by camera(s) and CDGNSS measure-
ments provides inertial-independent attitude information which can be exploited for bias
estimation. A numerical analysis shows that using two deputies give a full observable
state for the proposed navigation filter. However, relative formation geometry affects
the biases estimation process and observability can be maximized by properly tailoring
deputies’ trajectories. Distance between chief and deputy platforms plays a significant role
and provides more accurate estimates when increased, if visual measurements can be still
extracted with pixel-level uncertainty. When a single deputy is available, full observability
is not guaranteed which can be tackled by different strategies. In particular, continuously
varying the relative geometry between the chief and the deputy provides spatial diver-
sity of the measurements and improves observability. When magnetic sensors are used,
the negative effects of magnetometer biases can be effectively counteracted by keeping low
elevation angles and thus maximizing heading observability by cooperative measurements.
First experimental results, obtained in the case of one and two deputies, also demonstrate
that the proposed methodology can improve accuracy in in-flight inertial bias estimation.
Future research is aimed at further demonstrating the concept in flight high performance
inertial units within an ad hoc extensive flight campaign. This will also allow a deeper
analysis of the effects of non idealities that are found in experimental conditions.
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