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Abstract
Accumulating experimental evidence has demonstrated that microRNAs (miRNAs) 
have a huge impact on numerous critical biological processes and they are associated 
with different complex human diseases. Nevertheless, the task to predict potential 
miRNAs related to diseases remains difficult. In this paper, we developed a Kernel 
Fusion‐based Regularized Least Squares for MiRNA‐Disease Association prediction 
model (KFRLSMDA), which applied kernel fusion technique to fuse similarity matrices 
and then utilized regularized least squares to predict potential miRNA‐disease asso‐
ciations. To prove the effectiveness of KFRLSMDA, we adopted leave‐one‐out cross‐
validation (LOOCV) and 5‐fold cross‐validation and then compared KFRLSMDA with 
10 previous computational models (MaxFlow, MiRAI, MIDP, RKNNMDA, MCMDA, 
HGIMDA, RLSMDA, HDMP, WBSMDA and RWRMDA). Outperforming other mod‐
els, KFRLSMDA achieved AUCs of 0.9246 in global LOOCV, 0.8243 in local LOOCV 
and average AUC of 0.9175 ± 0.0008 in 5‐fold cross‐validation. In addition, respec‐
tively, 96%, 100% and 90% of the top 50 potential miRNAs for breast neoplasms, colon 
neoplasms and oesophageal neoplasms were confirmed by experimental discoveries. 
We also predicted potential miRNAs related to hepatocellular cancer by removing all 
known related miRNAs of this cancer and 98% of the top 50 potential miRNAs were 
verified. Furthermore, we predicted potential miRNAs related to lymphoma using the 
data set in the old version of the HMDD database and 80% of the top 50 potential 
miRNAs were confirmed. Therefore, it can be concluded that KFRLSMDA has reliable 
prediction performance.
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1  | INTRODUC TION

A microRNA (miRNA) is a small non‐coding RNA molecule (contain‐
ing about 22 nucleotides) found in plants, animals and some viruses, 
and functions in RNA silencing and post‐transcriptional regulation 
of gene expression.1,2 While miRNAs are usually located within the 
cell, some miRNAs have also been discovered in extracellular en‐
vironment.3 The miRNAs in distinct tissues and growth stages can 
differ significantly and thus may have different spatial and temporal 
expression patterns.4 It is commonly believed that these small mol‐
ecules have a wide range of regulation effects on eukaryotic gene 
expression based on a cornucopia of experiments.5 Accumulating 
evidence revealed that miRNAs are important components in cells, 
which could play significant roles in multiple biological processes, 
including cell proliferation,6 development,7 differentiation,8 signal 
transduction 9 and viral infection.8 Furthermore, miRNAs play cru‐
cial roles in the regulation of stem cell progenitors differentiating 
into adipocytes.10 Therefore, it is no surprise that the dysregula‐
tion of miRNAs is related to a number of human complex diseases. 
The first human disease discovered to be associated with dysreg‐
ulation of miRNAs is chronic lymphocytic leukaemia.11 Since then, 
many miRNAs also have been verified to have links with cancers. 
For instance, the levels of mir‐27b and miR‐134 were found signifi‐
cantly lower in lung tumours than normal tissue, indicating that they 
have association with lung cancer.12 Also, five members of the mi‐
croRNA‐200 family (miR‐200a, miR‐200b, miR‐200c, miR‐141 and 
miR‐429) are all down‐regulated in tumour progression of breast 
cancer.13 In addition to cancers, studies have shown that a mutation 
in the seed region of miR‐96 caused hereditary progressive hearing 
loss 14 and a mutation in the seed region of miR‐184 caused heredi‐
tary keratoconus with anterior polar cataract.15 Although scientists 
have already discovered plenty of associations between miRNAs 
and diseases, we should be aware that it is extremely expensive 
and time‐consuming to identify the associations by just applying 
experimental methods for each candidate association. As currently 
there are plenty of miRNA‐related data sets available, computational 
methods can be applied to predict the potential miRNA‐disease as‐
sociations. So far, computational methods have been proven to be 
efficient in predicting miRNA‐disease associations in that they can 
select the most promising candidate miRNAs for further experimen‐
tal studies. But it is still necessary for us to make further efforts and 
develop more effective computational models for miRNA‐disease 
association prediction.

There are many computational methods proposed to predict the 
potential associations between miRNAs and diseases, most of which 
are developed based on the assumption that miRNAs with similar 
functions are more likely to have connections with diseases of sim‐
ilar phenotypes.16-21 Every time a new model was proposed, the 
prediction accuracy would be increased. In 2010, a hypergeometric 
distribution‐based model was presented by Jiang et al 22 to predict 
miRNA‐disease associations, where disease phenotype similarity, 
miRNA functional similarity and known human disease‐miRNA asso‐
ciations were integrated. In 2013, Shi et al 23 used the information of 

proteins as a bridge between miRNAs and diseases, according to the 
fact that miRNAs whose target genes are related to certain diseases 
are more likely to be associated with these diseases. Their model im‐
plemented random walk algorithm on a protein‐protein interaction 
(PPI) network and utilized miRNA‐target interactions, disease‐gene 
associations and PPI to obtain possible associations between miR‐
NAs and diseases. Furthermore, in 2014, Mork et al 24 developed a 
method named miRPD where protein‐disease interactions and pro‐
tein‐miRNA interactions were combined, and both disease‐related 
miRNAs and potential disease‐related proteins were examined. Later, 
Xu et al 25 presented a miRNA prioritization method that evaluated 
the similarity between miRNA targets and disease genes. The input 
data sets included known disease‐gene associations and miRNA‐tar‐
get interactions; the known miRNA‐disease association data were 
not needed in this approach. Pasquier et al 26 devised a model named 
MiRAI to represent the distributional information on miRNAs and 
diseases in a high‐dimensional vector space. The vector space con‐
sisted of the miRNA‐disease association matrix, the miRNA‐neigh‐
bour association matrix, the miRNA‐target association matrix, the 
miRNA‐word association matrix and the miRNA‐family association 
matrix. Singular value decomposition (SVD) was performed on the 
space for dimensionality reduction, and the association score for a 
miRNA‐disease pair was given by the cosine similarity between the 
miRNA in the miRNA space and the disease in the disease space. 
However, all the above methods have a common problem of high 
false positives and false negatives in miRNA‐target interactions, 
which resulted in a huge reduction of prediction accuracy.

To address the problem, several other researchers avoided using 
miRNA‐target interactions in computational models. Instead, they 
built models from the known miRNA‐disease association data, the 
miRNA similarity (a measure that quantifies the similarity between 
two miRNAs) and the disease similarity (a measure that quantifies 
the similarity between two diseases). In 2013, Xuan et al 27 proposed 
a model named HDMP that analysed disease‐related miRNAs by 
considering the miRNAs’ k most similar neighbours in the miRNA 
similarity network. HDMP assigned higher weights to miRNAs in the 
same cluster or family, and higher weights would indicate a greater 
association probability between miRNAs and diseases. HDMP was 
a pioneering work in the topic of miRNA‐disease association infer‐
ence. Nonetheless, it had a major drawback that it would fail to work 
when applied to new diseases without known related miRNAs, as 
it heavily relied on the neighbours of the miRNAs. In 2012, Chen 
et al 28 introduced Random Walk with Restart for MiRNA‐Disease 
Association prediction (RWRMDA), which combined the miRNA 
similarity and known miRNA‐disease associations to make predic‐
tions. As global similarity measures were superior to local similarity 
measures (as had been used in HDMP and others) in making predic‐
tions, the performance of RWRMDA was better than that of pre‐
vious models. However, like HDMP, this method could not predict 
miRNAs associated with new diseases without any known related 
miRNAs, either. To solve this issue, Chen et al 29 developed Within 
and Between Score for MiRNA‐Disease Association prediction 
(WBSMDA) where an integrated miRNA similarity network and an 
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integrated disease similarity network were constructed to exploit 
both the local and global information. The major contribution of 
WBSMDA was that it could effectively predict potential miRNAs 
related to new diseases without known associated miRNAs and po‐
tential diseases related to new miRNAs without known associated 
diseases. In 2016, Chen et al 30 presented one more model named 
Heterogeneous Graph Inference for MiRNA‐Disease Association 
prediction (HGIMDA) that built a heterogeneous graph and achieved 
a better prediction performance than WBSMDA. In the graph, po‐
tential association between a miRNA‐disease pair could be inferred 
from an iterative equation. In 2018, Chen et al 21 put forward a novel 
calculation method of Ensemble Learning and Link Prediction for 
miRNA‐Disease Association prediction (ELLPMDA), in which they 
gained final scores for the novel miRNA‐disease associations through 
weighted combining the three outcomes obtained from common 
neighbours, Jaccard index and Katz index, respectively. In the same 
year, Chen et al 31 further introduced a model of Inductive Matrix 
Completion for MiRNA‐Disease Association prediction (IMCMDA) 
through implementing the low‐rank inductive matrix completion 
method on the basis of the data set of known miRNA‐disease associ‐
ations, miRNA similarity and disease similarity.

Apart from the aforementioned methods, there are computa‐
tional models developed based on machine learning algorithms. For 
example, Xu et al 32 presented a miRNA‐target‐dysregulated network 
(MTDN) that involved miRNA‐target interactions and mRNA expres‐
sion profiles. A support vector machine (SVM) classifier was utilized 
to separate positive miRNA‐disease associations from negative ones. 
The weakness of the model, however, was that inappropriate nega‐
tive samples could easily affect the model's performance. Currently, 
acquiring truly negative miRNA‐disease associations remains diffi‐
cult. In 2014, Chen et al 33 introduced a model named Regularized 
Least Squares for MiRNA‐Disease Association prediction (RLSMDA) 
where semi‐supervised learning on the miRNA/disease space was 
implemented. However, it should be noted that it is usually hard to 
find appropriate parameters for the model and difficult to integrate 
the classifiers from miRNA space and disease space. In addition to 
RLSMDA, Chen et al 34 also developed another computational model 
named Restricted Boltzmann Machine for Multiple types of MiRNA‐
Disease Association prediction (RBMMMDA), the core of which was 
restricted Boltzmann machine (RBM), a two‐layer undirected graph‐
ical model consisting of layers of visible and hidden units. Innovation 
of RBMMMDA lays in its capability of predicting both novel miRNA‐
disease associations and the corresponding association types.

In addition to the above miRNA‐disease association prediction 
models, similar research has been carried out in other link pre‐
diction tasks that involved genes and miRNAs. Marbach et al 35 
sought to build a community model from the ensemble of over 
30 gene network inference methods including regression, mutual 
information, correlation, Bayesian networks, meta predictors and 
heterogeneous approaches. Experiments showed that the model 
exhibited more robustness and higher predictive performance 
than any single method across diverse gene regulatory network 
data sets. Moreover, Pio et al 36 presented Co‐clustered miRNA 

Regulatory Networks (ComiRNet) where a web‐based database 
was developed to facilitate analysis on miRNA‐gene target inter‐
actions. The database consists of data generated collectively by a 
semi‐supervised classifier combining several prediction algorithms 
and a biclustering algorithm named HOCCLUS2. Storing nearly 
five million predicted miRNA‐gene target interactions, ComiRNet 
could serve as a useful tool for miRNA functionality research. 
In a more recent work, Ceci et al 37 proposed a gene regulatory 
network reconstruction model that exploited a semi‐supervised 
multi‐view ensemble learning algorithm via iteratively integrating 
predictions from multiple inference methods. Despite an increased 
computational complexity as a result of the integration, the model 
reconstructed gene networks at a higher accuracy and exhibited a 
better predictive performance in case studies than other methods. 
From the performance of these three models, it can be concluded 
that ensemble approach leverages the advantages of individual 
methods and thus is a powerful tool for link prediction.

In this paper, we presented such an ensemble‐based model to 
push the miRNA‐disease association prediction accuracy to the next 
level. The model was named Kernel Fusion‐based Regularized Least 
Squares for MiRNA‐Disease Association prediction (KFRLSMDA) as 
it used regularized least squares algorithm based on kernel fusion 
technique. In our model, miRNA functional similarity, disease seman‐
tic similarity, Gaussian interaction profile kernel similarity for both 
miRNAs and diseases, and the known miRNA‐disease associations 
were integrated to predict the potential miRNA‐disease associations. 
To prove the effectiveness of KFRLSMDA, global and local LOOCV 
as well as 5‐fold cross‐validation were carried out; and the model 
outperformed previous ones in all cross‐validations. In case studies, 
the majority of the top 10 and top 50 predictions for breast neo‐
plasms, colon neoplasms, and oesophageal neoplasms, hepatocellu‐
lar cancer and lymphoma obtained by KFRLSMDA were confirmed 
by biological evidence. These experimental results demonstrated 
that KFRLSMDA was effective in predicting potential miRNA‐dis‐
ease associations and superior to previous methods.

2  | RESULTS

2.1 | Brief Introduction to KFRLSMDA

KFRLSMDA was based on a semi‐supervised ensemble learning ap‐
proach. Here, ‘semi‐supervised’ means that unlabelled samples in‐
stead of negative samples (ie miRNA‐disease pairs confirmed to be 
unassociated) were used to train the model; and ‘ensemble’ means 
that two classifiers from the miRNA and disease spaces, respec‐
tively, were combined to yield a higher predictive accuracy. The in‐
puts to the model included three data sets: (a) the miRNA‐miRNA 
functional similarity that was calculated using the overlap in dis‐
ease associations of a given pair of miRNAs; (b) the disease‐disease 
similarity that was gained through computing shared part of their 
directed acyclic graph (DAG); and (c) the miRNA‐disease association 
network that described whether a miRNA‐disease pair was linked 
or not. The model's output was a list of association scores for each 
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miRNA‐disease pair, and a high score would indicate a strong asso‐
ciation likelihood between the pair.

2.2 | Performance evaluation

Cross‐validations were used as the evaluation scheme for our 
model, and known miRNA‐disease associations in the HMDD v2.0 
database 38 were used as the training data. Specifically, we ap‐
plied three types of cross‐validations, namely, global leave‐one‐out 
cross‐validation (LOOCV), local LOOCV and 5‐fold cross‐valida‐
tion. To prove the effectiveness of the algorithm, KFRLSMDA was 
compared with 10 previous computational methods: MaxFlow,39 
RKNNMDA,40 MiRAI,26 HDMP,27 RWRMDA,28 WBSMDA,29 
HGIMDA,30 RLSMDA,33 MIDP 41 and MCMDA.42 In LOOCV evalua‐
tion, each known association in the database was considered as the 
test sample in turn while the other known associations were viewed 
as training samples. Additionally, those miRNA‐disease pairs without 
known association evidence were regarded as potential candidates 
for true associations. KFRLSMDA generated association scores for 
all miRNA‐disease pairs. In global LOOCV, the score of the test sam‐
ple was ranked against that of all candidate samples, whereas in local 
LOOCV the score of the test sample was only ranked against that 
of candidate samples for a particular disease. In other words, local 
LOOCV evaluated predictions made for a specific disease, while 
global LOOCV assessed predictions made across all diseases. In 

5‐fold cross‐validation, the known miRNA‐disease associations were 
randomly divided into five subsets with equal size. Each time, we 
selected one subset as test samples, leaving the remaining four sub‐
sets as training samples. Again, those miRNA‐disease pairs without 
association evidence were considered as candidate samples. Like in 
global LOOCV, the score of each test sample was ranked against that 
of all candidate samples, respectively. This procedure was repeated 
five times until each known association was used as test sample and 
with its score ranked; and those test samples whose ranks surpassed 
a given threshold would be considered as successful predictions. 
Up to this point, the 5‐fold cross‐validation process was completed. 
We repeated this process for 100 times to examine the variance of 
KFRLSMDA’s prediction performance.

Subsequently, the receiver operating characteristics curve (ROC) 
was drawn to visualize KFRLSMDA’s (and ten previous models’) 
performance at different ranking thresholds, and thereby to calcu‐
late the performance evaluation metric, area under the ROC curve 
(AUC). The ROC curve is created by plotting the true‐positive rate 
(TPR, sensitivity) against the false‐positive rate (FPR, 1‐specificity) 
at various threshold settings. In our study, sensitivity represented 
the percentage of positive miRNA‐disease test samples whose rank‐
ings exceeded the given threshold while specificity represented the 
percentage of negative miRNA‐disease associations whose rankings 
were lower than the threshold. When calculating FPR, we regarded 
all miRNA‐disease pairs without confirmed associative relationship 

F I G U R E  1  Performance evaluation comparison between KFRLSMDA and 10 previous prediction models (MaxFlow, MiARI, MIDP, 
MCMDA, RKNNMDA, HGIMDA, RLSMDA, HDMP, WBSMDA and RWRMDA) in terms of ROC curve and AUC based on global LOOCV and 
local LOOCV tested by known miRNA‐disease associations in the HMDD database. KFRLSMDA achieved AUC of 0.9246 in global LOOCV 
and 0.8243 in local LOOCV. Therefore, it can be concluded that KFRLSMDA seemed to be an effective tool for predicting potential miRNA‐
disease associations
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as negative samples. In performance evaluation and in the subse‐
quent case studies, we set the parameters of KFRLSMDA to be 
�M=�D=0.3 and �=0.1 for the simplicity of calculation and as a start 
point for optimization.

As a result, the AUCs of KFRLSMDA, MaxFlow, RKNNMDA, 
MCMDA, HGIMDA, WBSMDA, RLSMDA and HDMP were 0.9246, 
0.8624, 0.7159, 0.8749, 0.8781, 0.8030, 0.8426 and 0.8366, respec‐
tively, in global LOOCV. RWRMDA and MIDP were not included in 
global LOOCV comparison because they were based on a local rank‐
ing approach which could not simultaneously predict miRNAs for all 
diseases. Furthermore, global LOOCV was not carried out on MiRAI. 
Predictions for different diseases were not globally comparable, as 
the association scores given by this method had a highly positive 
correlation with the number of known associated miRNAs for a dis‐
ease. For local LOOCV, KFRLSMDA, MaxFlow, RKNNMDA, MIDP, 
MiRAI, MCMDA, HGIMDA, RWRMDA, WBSMDA, RLSMDA and 
HDMP achieved AUCs of 0.8243, 0.7774, 0.8221, 0.8196, 0.6299, 
0.7718, 0.8077, 0.7891, 0.8030, 0.8031 and 0.6953, respectively 
(see Figure 1). Moreover, it is worth noting that MiRAI’s AUC of 
mere 0.6299 was much lower than 0.867 indicated by Pasquier et 
al,26 because in their literature the model was evaluated on 83 dis‐
eases with at least 20 associated miRNAs, whereas in our study it 
was tested on 383 diseases with only 14.18 associated miRNAs per 
disease on average. MiRAI was based on collaborative filtering, and 
its performance would expectedly become worse with our sparse 
association data set.

In 5‐fold cross‐validation, the average AUCs of KFRLSMDA, 
MaxFlow, RKNNMDA, MCMDA, WBSMDA, RLSMDA and 
HDMP were 0.9175/−0.0008, 0.8579  ±  0.001, 0.6723  ±  0.0027, 
0.8767  ±  0.0011, 0.8185/−0.0009, 0.8569/−0.0020 and 
0.8342 ± 0.0010, respectively. In summary, KFRLSMDA appeared 
to be more effective in predicting potential miRNA‐disease associa‐
tions compared with all the previous methods, no matter for global 
LOOCV, local LOOCV or 5‐fold cross‐validation.

2.3 | Case studies

To further demonstrate the reliable performance of KFRLSMDA, 
we carried out case studies on five diseases, namely, Breast Cancer, 
Colon Cancer, Esophageal Cancer, hepatocellular cancer and lym‐
phoma. These diseases were selected in our case studies because 
they are the most common cancer types, with high incidence and 
death rate each year. In addition, they have been used as case stud‐
ies in many previous publications.22,27,30,33,40,41,43 Unlike cross‐vali‐
dations that solely depended on HMDD v2.0, our case studies used 
HMDD v2.0 as the training database for KFRLSMDA and dbDEMC 
44 and miR2Disease 45 as the validation databases for confirming the 
predicted potential associations. The following is the basic infor‐
mation about dbDEMC and miR2Disease. They were created from 
different data sources. The miR2Disease database contained 1939 
curated associations between 299 human miRNAs and 94 human 
diseases by reviewing more than 600 published papers on PubMed. 
The dbDEMC database documented 1815 curated associations 

between 607 human miRNAs and 14 human cancer types by search‐
ing experimental results documented in the NCBI Gene Expression 
Omnibus (GEO) database, which was the largest public repository 
for high‐throughput gene expression data. To control the data qual‐
ity, authors of dbDEMC only selected experiments with at least 
three biological duplicates. From our perspective, the two databases 
were both considered to be reliable in validating the case studies, 
although they seemed to have different focuses: one consisted of 
more disease types while the other covered more miRNAs. By inner 
joining the two databases, we found that there were 374 overlap 
associations between them. This was 19.3% of miR2Disease and 
20.6% of dbDEMC. As for the statistical analysis between these two 
databases and HMDD v2.0, the results showed that 232 and 546 
miRNA‐disease associations were overlapped between miR2Dis‐
ease and HMDD v2.0, dbDEMC and HMDD v2.0, respectively. The 
ratios of the overlaps were both small relative to the number of 5430 
samples in training database.

The top 10 and top 50 predicted candidate miRNAs related to 
these diseases were examined by the two validation databases. In 
our work, the way of validating top 10/50 miRNAs against evidence 
databases was consistent with that in most previous studies on 
miRNA‐disease association prediction.23,27,28,30,33,40,41,43 A candi‐
date miRNA was unlinked with the investigated disease according 
to HMDD v2.0. This means that there has been no evidence sup‐
porting the association between the miRNA and the disease. Thus, 
their associative relationship was to be examined by our model, and 
the miRNA was named ‘candidate’. It is worth emphasizing that only 
candidate miRNAs for each investigated disease were prioritized and 
subsequently verified by evidence databases. Therefore, there was 
no overlap between the training samples and the prediction lists. 
breast neoplasms is a malignant cancer, which is currently regarded 
as the most leading type of invasive cancer in women worldwide and 
it is estimated that there will be approximately 255,180 new cases 
of invasive breast cancer and 41,070 breast cancer deaths in 2017.46 
Seventy‐eight miRNAs have been verified to have connections with 
breast neoplasms. To name just a few, miR‐107 promotes tumour 
progression by targeting the let‐7 miRNA in mice and humans. Also, 
miR‐100 regulated beta‐tubulin isotypes in MCF7 breast cancer 
cells. It also suppresses IGF2 and inhibits breast tumorigenesis by in‐
terfering with proliferation and survival signalling.47 Candidate miR‐
NAs were prioritized based on KFRLSMDA. For the top 10 predicted 
Breast Neoplasm‐related miRNAs, they all have been verified by 
dbDEMC and miR2Disease database. In addition, 42 out of the top 
50 predicted Breast Neoplasm‐related miRNAs were experimentally 
verified from dbDEMC and miR2Disease database (see Table 1). 
Among the 42 confirmed miRNAs, three were supported by both 
databases. Among the eight unconfirmed miRNAs, six were veri‐
fied by more recent studies and their PMID is recorded in Table 1. 
For example, miR‐151’s association with breast neoplasms was sug‐
gested by recent studies because miR‐151‐3p was found to target 
TWIST1 gene to suppress the migration of breast cancer cells 48 and 
miR‐151‐5p up‐regulation might inhibit metastasis in primary breast 
tumours.49 Another example is that miR‐216b could suppress breast 
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cancer cell growth and metastasis by targeting SDCBP gene.50 
Therefore, 48 of the top 50 candidate miRNAs for breast neoplasms 
were supported by either database or literature evidence.

Colon Neoplasm, diagnosed mostly in the boundary of rectum 
and sigmoid colon,51 is the third most common cancer and im‐
poses great threats on both men and women in the United States.52 
Studies showed that about half of the Colon Neoplasm patients die 
of metastatic disease within 5 years from diagnosis.53,54 Detecting 
this disease is difficult, particularly at early stages, because only sub‐
tle symptoms can be noticed in early Colon Neoplasm patients.55 
MiRNAs seem to be a novel, potential diagnostic tool for colon neo‐
plasms, and many miRNAs have been confirmed to be correlated 
with the disease. For example, miR‐126, often found to be deficient 
in Colon Neoplasm patients, can restrict neoplastic cells growth 
via targeting phosphatidylinositol 3‐kinase signalling.56 Another 
example is miR‐145 targeting the insulin receptor substrate‐1 and 
also suppressing Colon Neoplasm cell growth.57 KFRLSMDA was 
implemented to predict the top 50 potential miRNAs related to 
colon neoplasms. As a result, nine of the top 10 and 45 of the top 
50 candidates were verified by dbDEMC and miR2Disease database 
(see Table 2). Among the 45 confirmed miRNAs, 26 were supported 

by both databases. In addition, all the five unconfirmed miRNAs 
were verified by more recent studies and their PMID is recorded 
in Table 2. For example, miR‐92a was suggested by experiments to 
be correlated with the tumour‐node‐metastasis (TNM) stage, the 
lymph node and distant metastases, and the survival rate of colon 
neoplasms.58 Another example is that overexpressed miR‐101 could 
suppress the proliferation, stimulate cell cycle arrest and promote 
apoptosis of colon cancer SW620 cells.59 Therefore, 50 of the top 
50 candidate miRNAs for colon neoplasms were supported by either 
database or literature evidence.

As reported, Esophageal Neoplasm is the sixth leading cause 
of deaths related to cancers and the eighth most common cancer 
worldwide based on the pathological characteristics.60 Males are 
more likely to get the disease based on the fact that the number 
of male patients is three to four times higher than the number of 
the female patients.61 As has been suggested, if the tumours could 
be diagnosed at an early stage, the survival rate could increase to 
90%,62 which means that the early detection of oesophageal neo‐
plasms is critical to cancer treatment.63,64 So far, plenty of miRNAs 
have been proven to be associated with oesophageal neoplasms. For 
instance, miR‐98 and miR‐214 could suppress migration and invasion 

miRNA Evidence miRNA Evidence

hsa‐mir‐362 dbdemc hsa‐mir‐181d dbdemc and 
miR2Disease

hsa‐mir‐130a dbdemc hsa‐mir‐151 27 930 738; 22 489 664

hsa‐mir‐487b dbdemc hsa‐mir‐376a dbdemc

hsa‐mir‐501 dbdemc hsa‐mir‐106a dbdemc

hsa‐mir‐379 dbdemc hsa‐mir‐15b dbdemc

hsa‐mir‐448 dbdemc hsa‐mir‐330 dbdemc

hsa‐mir‐32 dbdemc hsa‐mir‐216a unconfirmed

hsa‐mir‐539 dbdemc hsa‐mir‐98 dbdemc; miR2Disease

hsa‐mir‐363 dbdemc hsa‐mir‐520e dbdemc

hsa‐mir‐431 dbdemc hsa‐mir‐216b 27 720 715

hsa‐mir‐337 dbdemc hsa‐mir‐372 dbdemc

hsa‐mir‐652 dbdemc hsa‐mir‐192 dbdemc

hsa‐mir‐154 dbdemc hsa‐mir‐30e 27 012 041

hsa‐mir‐212 dbdemc hsa‐mir‐186 dbdemc

hsa‐mir‐381 dbdemc hsa‐mir‐181c dbdemc

hsa‐mir‐598 dbdemc hsa‐mir‐520f dbdemc

hsa‐mir‐432 dbdemc hsa‐mir‐520g 26 957 267

hsa‐mir‐532 dbdemc hsa‐mir‐421 dbdemc

hsa‐mir‐95 dbdemc hsa‐mir‐498 dbdemc

hsa‐mir‐663 dbdemc; 
miR2Disease

hsa‐mir‐99a dbdemc

hsa‐mir‐28 dbdemc hsa‐mir‐142 25 406 066

hsa‐mir‐484 dbdemc hsa‐mir‐659 dbdemc

hsa‐mir‐521 dbdemc hsa‐mir‐33a 26 507 842

hsa‐mir‐196b dbdemc hsa‐mir‐658 dbdemc

hsa‐mir‐92b dbdemc hsa‐mir‐33b unconfirmed

TA B L E  1  Prediction of the top 50 
predicted miRNAs associated with breast 
neoplasms based on known associations in 
HMDD database. The first column records 
top 1‐25 related miRNAs. The second 
column records the top 26‐50 related 
miRNAs
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in human oesophageal squamous cell carcinoma by post‐transcrip‐
tionally regulating enhancer of zeste homolog 2.65 KFRLSMDA was 
implemented to identify potential related miRNAs for oesophageal 
neoplasms based on known miRNA‐disease associations in the 
HMDD database and it turns out that 9 out of the top 10 and 44 out 
of the top 50 predicted Esophageal Neoplasm‐related miRNAs were 
experimentally verified by reports from dbDEMC and miR2Disease 
database (see Table 3). Among the 44 confirmed miRNAs, one was 
supported by both databases. Among the six unconfirmed miRNAs, 
miR‐218 was found to inhibit the growth of oesophageal squamous 
cell carcinoma (ESCC) and could enhance the chemo‐sensitivity 
of ESCC to cisplatin.66 The PMID of the supporting literature for 
miR‐218 is recorded in Table 3. Therefore, 45 of the top 50 candi‐
date miRNAs for oesophageal neoplasms were supported by either 
database or literature evidence.

To analyse the distributional difference between the scores 
of confirmed candidate miRNAs and the scores of unconfirmed 
ones, for each disease we separated its candidate miRNAs into two 
groups. One group contained candidates confirmed by miR2Disease 
and/or dbDEMC and the other held the remaining unconfirmed can‐
didates. Then, we obtained the corresponding scores of miRNAs in 
the two groups and carried out the non‐parametric Wilcoxon rank 
sum test for a difference in mean ranks of the distributions for the 

two groups’ scores. The null hypothesis was that the two lists’ distri‐
butions had the same mean rank, and the alternative hypothesis was 
unequal mean ranks. The significance level was set to be α = 0.05. 
For breast neoplasms, there were 145 confirmed candidate miRNAs 
and 148 unconfirmed ones (the scores can be found in Table S1). 
The predicted scores were higher for the confirmed group than for 
the unconfirmed group (means: 0.009386613 and 0.005127228, 
respectively; P  =  1.511e‐09). For colon neoplasms, there were 
145 confirmed candidate miRNAs and 346 unconfirmed ones (the 
scores can be found in Table S2). The predicted scores were higher 
for the confirmed group than for the unconfirmed group (means: 
0.0009716386 and 0.0001703209, respectively; P  < 2.2e‐16). For 
oesophageal neoplasms, there were 208 confirmed candidate miR‐
NAs and 213 unconfirmed ones (the scores can be found in Table 
S3). The predicted scores were higher for the confirmed group than 
for the unconfirmed group (means: 0.00471542 and 0.00225310, 
respectively; P < 2.2e‐16). It can be seen from the test results that 
across all three diseases the scores for confirmed and unconfirmed 
miRNAs were very different from each other.

The results of case studies on the three human diseases men‐
tioned above can well prove that KFRLSMDA had satisfactory 
prediction performance. Moreover, we prioritized the potentially as‐
sociated miRNAs for all the human diseases in HMDD database (see 

miRNA Evidence miRNA Evidence

hsa‐mir‐143 dbdemc; miR2Disease hsa‐mir‐498 miR2Disease

hsa‐mir‐20a dbdemc; miR2Disease hsa‐mir‐196a dbdemc; miR2Disease

hsa‐mir‐125b miR2Disease hsa‐mir‐137 dbdemc; miR2Disease

hsa‐mir‐18a Dbdemc hsa‐let‐7a dbdemc; miR2Disease

hsa‐mir‐19a dbdemc; miR2Disease hsa‐mir‐9 dbdemc; miR2Disease

hsa‐mir‐19b Dbdemc hsa‐mir‐127 dbdemc; miR2Disease

hsa‐mir‐223 dbdemc; miR2Disease hsa‐mir‐141 dbdemc; miR2Disease

hsa‐mir‐92a 22772712 hsa‐mir‐146a miR2Disease

hsa‐mir‐191 dbdemc; miR2Disease hsa‐mir‐200b miR2Disease

hsa‐mir‐34a dbdemc; miR2Disease hsa‐mir‐32 dbdemc; miR2Disease

hsa‐mir‐21 dbdemc; miR2Disease hsa‐mir‐10b dbdemc; miR2Disease

hsa‐mir‐155 dbdemc; miR2Disease hsa‐let‐7b dbdemc; miR2Disease

hsa‐mir‐16 miR2Disease hsa‐let‐7c miR2Disease

hsa‐mir‐31 dbdemc; miR2Disease hsa‐let‐7e miR2Disease

hsa‐mir‐218 miR2Disease hsa‐mir‐1 dbdemc

hsa‐mir‐132 Dbdemc hsa‐mir‐142 28622713

hsa‐mir‐95 dbdemc; miR2Disease hsa‐mir‐29a dbdemc; miR2Disease

hsa‐mir‐221 dbdemc; miR2Disease hsa‐mir‐424 miR2Disease

hsa‐mir‐29b dbdemc; miR2Disease hsa‐mir‐217 28105166

hsa‐mir‐125a dbdemc; miR2Disease hsa‐mir‐133b dbdemc; miR2Disease

hsa‐mir‐222 miR2Disease hsa‐mir‐107 dbdemc; miR2Disease

hsa‐mir‐135a miR2Disease hsa‐mir‐152 miR2Disease

hsa‐mir‐101 27435782 hsa‐mir‐22 miR2Disease

hsa‐mir‐34c dbdemc hsa‐mir‐30a dbdemc

hsa‐mir‐200c dbdemc; miR2Disease hsa‐mir‐200a 24504363

TA B L E  2  Prediction of the top 50 
predicted miRNAs associated with colon 
neoplasms based on known associations in 
HMDD database. The first column records 
top 1‐25 related miRNAs. The second 
column records the top 26‐50 related 
miRNAs
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Table S4). If one wants to know the predicted miRNAs associated 
with a specific disease, she or he could find them by searching that 
disease in the provided list. Besides, we also provided the code of 
KFRLSMDA to readers for easy use, which could be obtained from: 
https​://github.com/AnnaG​uan/KFRLSMDA. We hope that the pre‐
dictions of KFRLSMDA can be verified in future scientific researches.

In order to evaluate the prediction ability of KFRLSMDA in 
special diseases without any known related miRNAs, hepatocel‐
lular cancer is used as an example in our experiment. This cancer 
was chosen as the case study because it is a major cancer type 
and has been frequently used in previous literatures. Including it 
in our case studies would enable further comparison of different 
models’ predictive performance for the same disease. Basically, 
all miRNAs known to be related to hepatocellular cancer were re‐
moved and we predicted potential related miRNAs by using other 
diseases‐related miRNA information and similarity information. As 
a result, 10 out of the top 10 and 44 out of the top 50 predicted 
hepatocellular cancer‐related miRNAs were experimentally verified 
by reports from dbDEMC, miR2Disease and HMDD database (see 

Table 4). Among the six unconfirmed miRNAs, five were verified 
by more recent studies and their PMID is recorded in Table 4. For 
example, miR‐506 could inhibit the proliferation of hepatocellular 
carcinoma cells by targeting YAP mRNA 3'UTR region.67 Another 
example is that miR‐325 could suppress the cell invasion and pro‐
liferation of hepatocellular carcinoma through regulating HMGB1 
gene.68 Therefore, 49 of the top 50 candidate miRNAs for hepa‐
tocellular cancer were supported by either database or literature 
evidence. This cancer was also used as a case study in the literature 
for RLSMDA.33 Among the top 50 potential predictions, 36 miR‐
NAs were confirmed by at least one of the three databases. Thus, 
our model outperformed RLSMDA in terms of not only cross‐val‐
idation results, but also the case study results for hepatocellular 
cancer. Lastly, to validate the case study of hepatocellular cancer 
in our work, we checked whether a huge overlap existed between 
miRNAs associated with all diseases or at least some specific dis‐
eases in HMDD v2.0. If there were diseases highly correlated with 
hepatocellular cancer, it would not be a surprise for our model to be 
able to prioritize candidate miRNAs for this cancer, after removing 
them from the database. We analysed the correlation between each 
disease pair in HMDD v2.0 using Pearson correlation coefficients. 
The result was 73 153 correlation coefficients between all disease 
pairs among 383 diseases, and from this, we plotted a histogram 
for the distribution of the numbers as shown in Figure S1. It can 
be seen from the figure that the majority of disease pairs were not 
(or nearly not) correlated, as their correlation coefficients were 
close to 0. There were 709 disease pairs with a correlation above 
0.5 and 159 pairs with a correlation of 1. Hepatocellular cancer did 
not exist in either of these two high correlation groups. Its correla‐
tion coefficients with the rest 382 diseases are recorded in Figure 
S2. The minimum of its correlation with the rest 382 diseases was 
−0.08815373, the mean correlation was 0.09414086 and the max 
correlation was 0.4235775. Most of the correlation coefficients 
were within the interval [−0.125, 0.125]. Therefore, in HMDD v2.0 
there were not many highly correlated diseases and hepatocellu‐
lar cancer was not one of them. Using hepatocellular cancer as the 
fourth case study for assessing the applicability of KFRLSMDA to 
diseases without any known associated miRNAs was reliable. We 
developed KFRLSMDA and made predictions based on the assump‐
tion that similar diseases have a tendency to have associations with 
miRNAs with similar functions. It was the miRNA similarity network 
and the disease similarity network that enabled our model to prior‐
itize potential miRNA‐disease associations.

To further prove the effectiveness of our algorithm, we also 
used the old version of the HMDD (v1.0) data set, which consists of 
1395 miRNA‐disease associations. In this validation framework, we 
treat these 1395 known associations as training instances and apply 
KFRLSMDA to identify potential related miRNAs for lymphoma 
based on the associations. In HMDD v1.0, there was only one miRNA 
(miR‐379) associated with lymphoma, and 45 new miRNAs were 
added in HMDD v2.0. The reason for choosing this cancer was the 
same as that for hepatocellular cancer, and it turned out that 7 out 
of the top 10 and 38 out of the top 50 predicted lymphoma‐related 

TA B L E  3  Prediction of the top 50 predicted miRNAs associated 
with oesophageal neoplasms based on known associations in 
HMDD database. The first column records top 1‐25 related 
miRNAs. The second column records the top 26‐50 related miRNAs

miRNA Evidence miRNA Evidence

hsa‐mir‐18a dbDEMC hsa‐let‐7g dbDEMC

hsa‐mir‐17 dbDEMC hsa‐mir‐1 dbDEMC

hsa‐let‐7d dbDEMC hsa‐let‐7e dbDEMC

hsa‐mir‐19b dbDEMC hsa‐mir‐135a dbDEMC

hsa‐mir‐200b dbDEMC hsa‐let‐7f unconfirmed

hsa‐mir‐30c dbDEMC hsa‐mir‐32 dbDEMC

hsa‐mir‐191 dbDEMC hsa‐mir‐302d dbDEMC

hsa‐mir‐497 dbDEMC hsa‐mir‐498 dbDEMC

hsa‐mir‐448 dbDEMC hsa‐mir‐154 dbDEMC

hsa‐mir‐487b unconfirmed hsa‐mir‐30a dbDEMC

hsa‐mir‐379 dbDEMC hsa‐mir‐151 dbDEMC

hsa‐mir‐362 dbDEMC hsa‐mir‐107 dbdemc; 
miR2Disease

hsa‐mir‐16 dbDEMC hsa‐mir‐302c dbDEMC

hsa‐mir‐501 dbDEMC hsa‐mir‐302b dbDEMC

hsa‐mir‐30d dbDEMC hsa‐mir‐431 dbDEMC

hsa‐mir‐125b dbDEMC hsa‐let‐7i dbDEMC

hsa‐mir‐376c unconfirmed hsa‐mir‐153 dbDEMC

hsa‐mir‐221 dbDEMC hsa‐mir‐299 dbDEMC

hsa‐mir‐495 dbDEMC hsa‐mir‐222 dbDEMC

hsa‐mir‐127 dbDEMC hsa‐mir‐370 dbDEMC

hsa‐mir‐96 dbDEMC hsa‐mir‐338 dbDEMC

hsa‐mir‐122 unconfirmed hsa‐mir‐182 dbDEMC

hsa‐mir‐218 unconfirmed hsa‐mir‐629 unconfirmed

hsa‐mir‐335 dbDEMC hsa‐mir‐199b dbDEMC

hsa‐mir‐429 dbDEMC hsa‐mir‐660 dbDEMC

https://github.com/AnnaGuan/KFRLSMDA
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miRNAs were experimentally verified by reports from dbDEMC, 
miR2Disease and HMDD v2.0 databases (see Table 5). Among the 
12 unconfirmed miRNAs, miR‐128b was found to be down‐regulated 
in classic Hodgkin lymphoma (cHL) with Epstein‐Barr virus (EBV) 69; 
miR‐142‐5p, the 5p arm of miR‐142, suppressed the proapoptotic 
gene TP53INP1 as its target and played a pivotal role in the patho‐
genesis of gastric MALT lymphoma.70 The PMIDs of the supporting 
literatures for these two miRNAs are recorded in Table 5. Therefore, 
40 of the top 50 candidate miRNAs for lymphoma were supported 
by either database or literature evidence.

3  | DISCUSSION

To date, many computational methods have been proposed to 
predict the potential associations between miRNAs and diseases. 
It is widely believed that computational models could yield the 
most potential miRNAs related to human diseases and are a valu‐
able complementary tool for experimental methods.28,32,71-73 To 
more accurately predict potential miRNA‐disease associations, we 

presented a computational model named KFRLSMDA involving di‐
verse data sets: miRNA functional similarity, disease semantic simi‐
larity, miRNA‐disease associations and Gaussian interaction profile 
kernel similarity for miRNAs and diseases. We first applied kernel 
fusion technique to fuse similarity matrices for miRNA and disease, 
and then utilized regularized least square algorithm to predict the 
final result based on two fused matrices. KFRLSMDA exhibited 
excellent prediction performance in LOOCV and 5‐fold cross‐vali‐
dation. In case studies, the most of predicted miRNAs potentially 
associated with five important human diseases were verified by the 
experimental literatures. The results from cross‐validation and case 
studies proved that KFRLSMDA was effective in predicting potential 
miRNA‐disease associations.

We believe that the following factors are the main reasons for 
KFRLSMDA’s reliable performance. First, although other meth‐
ods are also using HMDD, our model was the first to apply the 
fusion technique that integrated multiple data sets in a novel way. 
KFRLSMDA fused the miRNA functional similarity matrix and 
Gaussian interaction profile kernel similarity matrix together instead 
of simply average these two matrices, and the same was true with 

TA B L E  4  Prediction of the top 50 predicted miRNAs associated with hepatocellular cancer by removing miRNAs known related to 
hepatocellular cancer and predicting potential related miRNAs using other diseases‐related miRNAs. The first column records top 1‐25 
related miRNAs. The second column records the top 26‐50 related miRNAs

miRNA Evidence miRNA Evidence

hsa‐mir‐21 miR2Disease; HDMM hsa‐mir‐16 dbDEMC; miR2Disease; HDMM

hsa‐mir‐210 dbDEMC; HDMM hsa‐mir‐183 miR2Disease; HDMM

hsa‐let‐7b miR2Disease; HDMM hsa‐mir‐325 26194496

hsa‐mir‐122 dbDEMC; miR2Disease; HDMM hsa‐mir‐137 miR2Disease

hsa‐mir‐200b miR2Disease; HDMM hsa‐mir‐148b dbDEMC; miR2Disease; HDMM

hsa‐mir‐223 miR2Disease; HDMM hsa‐mir‐34c HDMM

hsa‐mir‐200a dbDEMC; miR2Disease; HDMM hsa‐let‐7a dbDEMC; miR2Disease; HDMM

hsa‐mir‐29a dbDEMC; HDMM hsa‐mir‐1207 27461404

hsa‐mir‐203 miR2Disease; HDMM hsa‐mir‐93 dbDEMC; miR2Disease; HDMM

hsa‐mir‐24 miR2Disease; HDMM hsa‐mir‐133b HDMM

hsa‐mir‐10b HDMM hsa‐mir‐26b dbDEMC; miR2Disease

hsa‐let‐7i dbDEMC; HDMM hsa‐mir‐151a HDMM

hsa‐mir‐126 dbDEMC; miR2Disease; HDMM hsa‐mir‐204 27748572

hsa‐mir‐200c HDMM hsa‐mir‐486 HDMM

hsa‐mir‐375 HDMM hsa‐mir‐20a dbDEMC; miR2Disease; HDMM

hsa‐mir‐15b dbDEMC; HDMM hsa‐mir‐218 HDMM

hsa‐mir‐506 25087998 hsa‐mir‐302a unconfirmed

hsa‐mir‐25 dbDEMC; miR2Disease; HDMM hsa‐mir‐145 dbDEMC; miR2Disease; HDMM

hsa‐mir‐30a miR2Disease; HDMM hsa‐mir‐629 HDMM

hsa‐mir‐17 miR2Disease; HDMM hsa‐mir‐221 dbDEMC; miR2Disease; HDMM

hsa‐mir‐7 HDMM hsa‐mir‐372 HDMM

hsa‐mir‐155 dbDEMC; miR2Disease; HDMM hsa‐mir‐424 dbDEMC

hsa‐mir‐214 dbDEMC; miR2Disease; HDMM hsa‐mir‐95 27698442

hsa‐mir‐124 miR2Disease; HDMM hsa‐mir‐9 miR2Disease

hsa‐mir‐519d HDMM hsa‐mir‐182 miR2Disease; HDMM
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diseases. The weighted combination of fusion results that were ob‐
tained in miRNA and disease spaces, respectively, improved predic‐
tive accuracy. Second, a loose diffusion technique was adopted to 
emphasize the effect of neighbours on a global network, which helps 
us make the best of similarity information. Besides, KFRLSMDA was 
based on the known miRNA‐disease associations in HMDD data‐
base. A cornucopia of known associations could assure us the effi‐
ciency of the predictions in KFRLSMDA. Last but not least, negative 
associations, as required in some previous models, were not needed 
in our model.

However, we should admit that there still exist several limita‐
tions in KFRLSMDA. Firstly, KFRLSMDA had several parameters 
and how to choose the suitable values for these parameters was not 
yet solved. It is hoped that, in the future we could find a way to 
directly obtain the optimal values for these parameters. Secondly, 
although there were 5430 known miRNA‐disease associations 
within the possible exploration spaces of 495 miRNAs and 383 dis‐
eases so far, we still think the current HMDD database was insuf‐
ficient for a comprehensive analysis. The more known associations 
are confirmed in the future, the more accurate KFRLSMDA model 
will become. Thirdly, KFRLSMDA might cause bias to miRNAs with 

more associated disease records and diseases with more associated 
miRNA records. Lastly, in this study we focused on cancers in our 
case studies because cancers are clinically significant and impose 
great threats to people's health and life expectancy. In addition, 
most studies published so far were related to miRNA’s regulatory 
roles in various human cancers. HMDD, miR2Disease and dbDEMC 
databases were constructed from the data sets presented in these 
studies. As a result, the data we used to train and test KFRLSMDA 
were largely cancer‐related by nature. The research findings in this 
work are significant to the precision treatment in cancer, as some of 
the most possible cancer‐related miRNAs could be further investi‐
gated to link their targets to cancer hallmarks, which would be good 
complements to the gene biomarkers in oncology study.74 In addi‐
tion to cancer, we hope for more literatures covering other disease 
types to be released in the future so that our analysis could encom‐
pass more disease types. It has been brought up for discussion that 
using enough prior knowledge could help us better develop predic‐
tive models, just like the tumour genome sequencing data used in 
the establishment of models based on cancer hallmark network.75 
Considering this, we expect that more experimental and clinical 
data about disease‐associated miRNAs could be collected in future 

TA B L E  5  Prediction of the top 50 predicted miRNAs associated with lymphoma based on the old version of HDMM. The first column 
records top 1‐25 related miRNAs. The second column records the top 26‐50 related miRNAs

miRNA Evidence miRNA Evidence

hsa‐mir‐34a dbDEMC hsa‐mir‐150 dbDEMC; miR2Disease; HDMM

hsa‐mir‐155 dbDEMC; miR2Disease; HDMM hsa‐mir‐378 unconfirmed

hsa‐mir‐125b Unconfirmed hsa‐mir‐96 dbDEMC

hsa‐mir‐9 dbDEMC hsa‐mir‐451 dbDEMC

hsa‐mir‐221 dbDEMC; miR2Disease hsa‐mir‐206 dbDEMC

hsa‐mir‐21 dbDEMC; miR2Disease; HDMM hsa‐mir‐128b unconfirmed

hsa‐mir‐26b dbDEMC hsa‐mir‐421 unconfirmed

hsa‐mir‐33a dbDEMC hsa‐mir‐183 dbDEMC

hsa‐mir‐216a Unconfirmed hsa‐mir‐198 dbDEMC

hsa‐mir‐220 Unconfirmed hsa‐mir‐192 dbDEMC

hsa‐mir‐33b dbDEMC hsa‐mir‐30d dbDEMC

hsa‐mir‐216b Unconfirmed hsa‐mir‐340 dbDEMC

hsa‐mir‐29b dbDEMC hsa‐mir‐31 dbDEMC

hsa‐mir‐146a dbDEMC; HDMM hsa‐let‐7a dbDEMC

hsa‐mir‐30e dbDEMC hsa‐mir‐142 23209 50

hsa‐mir‐197 dbDEMC hsa‐mir‐561 unconfirmed

hsa‐mir‐128a 20237425 hsa‐mir‐455 unconfirmed

hsa‐mir‐7 dbDEMC hsa‐mir‐106b dbDEMC

hsa‐mir‐124 dbDEMC; HDMM hsa‐mir‐24 dbDEMC; HDMM

hsa‐mir‐222 dbDEMC hsa‐mir‐15b dbDEMC

hsa‐mir‐27b dbDEMC hsa‐mir‐491 unconfirmed

hsa‐mir‐181c dbDEMC hsa‐mir‐223 dbDEMC

hsa‐mir‐29a dbDEMC hsa‐let‐7e dbDEMC; miR2Disease

hsa‐mir‐195 dbDEMC hsa‐mir‐181b dbDEMC

hsa‐mir‐29c dbDEMC; HDMM hsa‐mir‐133b dbDEMC; HDMM
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research. For example, we would consider adding the difference be‐
tween tissue‐specific expression of miRNAs to our model.

4  | MATERIAL S AND METHODS

As has been mentioned in the RESULT section, KFRLSMDA took 
three input data sets, namely, the miRNA‐disease associations, the 
miRNA functional similarity and the disease semantic similarity. The 
miRNA‐disease association data would firstly be used to generate 
the Gaussian interaction profile kernel similarity and would then 
be combined with this kernel similarity to construct a classifier in 
the miRNA space and another classifier in the disease space. Each 
classifier would calculate association scores for all miRNA‐disease 
pairs. Finally, the weighted average of the two classifiers’ predictions 
would be computed to give the final association scores. The higher a 
miRNA‐disease pair's score was, the more likely the pair was associ‐
ated. This Materials and Methods section will (a) introduce in detail 
the three input data sets, (b) explain the formation of the Gaussian 
interaction profile kernel similarity and (c) elaborate the computa‐
tional steps of KFRLSMDA.

4.1 | Human miRNA‐disease associations

The miRNA‐disease association data were the first input data set of 
our model. As with previous studies,27,30,33,41,43 we used HMDD v2.0 
38 as the training database to learn KFRLSMDA for cross‐validations 
and case studies, and adopted miR2Disease 45 and dbDEMC 44 as 
the evidence databases for case studies. The known miRNA‐disease 
associations were downloaded from HMDD v2.0 database, which 
consisted of 5430 distinct known miRNA‐disease associations, 495 
miRNAs and 383 diseases. An adjacency matrix M was constructed 
to represent known miRNA‐disease associations. To be specific, the 
value of M (i,j) is one if and only if miRNA m (i) is verified to be associ‐
ated with disease d (j) in the database and the value of M (i,j) is zero 
otherwise. Also, nm represents the number of miRNAs in HMDD da‐
tabase and nd represents the number of diseases.

4.2 | MiRNA functional similarity

The second input data set, miRNA functional similarity matrix SM, 
was obtained from Wang et al’s work,76 available at http://www.cui‐
lab.cn/files/​image​s/cuila​b/misim.zip. The functional similarity score 
for each miRNA pair was calculated based on the assumption that 
miRNAs with similar functions have a tendency to have associations 
with similar diseases. SM was calculated from known miRNA‐disease 
associations. If the set of diseases that a miRNA played a role to reg‐
ulate is similar to the set of disease for another miRNA, the two miR‐
NAs would have a high degree of functional similarity; and if the two 
sets were dislike, the two miRNAs would be given a low similarity 
score. Each element in SM was represented by SM (i,j), the functional 
similarity score between miRNAs m (i) and m (j).

4.3 | Disease semantic similarity

The third input data set was the disease semantic similarity, which 
we obtained from 27 and was calculated by describing each disease 
as a directed acyclic graph (DAG) according to the disease MeSH 
descriptors from the National Library of Medicine (http://www.nlm.
nih.gov). In a DAG, the nodes denoted the disease itself as well as its 
ancestor diseases, while the links between the parent nodes and the 
children nodes represented the relationship between diseases. To 
illustrate this, disease D could be described as DAG(D)=(D,T(D),E(D)), 
where T(D) was the node set including D and its ancestors and E(D) 
was the corresponding link set.

We defined the contribution of disease d in DAG(D) to the se‐
mantic value of disease D as follows:

where δ was the semantic contribution factor fixed in optimization 
and equal to 0.5.27 The distance between disease d and D was in‐
versely proportional to the contribution score for disease d. We de‐
fined the semantic value of disease D as follows:

Intuitively, if two diseases had larger shared part of their DAGs, 
they should have higher similarity score. In this regard, the semantic 
similarity between disease d (i) and d (j) was defined as follows:

The resulting matrix SD was the disease semantic similarity.

4.4 | Gaussian interaction profile kernel similarity

Inspired by the literature,77 we computed the Gaussian interaction 
profile kernel similarity for diseases and miRNAs to capture the key 
features of the miRNA‐disease association data. Construction of this 
kernel similarity was based on the assumption that similar diseases tend 
to have associations with miRNAs with similar functions. Binary vector 
IP (d (u)) was defined to represent the interaction profiles of disease 
d (u) by observing whether there were known associations between 
disease d (u) and each miRNA. In this regard, we defined the Gaussian 
interaction profile kernel similarity for diseases d (u) and d (v) as:

where �d was a parameter used for kernel bandwidth control, which 
could be acquired by normalizing a new bandwidth parameter � ′

d
 by the 

average number of associated miRNAs for each disease.

(1)
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http://www.nlm.nih.gov
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In the same way, the Gaussian interaction profile kernel similarity 
between miRNA m (i) and m (j) was defined as:

Together with the abovementioned three input data sets, matri‐
ces KD and KM calculated from Equations (4) and (6) were also fed into 
KFRLSMDA to facilitate subsequent computational steps.

4.5 | KFRLSMDA

We developed the computational model of KFRLSMDA by combining 
the miRNA‐disease association data, the miRNA functional similarity, 
the disease semantic similarity and the Gaussian interaction profile 
kernel similarity to predict potential miRNA‐disease associations 
(see Figure 2). Basically, our algorithm was divided into three parts, 
namely, kernel fusion of data sets, regularized least squares classifiers 
in the miRNA and disease spaces, and ensemble of the two classifiers.

4.5.1 | Kernel fusion of data sets

Instead of simply integrating similarity matrices using linear combi‐
nation like many previous studies in computational biology, here we 

adopted nonlinear kernel fusion on our data sets. To be more spe‐
cific, kernel fusion was carried out in both the miRNA space (involv‐
ing SM and KM) and the disease space (involving SD and KD).

In the miRNA space, we firstly made SM positive semi‐definite 
by adding an identity matrix using the formula KSM=

(
SM+�∗ ISM

)

, where ISM was the identity matrix with the same size as SM 77 
and ε was a small positive value assumed to be 0.1 (and could 
be optimized further). Secondly, KSM was row‐normalized so that 
each row could sum up to one, and its symmetric version PM1 was 
obtained by taking the average of KSM and its transpose. Thirdly, 
the local similarity matrix for PM1 was calculated by the following 
equation

where Ni denoted the nearest neighbours of the current disease d (i). 
In our work, we used four nearest neighbours (k = 4). This matrix LM1 
captured the local information of PM1. In addition, we also calculated 
a row‐normalized symmetric version of KM, which was denoted by 
PM2; and we obtained the local similarity matrix LM2 according to 
Equation (8).

Inspired by Tu et al,78 in the ensuing step we iteratively updated 
PM1 and PM2 according to.

(5)�d= � �
d
∕(

1

nd

nd∑
u=1

||IP(d(u))||2)

(6)KM (m (i) ,m (j))=exp (−�m||;IP (m (i))− IP
(
m (j) ||2

)

(7)�m= �
�

m
∕

(
1

nm

nm∑
i=1

||IP(m(i))||2
)

(8)LM1 (i,j)=

⎧
⎪⎨⎪⎩

PM1(i,j)∑
k∈Ni

PM1(i,k)
, k∈Ni

0, otherwise

(9)PM
(t+1)
1

=LM1PM
(t)

2
(LM1)

T

(10)PM
(t+1)
2

=LM2PM
(t)

1
(LM2)

T

F I G U R E  2  Flow chart of KFRLSMDA model to predict the potential miRNA‐disease associations
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This update was the key step of kernel fusion. Here, PM(t+1)
1

 was 

the status matrix of KSM after t iterations and PM
(t+1)
2

 was the status 
matrix of KM. As has been pointed out by Tu et al,78 the process above 
could loosely be considered as a diffusion process. Notice that, at 
the end of each iteration, both status matrices were further changed 
as they were added by an identity matrix. In the next iteration, the 
generated matrices were further used. The iteration step could be 
set by the user, and we set to 2 in our study. After the iterations, the 
two final status matrices were averaged KM

kf
=PM

(t)

1
+PM

(t)

2
 and then 

KM
kf
 was row‐normalized. Here, M was the shorthand for miRNAs, 

meaning KM
kf
 was the kernel fusion matrix in the miRNA space. Finally, 

we further transformed the resulting matrix by KM
kf
= (KM

kf
+
(
KM
kf
)T+ I

)
∕2

, which was the final fusion matrix. The fusion steps are illustrated in 
the left part of Figure 2. We computed the fusion matrix KD

kf
 in the 

disease space in the same way (as depicted in the right part of 
Figure 2).

4.5.2 | Regularized Least Squares Classifiers in the 
MiRNA and Disease Spaces

After kernel fusion, we further used regularized least squares (RLS)79 
to construct the two classifiers in the miRNA and disease spaces, 
respectively. In the miRNA space, the RLS classifier was obtained by 
defining a cost function to minimize.

where || ∙ ||F was the Frobenius norm and �M was the trade‐off param‐
eter. Fortunately, this optimization problem had closed‐form solution:

where IM was the identity matrix with the same size as matrix KM
kf

. F∗
M

 
was the final RLS classifier in the miRNA space. Similarly, we could ac‐
quire the classifier F∗

D
 in the disease space as follows

where ID was the identity matrix with the same size as matrix KD
kf
. Here, 

we set the two trade‐off parameter �Mand�D as 0.3, respectively, ac‐
cording to previous work.79

4.5.3 | Ensemble of two classifiers

As the last step, F∗
M

 and F∗
D
 were combined in a simple weighted aver‐

age operation:

F∗ was the output of the trained model and could be used to 
make miRNA‐disease association prediction. The entity in row i  col‐
umn j of F∗ was denoted by F∗ (i,j), which represented the associ‐
ation score for miRNA j and disease i . The higher the score was, 
the more probably this miRNA‐disease pair would be associated. The 

value of � could be optimized from 0 to 1 using grid search method. 
Here, we set �=0.1, which could be regarded as the start point.
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