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Abstract
Accumulating	 experimental	 evidence	 has	 demonstrated	 that	 microRNAs	 (miRNAs)	
have	a	huge	impact	on	numerous	critical	biological	processes	and	they	are	associated	
with	 different	 complex	 human	 diseases.	Nevertheless,	 the	 task	 to	 predict	 potential	
miRNAs	 related	 to	 diseases	 remains	 difficult.	 In	 this	 paper,	 we	 developed	 a	 Kernel	
Fusion‐based	 Regularized	 Least	 Squares	 for	MiRNA‐Disease	 Association	 prediction	
model	(KFRLSMDA),	which	applied	kernel	fusion	technique	to	fuse	similarity	matrices	
and	 then	utilized	 regularized	 least	 squares	 to	predict	potential	miRNA‐disease	asso‐
ciations.	To	prove	the	effectiveness	of	KFRLSMDA,	we	adopted	leave‐one‐out	cross‐
validation	(LOOCV)	and	5‐fold	cross‐validation	and	then	compared	KFRLSMDA	with	
10	 previous	 computational	 models	 (MaxFlow,	MiRAI,	MIDP,	 RKNNMDA,	MCMDA,	
HGIMDA,	RLSMDA,	HDMP,	WBSMDA	and	RWRMDA).	Outperforming	other	mod‐
els,	KFRLSMDA	achieved	AUCs	of	0.9246	in	global	LOOCV,	0.8243	in	 local	LOOCV	
and	average	AUC	of	0.9175	±	0.0008	 in	5‐fold	cross‐validation.	 In	addition,	 respec‐
tively,	96%,	100%	and	90%	of	the	top	50	potential	miRNAs	for	breast	neoplasms,	colon	
neoplasms	and	oesophageal	neoplasms	were	confirmed	by	experimental	discoveries.	
We	also	predicted	potential	miRNAs	related	to	hepatocellular	cancer	by	removing	all	
known	related	miRNAs	of	this	cancer	and	98%	of	the	top	50	potential	miRNAs	were	
verified.	Furthermore,	we	predicted	potential	miRNAs	related	to	lymphoma	using	the	
data	set	 in	the	old	version	of	the	HMDD	database	and	80%	of	the	top	50	potential	
miRNAs	were	confirmed.	Therefore,	it	can	be	concluded	that	KFRLSMDA	has	reliable	
prediction	performance.
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1  | INTRODUC TION

A	microRNA	(miRNA)	is	a	small	non‐coding	RNA	molecule	(contain‐
ing	about	22	nucleotides)	found	in	plants,	animals	and	some	viruses,	
and	 functions	 in	RNA	silencing	 and	post‐transcriptional	 regulation	
of	gene	expression.1,2	While	miRNAs	are	usually	located	within	the	
cell,	 some	miRNAs	 have	 also	 been	 discovered	 in	 extracellular	 en‐
vironment.3	The	miRNAs	in	distinct	tissues	and	growth	stages	can	
differ	significantly	and	thus	may	have	different	spatial	and	temporal	
expression	patterns.4	It	is	commonly	believed	that	these	small	mol‐
ecules	have	a	wide	range	of	regulation	effects	on	eukaryotic	gene	
expression	 based	 on	 a	 cornucopia	 of	 experiments.5	 Accumulating	
evidence	revealed	that	miRNAs	are	important	components	in	cells,	
which	 could	 play	 significant	 roles	 in	multiple	 biological	 processes,	
including	 cell	 proliferation,6	 development,7	 differentiation,8	 signal	
transduction	9	and	viral	 infection.8	Furthermore,	miRNAs	play	cru‐
cial	 roles	 in	 the	 regulation	 of	 stem	 cell	 progenitors	 differentiating	
into	 adipocytes.10	 Therefore,	 it	 is	 no	 surprise	 that	 the	 dysregula‐
tion	of	miRNAs	is	related	to	a	number	of	human	complex	diseases.	
The	 first	 human	disease	discovered	 to	 be	 associated	with	dysreg‐
ulation	of	miRNAs	 is	chronic	 lymphocytic	 leukaemia.11	Since	 then,	
many	miRNAs	 also	 have	 been	 verified	 to	 have	 links	with	 cancers.	
For	instance,	the	levels	of	mir‐27b	and	miR‐134	were	found	signifi‐
cantly	lower	in	lung	tumours	than	normal	tissue,	indicating	that	they	
have	association	with	 lung	cancer.12	Also,	five	members	of	the	mi‐
croRNA‐200	 family	 (miR‐200a,	 miR‐200b,	 miR‐200c,	 miR‐141	 and	
miR‐429)	 are	 all	 down‐regulated	 in	 tumour	 progression	 of	 breast	
cancer.13	In	addition	to	cancers,	studies	have	shown	that	a	mutation	
in	the	seed	region	of	miR‐96	caused	hereditary	progressive	hearing	
loss	14	and	a	mutation	in	the	seed	region	of	miR‐184	caused	heredi‐
tary	keratoconus	with	anterior	polar	cataract.15	Although	scientists	
have	 already	 discovered	 plenty	 of	 associations	 between	 miRNAs	
and	 diseases,	 we	 should	 be	 aware	 that	 it	 is	 extremely	 expensive	
and	 time‐consuming	 to	 identify	 the	 associations	 by	 just	 applying	
experimental	methods	for	each	candidate	association.	As	currently	
there	are	plenty	of	miRNA‐related	data	sets	available,	computational	
methods	can	be	applied	to	predict	the	potential	miRNA‐disease	as‐
sociations.	So	far,	computational	methods	have	been	proven	to	be	
efficient	 in	predicting	miRNA‐disease	associations	in	that	they	can	
select	the	most	promising	candidate	miRNAs	for	further	experimen‐
tal	studies.	But	it	is	still	necessary	for	us	to	make	further	efforts	and	
develop	more	 effective	 computational	 models	 for	 miRNA‐disease	
association	prediction.

There	are	many	computational	methods	proposed	to	predict	the	
potential	associations	between	miRNAs	and	diseases,	most	of	which	
are	developed	based	on	 the	 assumption	 that	miRNAs	with	 similar	
functions	are	more	likely	to	have	connections	with	diseases	of	sim‐
ilar	 phenotypes.16‐21	 Every	 time	 a	 new	 model	 was	 proposed,	 the	
prediction	accuracy	would	be	increased.	In	2010,	a	hypergeometric	
distribution‐based	model	was	presented	by	Jiang	et al 22	to	predict	
miRNA‐disease	 associations,	 where	 disease	 phenotype	 similarity,	
miRNA	functional	similarity	and	known	human	disease‐miRNA	asso‐
ciations	were	integrated.	In	2013,	Shi	et al 23	used	the	information	of	

proteins	as	a	bridge	between	miRNAs	and	diseases,	according	to	the	
fact	that	miRNAs	whose	target	genes	are	related	to	certain	diseases	
are	more	likely	to	be	associated	with	these	diseases.	Their	model	im‐
plemented	random	walk	algorithm	on	a	protein‐protein	interaction	
(PPI)	network	and	utilized	miRNA‐target	interactions,	disease‐gene	
associations	and	PPI	 to	obtain	possible	associations	between	miR‐
NAs	and	diseases.	Furthermore,	in	2014,	Mork	et al 24	developed	a	
method	named	miRPD	where	protein‐disease	interactions	and	pro‐
tein‐miRNA	 interactions	were	combined,	 and	both	disease‐related	
miRNAs	and	potential	disease‐related	proteins	were	examined.	Later,	
Xu	et al 25	presented	a	miRNA	prioritization	method	that	evaluated	
the	similarity	between	miRNA	targets	and	disease	genes.	The	input	
data	sets	included	known	disease‐gene	associations	and	miRNA‐tar‐
get	 interactions;	 the	 known	miRNA‐disease	 association	data	were	
not	needed	in	this	approach.	Pasquier	et al 26	devised	a	model	named	
MiRAI	 to	 represent	 the	distributional	 information	on	miRNAs	 and	
diseases	in	a	high‐dimensional	vector	space.	The	vector	space	con‐
sisted	of	 the	miRNA‐disease	association	matrix,	 the	miRNA‐neigh‐
bour	 association	matrix,	 the	miRNA‐target	 association	matrix,	 the	
miRNA‐word	association	matrix	and	 the	miRNA‐family	association	
matrix.	Singular	value	decomposition	 (SVD)	was	performed	on	the	
space	for	dimensionality	reduction,	and	the	association	score	for	a	
miRNA‐disease	pair	was	given	by	the	cosine	similarity	between	the	
miRNA	 in	 the	miRNA	 space	 and	 the	disease	 in	 the	disease	 space.	
However,	 all	 the	 above	methods	have	 a	 common	problem	of	 high	
false	 positives	 and	 false	 negatives	 in	 miRNA‐target	 interactions,	
which	resulted	in	a	huge	reduction	of	prediction	accuracy.

To	address	the	problem,	several	other	researchers	avoided	using	
miRNA‐target	 interactions	 in	 computational	models.	 Instead,	 they	
built	models	 from	the	known	miRNA‐disease	association	data,	 the	
miRNA	similarity	(a	measure	that	quantifies	the	similarity	between	
two	miRNAs)	and	 the	disease	similarity	 (a	measure	 that	quantifies	
the	similarity	between	two	diseases).	In	2013,	Xuan	et al 27	proposed	
a	 model	 named	 HDMP	 that	 analysed	 disease‐related	 miRNAs	 by	
considering	 the	miRNAs’	 k	most	 similar	 neighbours	 in	 the	miRNA	
similarity	network.	HDMP	assigned	higher	weights	to	miRNAs	in	the	
same	cluster	or	family,	and	higher	weights	would	indicate	a	greater	
association	probability	between	miRNAs	and	diseases.	HDMP	was	
a	pioneering	work	in	the	topic	of	miRNA‐disease	association	infer‐
ence.	Nonetheless,	it	had	a	major	drawback	that	it	would	fail	to	work	
when	applied	 to	new	diseases	without	 known	 related	miRNAs,	 as	
it	 heavily	 relied	on	 the	neighbours	of	 the	miRNAs.	 In	2012,	Chen	
et al 28	 introduced	Random	Walk	with	Restart	 for	MiRNA‐Disease	
Association	 prediction	 (RWRMDA),	 which	 combined	 the	 miRNA	
similarity	 and	 known	miRNA‐disease	 associations	 to	make	 predic‐
tions.	As	global	similarity	measures	were	superior	to	local	similarity	
measures	(as	had	been	used	in	HDMP	and	others)	in	making	predic‐
tions,	 the	performance	of	RWRMDA	was	better	 than	 that	of	 pre‐
vious	models.	However,	 like	HDMP,	this	method	could	not	predict	
miRNAs	associated	with	new	diseases	without	 any	 known	 related	
miRNAs,	either.	To	solve	this	issue,	Chen	et al 29	developed	Within	
and	 Between	 Score	 for	 MiRNA‐Disease	 Association	 prediction	
(WBSMDA)	where	an	 integrated	miRNA	similarity	network	and	an	
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integrated	 disease	 similarity	 network	were	 constructed	 to	 exploit	
both	 the	 local	 and	 global	 information.	 The	 major	 contribution	 of	
WBSMDA	was	 that	 it	 could	 effectively	 predict	 potential	 miRNAs	
related	to	new	diseases	without	known	associated	miRNAs	and	po‐
tential	diseases	related	to	new	miRNAs	without	known	associated	
diseases.	 In	2016,	Chen	et al 30	presented	one	more	model	named	
Heterogeneous	 Graph	 Inference	 for	 MiRNA‐Disease	 Association	
prediction	(HGIMDA)	that	built	a	heterogeneous	graph	and	achieved	
a	better	prediction	performance	than	WBSMDA.	In	the	graph,	po‐
tential	association	between	a	miRNA‐disease	pair	could	be	inferred	
from	an	iterative	equation.	In	2018,	Chen	et al 21	put	forward	a	novel	
calculation	method	 of	 Ensemble	 Learning	 and	 Link	 Prediction	 for	
miRNA‐Disease	 Association	 prediction	 (ELLPMDA),	 in	 which	 they	
gained	final	scores	for	the	novel	miRNA‐disease	associations	through	
weighted	 combining	 the	 three	 outcomes	 obtained	 from	 common	
neighbours,	Jaccard	index	and	Katz	index,	respectively.	In	the	same	
year,	Chen	et al 31	 further	 introduced	a	model	of	 Inductive	Matrix	
Completion	 for	MiRNA‐Disease	Association	 prediction	 (IMCMDA)	
through	 implementing	 the	 low‐rank	 inductive	 matrix	 completion	
method	on	the	basis	of	the	data	set	of	known	miRNA‐disease	associ‐
ations,	miRNA	similarity	and	disease	similarity.

Apart	 from	 the	 aforementioned	 methods,	 there	 are	 computa‐
tional	models	developed	based	on	machine	learning	algorithms.	For	
example,	Xu	et al 32	presented	a	miRNA‐target‐dysregulated	network	
(MTDN)	that	involved	miRNA‐target	interactions	and	mRNA	expres‐
sion	profiles.	A	support	vector	machine	(SVM)	classifier	was	utilized	
to	separate	positive	miRNA‐disease	associations	from	negative	ones.	
The	weakness	of	the	model,	however,	was	that	inappropriate	nega‐
tive	samples	could	easily	affect	the	model's	performance.	Currently,	
acquiring	 truly	negative	miRNA‐disease	associations	 remains	diffi‐
cult.	 In	2014,	Chen	et al 33	 introduced	a	model	named	Regularized	
Least	Squares	for	MiRNA‐Disease	Association	prediction	(RLSMDA)	
where	 semi‐supervised	 learning	 on	 the	miRNA/disease	 space	was	
implemented.	However,	it	should	be	noted	that	it	is	usually	hard	to	
find	appropriate	parameters	for	the	model	and	difficult	to	integrate	
the	classifiers	from	miRNA	space	and	disease	space.	In	addition	to	
RLSMDA,	Chen	et al 34	also	developed	another	computational	model	
named	Restricted	Boltzmann	Machine	for	Multiple	types	of	MiRNA‐
Disease	Association	prediction	(RBMMMDA),	the	core	of	which	was	
restricted	Boltzmann	machine	(RBM),	a	two‐layer	undirected	graph‐
ical	model	consisting	of	layers	of	visible	and	hidden	units.	Innovation	
of	RBMMMDA	lays	in	its	capability	of	predicting	both	novel	miRNA‐
disease	associations	and	the	corresponding	association	types.

In	addition	to	the	above	miRNA‐disease	association	prediction	
models,	 similar	 research	 has	 been	 carried	 out	 in	 other	 link	 pre‐
diction	 tasks	 that	 involved	 genes	 and	miRNAs.	Marbach	 et al 35 
sought	 to	 build	 a	 community	model	 from	 the	 ensemble	 of	 over	
30	gene	network	inference	methods	including	regression,	mutual	
information,	correlation,	Bayesian	networks,	meta	predictors	and	
heterogeneous	approaches.	Experiments	showed	that	 the	model	
exhibited	 more	 robustness	 and	 higher	 predictive	 performance	
than	 any	 single	method	 across	 diverse	 gene	 regulatory	 network	
data	 sets.	Moreover,	 Pio	 et al 36	 presented	Co‐clustered	miRNA	

Regulatory	 Networks	 (ComiRNet)	 where	 a	 web‐based	 database	
was	developed	to	facilitate	analysis	on	miRNA‐gene	target	 inter‐
actions.	The	database	consists	of	data	generated	collectively	by	a	
semi‐supervised	classifier	combining	several	prediction	algorithms	
and	 a	 biclustering	 algorithm	 named	 HOCCLUS2.	 Storing	 nearly	
five	million	predicted	miRNA‐gene	target	interactions,	ComiRNet	
could	 serve	 as	 a	 useful	 tool	 for	 miRNA	 functionality	 research.	
In	 a	more	 recent	work,	Ceci	et al 37	 proposed	 a	 gene	 regulatory	
network	 reconstruction	model	 that	 exploited	 a	 semi‐supervised	
multi‐view	ensemble	learning	algorithm	via	iteratively	integrating	
predictions	from	multiple	inference	methods.	Despite	an	increased	
computational	complexity	as	a	result	of	the	integration,	the	model	
reconstructed	gene	networks	at	a	higher	accuracy	and	exhibited	a	
better	predictive	performance	in	case	studies	than	other	methods.	
From	the	performance	of	these	three	models,	it	can	be	concluded	
that	 ensemble	 approach	 leverages	 the	 advantages	 of	 individual	
methods	and	thus	is	a	powerful	tool	for	link	prediction.

In	 this	 paper,	we	presented	 such	 an	ensemble‐based	model	 to	
push	the	miRNA‐disease	association	prediction	accuracy	to	the	next	
level.	The	model	was	named	Kernel	Fusion‐based	Regularized	Least	
Squares	for	MiRNA‐Disease	Association	prediction	(KFRLSMDA)	as	
it	 used	 regularized	 least	 squares	 algorithm	based	on	kernel	 fusion	
technique.	In	our	model,	miRNA	functional	similarity,	disease	seman‐
tic	similarity,	Gaussian	 interaction	profile	kernel	similarity	 for	both	
miRNAs	and	diseases,	and	 the	known	miRNA‐disease	associations	
were	integrated	to	predict	the	potential	miRNA‐disease	associations.	
To	prove	the	effectiveness	of	KFRLSMDA,	global	and	local	LOOCV	
as	well	 as	5‐fold	 cross‐validation	were	 carried	out;	 and	 the	model	
outperformed	previous	ones	in	all	cross‐validations.	In	case	studies,	
the	majority	of	 the	 top	10	and	 top	50	predictions	 for	breast	neo‐
plasms,	colon	neoplasms,	and	oesophageal	neoplasms,	hepatocellu‐
lar	cancer	and	lymphoma	obtained	by	KFRLSMDA	were	confirmed	
by	 biological	 evidence.	 These	 experimental	 results	 demonstrated	
that	 KFRLSMDA	was	 effective	 in	 predicting	 potential	miRNA‐dis‐
ease	associations	and	superior	to	previous	methods.

2  | RESULTS

2.1 | Brief Introduction to KFRLSMDA

KFRLSMDA	was	based	on	a	semi‐supervised	ensemble	learning	ap‐
proach.	Here,	 ‘semi‐supervised’	means	 that	unlabelled	 samples	 in‐
stead	of	negative	samples	(ie	miRNA‐disease	pairs	confirmed	to	be	
unassociated)	were	used	to	train	the	model;	and	 ‘ensemble’	means	
that	 two	 classifiers	 from	 the	 miRNA	 and	 disease	 spaces,	 respec‐
tively,	were	combined	to	yield	a	higher	predictive	accuracy.	The	in‐
puts	 to	 the	model	 included	 three	data	sets:	 (a)	 the	miRNA‐miRNA	
functional	 similarity	 that	 was	 calculated	 using	 the	 overlap	 in	 dis‐
ease	associations	of	a	given	pair	of	miRNAs;	(b)	the	disease‐disease	
similarity	 that	was	 gained	 through	 computing	 shared	part	 of	 their	
directed	acyclic	graph	(DAG);	and	(c)	the	miRNA‐disease	association	
network	 that	 described	whether	 a	miRNA‐disease	pair	was	 linked	
or	not.	The	model's	output	was	a	list	of	association	scores	for	each	
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miRNA‐disease	pair,	and	a	high	score	would	indicate	a	strong	asso‐
ciation	likelihood	between	the	pair.

2.2 | Performance evaluation

Cross‐validations	 were	 used	 as	 the	 evaluation	 scheme	 for	 our	
model,	and	known	miRNA‐disease	associations	 in	the	HMDD	v2.0	
database	 38	 were	 used	 as	 the	 training	 data.	 Specifically,	 we	 ap‐
plied	three	types	of	cross‐validations,	namely,	global	leave‐one‐out	
cross‐validation	 (LOOCV),	 local	 LOOCV	 and	 5‐fold	 cross‐valida‐
tion.	To	prove	the	effectiveness	of	the	algorithm,	KFRLSMDA	was	
compared	 with	 10	 previous	 computational	 methods:	 MaxFlow,39 
RKNNMDA,40	 MiRAI,26	 HDMP,27	 RWRMDA,28	 WBSMDA,29 
HGIMDA,30	RLSMDA,33	MIDP	41	and	MCMDA.42	In	LOOCV	evalua‐
tion,	each	known	association	in	the	database	was	considered	as	the	
test	sample	in	turn	while	the	other	known	associations	were	viewed	
as	training	samples.	Additionally,	those	miRNA‐disease	pairs	without	
known	association	evidence	were	regarded	as	potential	candidates	
for	true	associations.	KFRLSMDA	generated	association	scores	for	
all	miRNA‐disease	pairs.	In	global	LOOCV,	the	score	of	the	test	sam‐
ple	was	ranked	against	that	of	all	candidate	samples,	whereas	in	local	
LOOCV	the	score	of	the	test	sample	was	only	ranked	against	that	
of	candidate	samples	for	a	particular	disease.	In	other	words,	 local	
LOOCV	 evaluated	 predictions	 made	 for	 a	 specific	 disease,	 while	
global	 LOOCV	 assessed	 predictions	 made	 across	 all	 diseases.	 In	

5‐fold	cross‐validation,	the	known	miRNA‐disease	associations	were	
randomly	 divided	 into	 five	 subsets	with	 equal	 size.	 Each	 time,	we	
selected	one	subset	as	test	samples,	leaving	the	remaining	four	sub‐
sets	as	training	samples.	Again,	those	miRNA‐disease	pairs	without	
association	evidence	were	considered	as	candidate	samples.	Like	in	
global	LOOCV,	the	score	of	each	test	sample	was	ranked	against	that	
of	all	candidate	samples,	respectively.	This	procedure	was	repeated	
five	times	until	each	known	association	was	used	as	test	sample	and	
with	its	score	ranked;	and	those	test	samples	whose	ranks	surpassed	
a	 given	 threshold	 would	 be	 considered	 as	 successful	 predictions.	
Up	to	this	point,	the	5‐fold	cross‐validation	process	was	completed.	
We	repeated	this	process	for	100	times	to	examine	the	variance	of	
KFRLSMDA’s	prediction	performance.

Subsequently,	the	receiver	operating	characteristics	curve	(ROC)	
was	 drawn	 to	 visualize	 KFRLSMDA’s	 (and	 ten	 previous	 models’)	
performance	at	different	ranking	thresholds,	and	thereby	to	calcu‐
late	the	performance	evaluation	metric,	area	under	the	ROC	curve	
(AUC).	The	ROC	curve	is	created	by	plotting	the	true‐positive	rate	
(TPR,	sensitivity)	against	 the	false‐positive	rate	 (FPR,	1‐specificity)	
at	 various	 threshold	 settings.	 In	our	 study,	 sensitivity	 represented	
the	percentage	of	positive	miRNA‐disease	test	samples	whose	rank‐
ings	exceeded	the	given	threshold	while	specificity	represented	the	
percentage	of	negative	miRNA‐disease	associations	whose	rankings	
were	lower	than	the	threshold.	When	calculating	FPR,	we	regarded	
all	miRNA‐disease	pairs	without	confirmed	associative	relationship	

F I G U R E  1  Performance	evaluation	comparison	between	KFRLSMDA	and	10	previous	prediction	models	(MaxFlow,	MiARI,	MIDP,	
MCMDA,	RKNNMDA,	HGIMDA,	RLSMDA,	HDMP,	WBSMDA	and	RWRMDA)	in	terms	of	ROC	curve	and	AUC	based	on	global	LOOCV	and	
local	LOOCV	tested	by	known	miRNA‐disease	associations	in	the	HMDD	database.	KFRLSMDA	achieved	AUC	of	0.9246	in	global	LOOCV	
and	0.8243	in	local	LOOCV.	Therefore,	it	can	be	concluded	that	KFRLSMDA	seemed	to	be	an	effective	tool	for	predicting	potential	miRNA‐
disease	associations
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as	 negative	 samples.	 In	 performance	 evaluation	 and	 in	 the	 subse‐
quent	 case	 studies,	 we	 set	 the	 parameters	 of	 KFRLSMDA	 to	 be	
�M=�D=0.3 and �=0.1	for	the	simplicity	of	calculation	and	as	a	start	
point	for	optimization.

As	 a	 result,	 the	 AUCs	 of	 KFRLSMDA,	 MaxFlow,	 RKNNMDA,	
MCMDA,	HGIMDA,	WBSMDA,	RLSMDA	and	HDMP	were	0.9246,	
0.8624,	0.7159,	0.8749,	0.8781,	0.8030,	0.8426	and	0.8366,	respec‐
tively,	in	global	LOOCV.	RWRMDA	and	MIDP	were	not	included	in	
global	LOOCV	comparison	because	they	were	based	on	a	local	rank‐
ing	approach	which	could	not	simultaneously	predict	miRNAs	for	all	
diseases.	Furthermore,	global	LOOCV	was	not	carried	out	on	MiRAI.	
Predictions	for	different	diseases	were	not	globally	comparable,	as	
the	 association	 scores	 given	 by	 this	method	 had	 a	 highly	 positive	
correlation	with	the	number	of	known	associated	miRNAs	for	a	dis‐
ease.	For	 local	LOOCV,	KFRLSMDA,	MaxFlow,	RKNNMDA,	MIDP,	
MiRAI,	 MCMDA,	 HGIMDA,	 RWRMDA,	 WBSMDA,	 RLSMDA	 and	
HDMP	achieved	AUCs	of	0.8243,	0.7774,	0.8221,	0.8196,	0.6299,	
0.7718,	 0.8077,	 0.7891,	 0.8030,	 0.8031	 and	 0.6953,	 respectively	
(see	 Figure	 1).	 Moreover,	 it	 is	 worth	 noting	 that	MiRAI’s	 AUC	 of	
mere	0.6299	was	much	 lower	 than	0.867	 indicated	by	Pasquier	et 
al,26	because	in	their	literature	the	model	was	evaluated	on	83	dis‐
eases	with	at	 least	20	associated	miRNAs,	whereas	 in	our	study	 it	
was	tested	on	383	diseases	with	only	14.18	associated	miRNAs	per	
disease	on	average.	MiRAI	was	based	on	collaborative	filtering,	and	
its	 performance	would	expectedly	become	worse	with	our	 sparse	
association	data	set.

In	 5‐fold	 cross‐validation,	 the	 average	 AUCs	 of	 KFRLSMDA,	
MaxFlow,	 RKNNMDA,	 MCMDA,	 WBSMDA,	 RLSMDA	 and	
HDMP	 were	 0.9175/−0.0008,	 0.8579	 ±	 0.001,	 0.6723	 ±	 0.0027,	
0.8767	 ±	 0.0011,	 0.8185/−0.0009,	 0.8569/−0.0020	 and	
0.8342	±	0.0010,	 respectively.	 In	 summary,	KFRLSMDA	appeared	
to	be	more	effective	in	predicting	potential	miRNA‐disease	associa‐
tions	compared	with	all	the	previous	methods,	no	matter	for	global	
LOOCV,	local	LOOCV	or	5‐fold	cross‐validation.

2.3 | Case studies

To	 further	 demonstrate	 the	 reliable	 performance	 of	 KFRLSMDA,	
we	carried	out	case	studies	on	five	diseases,	namely,	Breast	Cancer,	
Colon	 Cancer,	 Esophageal	 Cancer,	 hepatocellular	 cancer	 and	 lym‐
phoma.	These	diseases	were	selected	 in	our	case	studies	because	
they	are	 the	most	 common	cancer	 types,	with	high	 incidence	and	
death	rate	each	year.	In	addition,	they	have	been	used	as	case	stud‐
ies	in	many	previous	publications.22,27,30,33,40,41,43	Unlike	cross‐vali‐
dations	that	solely	depended	on	HMDD	v2.0,	our	case	studies	used	
HMDD	v2.0	as	the	training	database	for	KFRLSMDA	and	dbDEMC	
44	and	miR2Disease	45	as	the	validation	databases	for	confirming	the	
predicted	 potential	 associations.	 The	 following	 is	 the	 basic	 infor‐
mation	about	dbDEMC	and	miR2Disease.	They	were	created	from	
different	data	sources.	The	miR2Disease	database	contained	1939	
curated	 associations	 between	 299	 human	miRNAs	 and	 94	 human	
diseases	by	reviewing	more	than	600	published	papers	on	PubMed.	
The	 dbDEMC	 database	 documented	 1815	 curated	 associations	

between	607	human	miRNAs	and	14	human	cancer	types	by	search‐
ing	experimental	results	documented	in	the	NCBI	Gene	Expression	
Omnibus	 (GEO)	database,	which	was	 the	 largest	 public	 repository	
for	high‐throughput	gene	expression	data.	To	control	the	data	qual‐
ity,	 authors	 of	 dbDEMC	 only	 selected	 experiments	 with	 at	 least	
three	biological	duplicates.	From	our	perspective,	the	two	databases	
were	both	considered	 to	be	 reliable	 in	validating	 the	case	studies,	
although	 they	seemed	 to	have	different	 focuses:	one	consisted	of	
more	disease	types	while	the	other	covered	more	miRNAs.	By	inner	
joining	 the	 two	databases,	we	 found	 that	 there	were	374	overlap	
associations	 between	 them.	 This	 was	 19.3%	 of	 miR2Disease	 and	
20.6%	of	dbDEMC.	As	for	the	statistical	analysis	between	these	two	
databases	and	HMDD	v2.0,	 the	 results	 showed	 that	232	and	546	
miRNA‐disease	 associations	 were	 overlapped	 between	 miR2Dis‐
ease	and	HMDD	v2.0,	dbDEMC	and	HMDD	v2.0,	respectively.	The	
ratios	of	the	overlaps	were	both	small	relative	to	the	number	of	5430	
samples	in	training	database.

The	top	10	and	top	50	predicted	candidate	miRNAs	related	to	
these	diseases	were	examined	by	 the	two	validation	databases.	 In	
our	work,	the	way	of	validating	top	10/50	miRNAs	against	evidence	
databases	 was	 consistent	 with	 that	 in	 most	 previous	 studies	 on	
miRNA‐disease	 association	 prediction.23,27,28,30,33,40,41,43	 A	 candi‐
date	miRNA	was	unlinked	with	 the	 investigated	disease	according	
to	HMDD	v2.0.	This	means	 that	 there	has	been	no	evidence	sup‐
porting	the	association	between	the	miRNA	and	the	disease.	Thus,	
their	associative	relationship	was	to	be	examined	by	our	model,	and	
the	miRNA	was	named	‘candidate’.	It	is	worth	emphasizing	that	only	
candidate	miRNAs	for	each	investigated	disease	were	prioritized	and	
subsequently	verified	by	evidence	databases.	Therefore,	there	was	
no	 overlap	 between	 the	 training	 samples	 and	 the	 prediction	 lists.	
breast	neoplasms	is	a	malignant	cancer,	which	is	currently	regarded	
as	the	most	leading	type	of	invasive	cancer	in	women	worldwide	and	
it	 is	estimated	that	there	will	be	approximately	255,180	new	cases	
of	invasive	breast	cancer	and	41,070	breast	cancer	deaths	in	2017.46 
Seventy‐eight	miRNAs	have	been	verified	to	have	connections	with	
breast	 neoplasms.	 To	 name	 just	 a	 few,	miR‐107	 promotes	 tumour	
progression	by	targeting	the	let‐7	miRNA	in	mice	and	humans.	Also,	
miR‐100	 regulated	 beta‐tubulin	 isotypes	 in	 MCF7	 breast	 cancer	
cells.	It	also	suppresses	IGF2	and	inhibits	breast	tumorigenesis	by	in‐
terfering	with	proliferation	and	survival	signalling.47	Candidate	miR‐
NAs	were	prioritized	based	on	KFRLSMDA.	For	the	top	10	predicted	
Breast	 Neoplasm‐related	 miRNAs,	 they	 all	 have	 been	 verified	 by	
dbDEMC	and	miR2Disease	database.	In	addition,	42	out	of	the	top	
50	predicted	Breast	Neoplasm‐related	miRNAs	were	experimentally	
verified	 from	 dbDEMC	 and	 miR2Disease	 database	 (see	 Table	 1).	
Among	 the	 42	 confirmed	miRNAs,	 three	were	 supported	 by	 both	
databases.	 Among	 the	 eight	 unconfirmed	 miRNAs,	 six	 were	 veri‐
fied	by	more	recent	studies	and	their	PMID	is	recorded	in	Table	1.	
For	example,	miR‐151’s	association	with	breast	neoplasms	was	sug‐
gested	by	 recent	 studies	because	miR‐151‐3p	was	 found	 to	 target	
TWIST1	gene	to	suppress	the	migration	of	breast	cancer	cells	48 and 
miR‐151‐5p	up‐regulation	might	inhibit	metastasis	in	primary	breast	
tumours.49	Another	example	is	that	miR‐216b	could	suppress	breast	
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cancer	 cell	 growth	 and	 metastasis	 by	 targeting	 SDCBP	 gene.50 
Therefore,	48	of	the	top	50	candidate	miRNAs	for	breast	neoplasms	
were	supported	by	either	database	or	literature	evidence.

Colon	Neoplasm,	diagnosed	mostly	 in	 the	boundary	of	 rectum	
and	 sigmoid	 colon,51	 is	 the	 third	 most	 common	 cancer	 and	 im‐
poses	great	threats	on	both	men	and	women	in	the	United	States.52 
Studies	showed	that	about	half	of	the	Colon	Neoplasm	patients	die	
of	metastatic	disease	within	5	years	from	diagnosis.53,54	Detecting	
this	disease	is	difficult,	particularly	at	early	stages,	because	only	sub‐
tle	 symptoms	 can	 be	 noticed	 in	 early	Colon	Neoplasm	patients.55 
MiRNAs	seem	to	be	a	novel,	potential	diagnostic	tool	for	colon	neo‐
plasms,	 and	many	miRNAs	 have	 been	 confirmed	 to	 be	 correlated	
with	the	disease.	For	example,	miR‐126,	often	found	to	be	deficient	
in	 Colon	 Neoplasm	 patients,	 can	 restrict	 neoplastic	 cells	 growth	
via	 targeting	 phosphatidylinositol	 3‐kinase	 signalling.56	 Another	
example	 is	miR‐145	 targeting	 the	 insulin	 receptor	 substrate‐1	 and	
also	 suppressing	 Colon	 Neoplasm	 cell	 growth.57	 KFRLSMDA	 was	
implemented	 to	 predict	 the	 top	 50	 potential	 miRNAs	 related	 to	
colon	neoplasms.	As	a	result,	nine	of	the	top	10	and	45	of	the	top	
50	candidates	were	verified	by	dbDEMC	and	miR2Disease	database	
(see	Table	2).	Among	the	45	confirmed	miRNAs,	26	were	supported	

by	 both	 databases.	 In	 addition,	 all	 the	 five	 unconfirmed	 miRNAs	
were	 verified	 by	more	 recent	 studies	 and	 their	 PMID	 is	 recorded	
in	Table	2.	For	example,	miR‐92a	was	suggested	by	experiments	to	
be	 correlated	 with	 the	 tumour‐node‐metastasis	 (TNM)	 stage,	 the	
lymph	node	and	distant	metastases,	and	the	survival	rate	of	colon	
neoplasms.58	Another	example	is	that	overexpressed	miR‐101	could	
suppress	 the	proliferation,	 stimulate	cell	 cycle	arrest	 and	promote	
apoptosis	of	colon	cancer	SW620	cells.59	Therefore,	50	of	the	top	
50	candidate	miRNAs	for	colon	neoplasms	were	supported	by	either	
database	or	literature	evidence.

As	 reported,	 Esophageal	 Neoplasm	 is	 the	 sixth	 leading	 cause	
of	deaths	 related	 to	 cancers	 and	 the	eighth	most	 common	cancer	
worldwide	 based	 on	 the	 pathological	 characteristics.60	 Males	 are	
more	 likely	 to	 get	 the	 disease	 based	 on	 the	 fact	 that	 the	 number	
of	male	patients	 is	 three	 to	 four	 times	higher	 than	 the	number	of	
the	female	patients.61	As	has	been	suggested,	if	the	tumours	could	
be	diagnosed	at	an	early	stage,	 the	survival	 rate	could	 increase	 to	
90%,62	which	means	that	 the	early	detection	of	oesophageal	neo‐
plasms	is	critical	to	cancer	treatment.63,64	So	far,	plenty	of	miRNAs	
have	been	proven	to	be	associated	with	oesophageal	neoplasms.	For	
instance,	miR‐98	and	miR‐214	could	suppress	migration	and	invasion	

miRNA Evidence miRNA Evidence

hsa‐mir‐362 dbdemc hsa‐mir‐181d dbdemc and 
miR2Disease

hsa‐mir‐130a dbdemc hsa‐mir‐151 27 930 738; 22 489 664

hsa‐mir‐487b dbdemc hsa‐mir‐376a dbdemc

hsa‐mir‐501 dbdemc hsa‐mir‐106a dbdemc

hsa‐mir‐379 dbdemc hsa‐mir‐15b dbdemc

hsa‐mir‐448 dbdemc hsa‐mir‐330 dbdemc

hsa‐mir‐32 dbdemc hsa‐mir‐216a unconfirmed

hsa‐mir‐539 dbdemc hsa‐mir‐98 dbdemc;	miR2Disease

hsa‐mir‐363 dbdemc hsa‐mir‐520e dbdemc

hsa‐mir‐431 dbdemc hsa‐mir‐216b 27 720 715

hsa‐mir‐337 dbdemc hsa‐mir‐372 dbdemc

hsa‐mir‐652 dbdemc hsa‐mir‐192 dbdemc

hsa‐mir‐154 dbdemc hsa‐mir‐30e 27 012 041

hsa‐mir‐212 dbdemc hsa‐mir‐186 dbdemc

hsa‐mir‐381 dbdemc hsa‐mir‐181c dbdemc

hsa‐mir‐598 dbdemc hsa‐mir‐520f dbdemc

hsa‐mir‐432 dbdemc hsa‐mir‐520g 26 957 267

hsa‐mir‐532 dbdemc hsa‐mir‐421 dbdemc

hsa‐mir‐95 dbdemc hsa‐mir‐498 dbdemc

hsa‐mir‐663 dbdemc; 
miR2Disease

hsa‐mir‐99a dbdemc

hsa‐mir‐28 dbdemc hsa‐mir‐142 25 406 066

hsa‐mir‐484 dbdemc hsa‐mir‐659 dbdemc

hsa‐mir‐521 dbdemc hsa‐mir‐33a 26 507 842

hsa‐mir‐196b dbdemc hsa‐mir‐658 dbdemc

hsa‐mir‐92b dbdemc hsa‐mir‐33b unconfirmed

TA B L E  1  Prediction	of	the	top	50	
predicted	miRNAs	associated	with	breast	
neoplasms	based	on	known	associations	in	
HMDD	database.	The	first	column	records	
top	1‐25	related	miRNAs.	The	second	
column	records	the	top	26‐50	related	
miRNAs
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in	human	oesophageal	squamous	cell	carcinoma	by	post‐transcrip‐
tionally	regulating	enhancer	of	zeste	homolog	2.65	KFRLSMDA	was	
implemented	to	identify	potential	related	miRNAs	for	oesophageal	
neoplasms	 based	 on	 known	 miRNA‐disease	 associations	 in	 the	
HMDD	database	and	it	turns	out	that	9	out	of	the	top	10	and	44	out	
of	the	top	50	predicted	Esophageal	Neoplasm‐related	miRNAs	were	
experimentally	verified	by	reports	from	dbDEMC	and	miR2Disease	
database	(see	Table	3).	Among	the	44	confirmed	miRNAs,	one	was	
supported	by	both	databases.	Among	the	six	unconfirmed	miRNAs,	
miR‐218	was	found	to	inhibit	the	growth	of	oesophageal	squamous	
cell	 carcinoma	 (ESCC)	 and	 could	 enhance	 the	 chemo‐sensitivity	
of	 ESCC	 to	 cisplatin.66	 The	 PMID	 of	 the	 supporting	 literature	 for	
miR‐218	is	recorded	in	Table	3.	Therefore,	45	of	the	top	50	candi‐
date	miRNAs	for	oesophageal	neoplasms	were	supported	by	either	
database	or	literature	evidence.

To	 analyse	 the	 distributional	 difference	 between	 the	 scores	
of	 confirmed	 candidate	 miRNAs	 and	 the	 scores	 of	 unconfirmed	
ones,	for	each	disease	we	separated	its	candidate	miRNAs	into	two	
groups.	One	group	contained	candidates	confirmed	by	miR2Disease	
and/or	dbDEMC	and	the	other	held	the	remaining	unconfirmed	can‐
didates.	Then,	we	obtained	the	corresponding	scores	of	miRNAs	in	
the	two	groups	and	carried	out	the	non‐parametric	Wilcoxon	rank	
sum	test	for	a	difference	in	mean	ranks	of	the	distributions	for	the	

two	groups’	scores.	The	null	hypothesis	was	that	the	two	lists’	distri‐
butions	had	the	same	mean	rank,	and	the	alternative	hypothesis	was	
unequal	mean	ranks.	The	significance	level	was	set	to	be	α = 0.05. 
For	breast	neoplasms,	there	were	145	confirmed	candidate	miRNAs	
and	148	unconfirmed	ones	 (the	 scores	 can	 be	 found	 in	 Table	 S1).	
The	predicted	scores	were	higher	for	the	confirmed	group	than	for	
the	 unconfirmed	 group	 (means:	 0.009386613	 and	 0.005127228,	
respectively;	 P	 =	 1.511e‐09).	 For	 colon	 neoplasms,	 there	 were	
145	confirmed	candidate	miRNAs	and	346	unconfirmed	ones	 (the	
scores	can	be	found	in	Table	S2).	The	predicted	scores	were	higher	
for	 the	 confirmed	 group	 than	 for	 the	 unconfirmed	 group	 (means:	
0.0009716386	and	0.0001703209,	 respectively;	P	 <	2.2e‐16).	 For	
oesophageal	neoplasms,	there	were	208	confirmed	candidate	miR‐
NAs	and	213	unconfirmed	ones	 (the	scores	can	be	 found	 in	Table	
S3).	The	predicted	scores	were	higher	for	the	confirmed	group	than	
for	 the	 unconfirmed	 group	 (means:	 0.00471542	 and	 0.00225310,	
respectively;	P	<	2.2e‐16).	It	can	be	seen	from	the	test	results	that	
across	all	three	diseases	the	scores	for	confirmed	and	unconfirmed	
miRNAs	were	very	different	from	each	other.

The	 results	of	 case	 studies	on	 the	 three	human	diseases	men‐
tioned	 above	 can	 well	 prove	 that	 KFRLSMDA	 had	 satisfactory	
prediction	performance.	Moreover,	we	prioritized	the	potentially	as‐
sociated	miRNAs	for	all	the	human	diseases	in	HMDD	database	(see	

miRNA Evidence miRNA Evidence

hsa‐mir‐143 dbdemc;	miR2Disease hsa‐mir‐498 miR2Disease

hsa‐mir‐20a dbdemc;	miR2Disease hsa‐mir‐196a dbdemc;	miR2Disease

hsa‐mir‐125b miR2Disease hsa‐mir‐137 dbdemc;	miR2Disease

hsa‐mir‐18a Dbdemc hsa‐let‐7a dbdemc;	miR2Disease

hsa‐mir‐19a dbdemc;	miR2Disease hsa‐mir‐9 dbdemc;	miR2Disease

hsa‐mir‐19b Dbdemc hsa‐mir‐127 dbdemc;	miR2Disease

hsa‐mir‐223 dbdemc;	miR2Disease hsa‐mir‐141 dbdemc;	miR2Disease

hsa‐mir‐92a 22772712 hsa‐mir‐146a miR2Disease

hsa‐mir‐191 dbdemc;	miR2Disease hsa‐mir‐200b miR2Disease

hsa‐mir‐34a dbdemc;	miR2Disease hsa‐mir‐32 dbdemc;	miR2Disease

hsa‐mir‐21 dbdemc;	miR2Disease hsa‐mir‐10b dbdemc;	miR2Disease

hsa‐mir‐155 dbdemc;	miR2Disease hsa‐let‐7b dbdemc;	miR2Disease

hsa‐mir‐16 miR2Disease hsa‐let‐7c miR2Disease

hsa‐mir‐31 dbdemc;	miR2Disease hsa‐let‐7e miR2Disease

hsa‐mir‐218 miR2Disease hsa‐mir‐1 dbdemc

hsa‐mir‐132 Dbdemc hsa‐mir‐142 28622713

hsa‐mir‐95 dbdemc;	miR2Disease hsa‐mir‐29a dbdemc;	miR2Disease

hsa‐mir‐221 dbdemc;	miR2Disease hsa‐mir‐424 miR2Disease

hsa‐mir‐29b dbdemc;	miR2Disease hsa‐mir‐217 28105166

hsa‐mir‐125a dbdemc;	miR2Disease hsa‐mir‐133b dbdemc;	miR2Disease

hsa‐mir‐222 miR2Disease hsa‐mir‐107 dbdemc;	miR2Disease

hsa‐mir‐135a miR2Disease hsa‐mir‐152 miR2Disease

hsa‐mir‐101 27435782 hsa‐mir‐22 miR2Disease

hsa‐mir‐34c dbdemc hsa‐mir‐30a dbdemc

hsa‐mir‐200c dbdemc;	miR2Disease hsa‐mir‐200a 24504363

TA B L E  2  Prediction	of	the	top	50	
predicted	miRNAs	associated	with	colon	
neoplasms	based	on	known	associations	in	
HMDD	database.	The	first	column	records	
top	1‐25	related	miRNAs.	The	second	
column	records	the	top	26‐50	related	
miRNAs
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Table	S4).	 If	one	wants	 to	know	the	predicted	miRNAs	associated	
with	a	specific	disease,	she	or	he	could	find	them	by	searching	that	
disease	 in	the	provided	 list.	Besides,	we	also	provided	the	code	of	
KFRLSMDA	to	readers	for	easy	use,	which	could	be	obtained	from:	
https	://github.com/AnnaG	uan/KFRLSMDA.	We	hope	that	the	pre‐
dictions	of	KFRLSMDA	can	be	verified	in	future	scientific	researches.

In	 order	 to	 evaluate	 the	 prediction	 ability	 of	 KFRLSMDA	 in	
special	 diseases	 without	 any	 known	 related	 miRNAs,	 hepatocel‐
lular	cancer	 is	used	as	an	example	 in	our	experiment.	This	cancer	
was	 chosen	 as	 the	 case	 study	 because	 it	 is	 a	 major	 cancer	 type	
and	 has	 been	 frequently	 used	 in	 previous	 literatures.	 Including	 it	
in	our	 case	 studies	would	enable	 further	 comparison	of	different	
models’	 predictive	 performance	 for	 the	 same	 disease.	 Basically,	
all	miRNAs	known	to	be	related	to	hepatocellular	cancer	were	re‐
moved	and	we	predicted	potential	related	miRNAs	by	using	other	
diseases‐related	miRNA	information	and	similarity	information.	As	
a	result,	10	out	of	the	top	10	and	44	out	of	the	top	50	predicted	
hepatocellular	cancer‐related	miRNAs	were	experimentally	verified	
by	reports	from	dbDEMC,	miR2Disease	and	HMDD	database	(see	

Table	 4).	 Among	 the	 six	 unconfirmed	miRNAs,	 five	were	 verified	
by	more	recent	studies	and	their	PMID	is	recorded	in	Table	4.	For	
example,	miR‐506	could	 inhibit	 the	proliferation	of	hepatocellular	
carcinoma	cells	 by	 targeting	YAP	mRNA	3'UTR	 region.67	Another	
example	is	that	miR‐325	could	suppress	the	cell	 invasion	and	pro‐
liferation	of	hepatocellular	 carcinoma	 through	 regulating	HMGB1	
gene.68	 Therefore,	 49	of	 the	 top	50	 candidate	miRNAs	 for	 hepa‐
tocellular	 cancer	were	 supported	by	 either	 database	or	 literature	
evidence.	This	cancer	was	also	used	as	a	case	study	in	the	literature	
for	 RLSMDA.33	 Among	 the	 top	 50	 potential	 predictions,	 36	miR‐
NAs	were	confirmed	by	at	least	one	of	the	three	databases.	Thus,	
our	model	outperformed	RLSMDA	in	terms	of	not	only	cross‐val‐
idation	 results,	 but	 also	 the	 case	 study	 results	 for	 hepatocellular	
cancer.	Lastly,	 to	validate	 the	case	study	of	hepatocellular	cancer	
in	our	work,	we	checked	whether	a	huge	overlap	existed	between	
miRNAs	associated	with	all	diseases	or	at	 least	some	specific	dis‐
eases	in	HMDD	v2.0.	If	there	were	diseases	highly	correlated	with	
hepatocellular	cancer,	it	would	not	be	a	surprise	for	our	model	to	be	
able	to	prioritize	candidate	miRNAs	for	this	cancer,	after	removing	
them	from	the	database.	We	analysed	the	correlation	between	each	
disease	pair	in	HMDD	v2.0	using	Pearson	correlation	coefficients.	
The	result	was	73	153	correlation	coefficients	between	all	disease	
pairs	 among	383	diseases,	 and	 from	 this,	we	plotted	 a	histogram	
for	 the	distribution	of	 the	numbers	 as	 shown	 in	Figure	S1.	 It	 can	
be	seen	from	the	figure	that	the	majority	of	disease	pairs	were	not	
(or	 nearly	 not)	 correlated,	 as	 their	 correlation	 coefficients	 were	
close	to	0.	There	were	709	disease	pairs	with	a	correlation	above	
0.5	and	159	pairs	with	a	correlation	of	1.	Hepatocellular	cancer	did	
not	exist	in	either	of	these	two	high	correlation	groups.	Its	correla‐
tion	coefficients	with	the	rest	382	diseases	are	recorded	in	Figure	
S2.	The	minimum	of	its	correlation	with	the	rest	382	diseases	was	
−0.08815373,	the	mean	correlation	was	0.09414086	and	the	max	
correlation	 was	 0.4235775.	 Most	 of	 the	 correlation	 coefficients	
were	within	the	interval	[−0.125,	0.125].	Therefore,	in	HMDD	v2.0	
there	were	 not	many	 highly	 correlated	 diseases	 and	 hepatocellu‐
lar	cancer	was	not	one	of	them.	Using	hepatocellular	cancer	as	the	
fourth	case	study	for	assessing	the	applicability	of	KFRLSMDA	to	
diseases	without	any	known	associated	miRNAs	was	 reliable.	We	
developed	KFRLSMDA	and	made	predictions	based	on	the	assump‐
tion	that	similar	diseases	have	a	tendency	to	have	associations	with	
miRNAs	with	similar	functions.	It	was	the	miRNA	similarity	network	
and	the	disease	similarity	network	that	enabled	our	model	to	prior‐
itize	potential	miRNA‐disease	associations.

To	 further	 prove	 the	 effectiveness	 of	 our	 algorithm,	 we	 also	
used	the	old	version	of	the	HMDD	(v1.0)	data	set,	which	consists	of	
1395	miRNA‐disease	associations.	In	this	validation	framework,	we	
treat	these	1395	known	associations	as	training	instances	and	apply	
KFRLSMDA	 to	 identify	 potential	 related	 miRNAs	 for	 lymphoma	
based	on	the	associations.	In	HMDD	v1.0,	there	was	only	one	miRNA	
(miR‐379)	 associated	 with	 lymphoma,	 and	 45	 new	 miRNAs	 were	
added	in	HMDD	v2.0.	The	reason	for	choosing	this	cancer	was	the	
same	as	that	for	hepatocellular	cancer,	and	it	turned	out	that	7	out	
of	the	top	10	and	38	out	of	the	top	50	predicted	lymphoma‐related	

TA B L E  3  Prediction	of	the	top	50	predicted	miRNAs	associated	
with	oesophageal	neoplasms	based	on	known	associations	in	
HMDD	database.	The	first	column	records	top	1‐25	related	
miRNAs.	The	second	column	records	the	top	26‐50	related	miRNAs

miRNA Evidence miRNA Evidence

hsa‐mir‐18a dbDEMC hsa‐let‐7g dbDEMC

hsa‐mir‐17 dbDEMC hsa‐mir‐1 dbDEMC

hsa‐let‐7d dbDEMC hsa‐let‐7e dbDEMC

hsa‐mir‐19b dbDEMC hsa‐mir‐135a dbDEMC

hsa‐mir‐200b dbDEMC hsa‐let‐7f unconfirmed

hsa‐mir‐30c dbDEMC hsa‐mir‐32 dbDEMC

hsa‐mir‐191 dbDEMC hsa‐mir‐302d dbDEMC

hsa‐mir‐497 dbDEMC hsa‐mir‐498 dbDEMC

hsa‐mir‐448 dbDEMC hsa‐mir‐154 dbDEMC

hsa‐mir‐487b unconfirmed hsa‐mir‐30a dbDEMC

hsa‐mir‐379 dbDEMC hsa‐mir‐151 dbDEMC

hsa‐mir‐362 dbDEMC hsa‐mir‐107 dbdemc; 
miR2Disease

hsa‐mir‐16 dbDEMC hsa‐mir‐302c dbDEMC

hsa‐mir‐501 dbDEMC hsa‐mir‐302b dbDEMC

hsa‐mir‐30d dbDEMC hsa‐mir‐431 dbDEMC

hsa‐mir‐125b dbDEMC hsa‐let‐7i dbDEMC

hsa‐mir‐376c unconfirmed hsa‐mir‐153 dbDEMC

hsa‐mir‐221 dbDEMC hsa‐mir‐299 dbDEMC

hsa‐mir‐495 dbDEMC hsa‐mir‐222 dbDEMC

hsa‐mir‐127 dbDEMC hsa‐mir‐370 dbDEMC

hsa‐mir‐96 dbDEMC hsa‐mir‐338 dbDEMC

hsa‐mir‐122 unconfirmed hsa‐mir‐182 dbDEMC

hsa‐mir‐218 unconfirmed hsa‐mir‐629 unconfirmed

hsa‐mir‐335 dbDEMC hsa‐mir‐199b dbDEMC

hsa‐mir‐429 dbDEMC hsa‐mir‐660 dbDEMC

https://github.com/AnnaGuan/KFRLSMDA
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miRNAs	 were	 experimentally	 verified	 by	 reports	 from	 dbDEMC,	
miR2Disease	and	HMDD	v2.0	databases	 (see	Table	5).	Among	the	
12	unconfirmed	miRNAs,	miR‐128b	was	found	to	be	down‐regulated	
in	classic	Hodgkin	lymphoma	(cHL)	with	Epstein‐Barr	virus	(EBV)	69; 
miR‐142‐5p,	 the	 5p	 arm	 of	miR‐142,	 suppressed	 the	 proapoptotic	
gene	TP53INP1	as	its	target	and	played	a	pivotal	role	in	the	patho‐
genesis	of	gastric	MALT	lymphoma.70	The	PMIDs	of	the	supporting	
literatures	for	these	two	miRNAs	are	recorded	in	Table	5.	Therefore,	
40	of	the	top	50	candidate	miRNAs	for	lymphoma	were	supported	
by	either	database	or	literature	evidence.

3  | DISCUSSION

To	 date,	 many	 computational	 methods	 have	 been	 proposed	 to	
predict	 the	 potential	 associations	 between	miRNAs	 and	 diseases.	
It	 is	 widely	 believed	 that	 computational	 models	 could	 yield	 the	
most	potential	miRNAs	 related	 to	human	diseases	and	are	a	valu‐
able	 complementary	 tool	 for	 experimental	 methods.28,32,71‐73 To 
more	 accurately	 predict	 potential	miRNA‐disease	 associations,	we	

presented	a	computational	model	named	KFRLSMDA	involving	di‐
verse	data	sets:	miRNA	functional	similarity,	disease	semantic	simi‐
larity,	miRNA‐disease	associations	and	Gaussian	interaction	profile	
kernel	 similarity	 for	miRNAs	and	diseases.	We	 first	 applied	kernel	
fusion	technique	to	fuse	similarity	matrices	for	miRNA	and	disease,	
and	 then	utilized	 regularized	 least	 square	algorithm	 to	predict	 the	
final	 result	 based	 on	 two	 fused	 matrices.	 KFRLSMDA	 exhibited	
excellent	prediction	performance	 in	 LOOCV	and	5‐fold	 cross‐vali‐
dation.	 In	 case	 studies,	 the	most	 of	 predicted	miRNAs	 potentially	
associated	with	five	important	human	diseases	were	verified	by	the	
experimental	literatures.	The	results	from	cross‐validation	and	case	
studies	proved	that	KFRLSMDA	was	effective	in	predicting	potential	
miRNA‐disease	associations.

We	believe	that	the	following	factors	are	the	main	reasons	for	
KFRLSMDA’s	 reliable	 performance.	 First,	 although	 other	 meth‐
ods	 are	 also	 using	 HMDD,	 our	 model	 was	 the	 first	 to	 apply	 the	
fusion	technique	that	 integrated	multiple	data	sets	 in	a	novel	way.	
KFRLSMDA	 fused	 the	 miRNA	 functional	 similarity	 matrix	 and	
Gaussian	interaction	profile	kernel	similarity	matrix	together	instead	
of	simply	average	these	two	matrices,	and	the	same	was	true	with	

TA B L E  4  Prediction	of	the	top	50	predicted	miRNAs	associated	with	hepatocellular	cancer	by	removing	miRNAs	known	related	to	
hepatocellular	cancer	and	predicting	potential	related	miRNAs	using	other	diseases‐related	miRNAs.	The	first	column	records	top	1‐25	
related	miRNAs.	The	second	column	records	the	top	26‐50	related	miRNAs

miRNA Evidence miRNA Evidence

hsa‐mir‐21 miR2Disease;	HDMM hsa‐mir‐16 dbDEMC;	miR2Disease;	HDMM

hsa‐mir‐210 dbDEMC;	HDMM hsa‐mir‐183 miR2Disease;	HDMM

hsa‐let‐7b miR2Disease;	HDMM hsa‐mir‐325 26194496

hsa‐mir‐122 dbDEMC;	miR2Disease;	HDMM hsa‐mir‐137 miR2Disease

hsa‐mir‐200b miR2Disease;	HDMM hsa‐mir‐148b dbDEMC;	miR2Disease;	HDMM

hsa‐mir‐223 miR2Disease;	HDMM hsa‐mir‐34c HDMM

hsa‐mir‐200a dbDEMC;	miR2Disease;	HDMM hsa‐let‐7a dbDEMC;	miR2Disease;	HDMM

hsa‐mir‐29a dbDEMC;	HDMM hsa‐mir‐1207 27461404

hsa‐mir‐203 miR2Disease;	HDMM hsa‐mir‐93 dbDEMC;	miR2Disease;	HDMM

hsa‐mir‐24 miR2Disease;	HDMM hsa‐mir‐133b HDMM

hsa‐mir‐10b HDMM hsa‐mir‐26b dbDEMC;	miR2Disease

hsa‐let‐7i dbDEMC;	HDMM hsa‐mir‐151a HDMM

hsa‐mir‐126 dbDEMC;	miR2Disease;	HDMM hsa‐mir‐204 27748572

hsa‐mir‐200c HDMM hsa‐mir‐486 HDMM

hsa‐mir‐375 HDMM hsa‐mir‐20a dbDEMC;	miR2Disease;	HDMM

hsa‐mir‐15b dbDEMC;	HDMM hsa‐mir‐218 HDMM

hsa‐mir‐506 25087998 hsa‐mir‐302a unconfirmed

hsa‐mir‐25 dbDEMC;	miR2Disease;	HDMM hsa‐mir‐145 dbDEMC;	miR2Disease;	HDMM

hsa‐mir‐30a miR2Disease;	HDMM hsa‐mir‐629 HDMM

hsa‐mir‐17 miR2Disease;	HDMM hsa‐mir‐221 dbDEMC;	miR2Disease;	HDMM

hsa‐mir‐7 HDMM hsa‐mir‐372 HDMM

hsa‐mir‐155 dbDEMC;	miR2Disease;	HDMM hsa‐mir‐424 dbDEMC

hsa‐mir‐214 dbDEMC;	miR2Disease;	HDMM hsa‐mir‐95 27698442

hsa‐mir‐124 miR2Disease;	HDMM hsa‐mir‐9 miR2Disease

hsa‐mir‐519d HDMM hsa‐mir‐182 miR2Disease;	HDMM
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diseases.	The	weighted	combination	of	fusion	results	that	were	ob‐
tained	in	miRNA	and	disease	spaces,	respectively,	improved	predic‐
tive	accuracy.	Second,	a	 loose	diffusion	technique	was	adopted	to	
emphasize	the	effect	of	neighbours	on	a	global	network,	which	helps	
us	make	the	best	of	similarity	information.	Besides,	KFRLSMDA	was	
based	 on	 the	 known	miRNA‐disease	 associations	 in	 HMDD	 data‐
base.	A	cornucopia	of	known	associations	could	assure	us	the	effi‐
ciency	of	the	predictions	in	KFRLSMDA.	Last	but	not	least,	negative	
associations,	as	required	in	some	previous	models,	were	not	needed	
in our model.

However,	we	 should	 admit	 that	 there	 still	 exist	 several	 limita‐
tions	 in	 KFRLSMDA.	 Firstly,	 KFRLSMDA	 had	 several	 parameters	
and	how	to	choose	the	suitable	values	for	these	parameters	was	not	
yet	 solved.	 It	 is	 hoped	 that,	 in	 the	 future	we	 could	 find	 a	way	 to	
directly	obtain	 the	optimal	values	 for	 these	parameters.	Secondly,	
although	 there	 were	 5430	 known	 miRNA‐disease	 associations	
within	the	possible	exploration	spaces	of	495	miRNAs	and	383	dis‐
eases	so	far,	we	still	 think	the	current	HMDD	database	was	 insuf‐
ficient	for	a	comprehensive	analysis.	The	more	known	associations	
are	confirmed	 in	the	future,	 the	more	accurate	KFRLSMDA	model	
will	become.	Thirdly,	KFRLSMDA	might	cause	bias	to	miRNAs	with	

more	associated	disease	records	and	diseases	with	more	associated	
miRNA	records.	Lastly,	 in	 this	study	we	focused	on	cancers	 in	our	
case	 studies	 because	 cancers	 are	 clinically	 significant	 and	 impose	
great	 threats	 to	 people's	 health	 and	 life	 expectancy.	 In	 addition,	
most	 studies	 published	 so	 far	were	 related	 to	miRNA’s	 regulatory	
roles	in	various	human	cancers.	HMDD,	miR2Disease	and	dbDEMC	
databases	were	constructed	from	the	data	sets	presented	in	these	
studies.	As	a	result,	the	data	we	used	to	train	and	test	KFRLSMDA	
were	largely	cancer‐related	by	nature.	The	research	findings	in	this	
work	are	significant	to	the	precision	treatment	in	cancer,	as	some	of	
the	most	possible	cancer‐related	miRNAs	could	be	further	 investi‐
gated	to	link	their	targets	to	cancer	hallmarks,	which	would	be	good	
complements	to	the	gene	biomarkers	 in	oncology	study.74 In addi‐
tion	to	cancer,	we	hope	for	more	literatures	covering	other	disease	
types	to	be	released	in	the	future	so	that	our	analysis	could	encom‐
pass	more	disease	types.	It	has	been	brought	up	for	discussion	that	
using	enough	prior	knowledge	could	help	us	better	develop	predic‐
tive	models,	 just	 like	 the	 tumour	genome	sequencing	data	used	 in	
the	establishment	of	models	based	on	cancer	hallmark	network.75 
Considering	 this,	 we	 expect	 that	 more	 experimental	 and	 clinical	
data	about	disease‐associated	miRNAs	could	be	collected	in	future	

TA B L E  5  Prediction	of	the	top	50	predicted	miRNAs	associated	with	lymphoma	based	on	the	old	version	of	HDMM.	The	first	column	
records	top	1‐25	related	miRNAs.	The	second	column	records	the	top	26‐50	related	miRNAs

miRNA Evidence miRNA Evidence

hsa‐mir‐34a dbDEMC hsa‐mir‐150 dbDEMC;	miR2Disease;	HDMM

hsa‐mir‐155 dbDEMC;	miR2Disease;	HDMM hsa‐mir‐378 unconfirmed

hsa‐mir‐125b Unconfirmed hsa‐mir‐96 dbDEMC

hsa‐mir‐9 dbDEMC hsa‐mir‐451 dbDEMC

hsa‐mir‐221 dbDEMC;	miR2Disease hsa‐mir‐206 dbDEMC

hsa‐mir‐21 dbDEMC;	miR2Disease;	HDMM hsa‐mir‐128b unconfirmed

hsa‐mir‐26b dbDEMC hsa‐mir‐421 unconfirmed

hsa‐mir‐33a dbDEMC hsa‐mir‐183 dbDEMC

hsa‐mir‐216a Unconfirmed hsa‐mir‐198 dbDEMC

hsa‐mir‐220 Unconfirmed hsa‐mir‐192 dbDEMC

hsa‐mir‐33b dbDEMC hsa‐mir‐30d dbDEMC

hsa‐mir‐216b Unconfirmed hsa‐mir‐340 dbDEMC

hsa‐mir‐29b dbDEMC hsa‐mir‐31 dbDEMC

hsa‐mir‐146a dbDEMC;	HDMM hsa‐let‐7a dbDEMC

hsa‐mir‐30e dbDEMC hsa‐mir‐142 23209 50

hsa‐mir‐197 dbDEMC hsa‐mir‐561 unconfirmed

hsa‐mir‐128a 20237425 hsa‐mir‐455 unconfirmed

hsa‐mir‐7 dbDEMC hsa‐mir‐106b dbDEMC

hsa‐mir‐124 dbDEMC;	HDMM hsa‐mir‐24 dbDEMC;	HDMM

hsa‐mir‐222 dbDEMC hsa‐mir‐15b dbDEMC

hsa‐mir‐27b dbDEMC hsa‐mir‐491 unconfirmed

hsa‐mir‐181c dbDEMC hsa‐mir‐223 dbDEMC

hsa‐mir‐29a dbDEMC hsa‐let‐7e dbDEMC;	miR2Disease

hsa‐mir‐195 dbDEMC hsa‐mir‐181b dbDEMC

hsa‐mir‐29c dbDEMC;	HDMM hsa‐mir‐133b dbDEMC;	HDMM
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research.	For	example,	we	would	consider	adding	the	difference	be‐
tween	tissue‐specific	expression	of	miRNAs	to	our	model.

4  | MATERIAL S AND METHODS

As	 has	 been	mentioned	 in	 the	 RESULT	 section,	 KFRLSMDA	 took	
three	input	data	sets,	namely,	the	miRNA‐disease	associations,	the	
miRNA	functional	similarity	and	the	disease	semantic	similarity.	The	
miRNA‐disease	association	data	would	 firstly	be	used	 to	generate	
the	 Gaussian	 interaction	 profile	 kernel	 similarity	 and	 would	 then	
be	 combined	with	 this	 kernel	 similarity	 to	 construct	 a	 classifier	 in	
the	miRNA	space	and	another	classifier	 in	the	disease	space.	Each	
classifier	would	 calculate	 association	 scores	 for	 all	miRNA‐disease	
pairs.	Finally,	the	weighted	average	of	the	two	classifiers’	predictions	
would	be	computed	to	give	the	final	association	scores.	The	higher	a	
miRNA‐disease	pair's	score	was,	the	more	likely	the	pair	was	associ‐
ated.	This	Materials	and	Methods	section	will	(a)	introduce	in	detail	
the	three	input	data	sets,	(b)	explain	the	formation	of	the	Gaussian	
interaction	profile	kernel	 similarity	and	 (c)	elaborate	 the	computa‐
tional	steps	of	KFRLSMDA.

4.1 | Human miRNA‐disease associations

The	miRNA‐disease	association	data	were	the	first	input	data	set	of	
our	model.	As	with	previous	studies,27,30,33,41,43	we	used	HMDD	v2.0	
38	as	the	training	database	to	learn	KFRLSMDA	for	cross‐validations	
and	case	studies,	and	adopted	miR2Disease	45	 and	dbDEMC	44	 as	
the	evidence	databases	for	case	studies.	The	known	miRNA‐disease	
associations	were	 downloaded	 from	HMDD	v2.0	 database,	which	
consisted	of	5430	distinct	known	miRNA‐disease	associations,	495	
miRNAs	and	383	diseases.	An	adjacency	matrix	M	was	constructed	
to	represent	known	miRNA‐disease	associations.	To	be	specific,	the	
value	of	M (i,j)	is	one	if	and	only	if	miRNA	m (i)	is	verified	to	be	associ‐
ated	with	disease	d (j)	in	the	database	and	the	value	of	M (i,j)	is	zero	
otherwise.	Also,	nm	represents	the	number	of	miRNAs	in	HMDD	da‐
tabase	and	nd	represents	the	number	of	diseases.

4.2 | MiRNA functional similarity

The	 second	 input	 data	 set,	miRNA	 functional	 similarity	matrix	SM,	
was	obtained	from	Wang	et al’s	work,76	available	at	http://www.cui‐
lab.cn/files/	image	s/cuila	b/misim.zip.	The	functional	similarity	score	
for	each	miRNA	pair	was	calculated	based	on	the	assumption	that	
miRNAs	with	similar	functions	have	a	tendency	to	have	associations	
with	similar	diseases.	SM	was	calculated	from	known	miRNA‐disease	
associations.	If	the	set	of	diseases	that	a	miRNA	played	a	role	to	reg‐
ulate	is	similar	to	the	set	of	disease	for	another	miRNA,	the	two	miR‐
NAs	would	have	a	high	degree	of	functional	similarity;	and	if	the	two	
sets	were	dislike,	 the	two	miRNAs	would	be	given	a	 low	similarity	
score.	Each	element	in	SM	was	represented	by	SM (i,j),	the	functional	
similarity	score	between	miRNAs	m (i) and m (j).

4.3 | Disease semantic similarity

The	third	input	data	set	was	the	disease	semantic	similarity,	which	
we	obtained	from	27	and	was	calculated	by	describing	each	disease	
as	 a	 directed	 acyclic	 graph	 (DAG)	 according	 to	 the	 disease	MeSH	
descriptors	from	the	National	Library	of	Medicine	(http://www.nlm.
nih.gov).	In	a	DAG,	the	nodes	denoted	the	disease	itself	as	well	as	its	
ancestor	diseases,	while	the	links	between	the	parent	nodes	and	the	
children	 nodes	 represented	 the	 relationship	 between	diseases.	 To	
illustrate	this,	disease	D	could	be	described	as	DAG(D)=(D,T(D),E(D)),	
where	T(D)	was	the	node	set	including	D	and	its	ancestors	and	E(D)	
was	the	corresponding	link	set.

We	defined	 the	contribution	of	disease	d	 in	DAG(D)	 to	 the	se‐
mantic	value	of	disease	D	as	follows:

where δ	was	the	semantic	contribution	factor	fixed	in	optimization	
and	equal	 to	0.5.27	The	distance	between	disease	d and D	was	 in‐
versely	proportional	to	the	contribution	score	for	disease	d.	We	de‐
fined	the	semantic	value	of	disease	D	as	follows:

Intuitively,	if	two	diseases	had	larger	shared	part	of	their	DAGs,	
they	should	have	higher	similarity	score.	In	this	regard,	the	semantic	
similarity	between	disease	d (i) and d (j)	was	defined	as	follows:

The	resulting	matrix	SD	was	the	disease	semantic	similarity.

4.4 | Gaussian interaction profile kernel similarity

Inspired	 by	 the	 literature,77	 we	 computed	 the	 Gaussian	 interaction	
profile	kernel	 similarity	 for	diseases	and	miRNAs	to	capture	 the	key	
features	of	the	miRNA‐disease	association	data.	Construction	of	this	
kernel	similarity	was	based	on	the	assumption	that	similar	diseases	tend	
to	have	associations	with	miRNAs	with	similar	functions.	Binary	vector	
IP (d (u))	was	defined	to	 represent	 the	 interaction	profiles	of	disease	
d (u)	by	observing	whether	 there	were	known	associations	between	
disease	d (u)	and	each	miRNA.	In	this	regard,	we	defined	the	Gaussian	
interaction	profile	kernel	similarity	for	diseases	d (u) and d (v)	as:

where �d	was	a	parameter	used	for	kernel	bandwidth	control,	which	
could	be	acquired	by	normalizing	a	new	bandwidth	parameter	� ′

d
	by	the	

average	number	of	associated	miRNAs	for	each	disease.

(1)
⎧
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ContributionD (d)=1,ifd=D

ContributionD (d)=max{� ∗ContributionD
�
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(2)DV
(
D
)
=

∑
d∈T(D)

ContributionD (d)

(3)SD (d (i) ,d (j))=

∑
t∈T(i)∩T(j) (Contributioni(t)+Contributionj (t) )
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http://www.cuilab.cn/files/images/cuilab/misim.zip
http://www.cuilab.cn/files/images/cuilab/misim.zip
http://www.nlm.nih.gov
http://www.nlm.nih.gov
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In	the	same	way,	the	Gaussian	interaction	profile	kernel	similarity	
between	miRNA	m (i) and m (j)	was	defined	as:

Together	with	the	abovementioned	three	input	data	sets,	matri‐
ces	KD and KM	calculated	from	Equations	(4)	and	(6)	were	also	fed	into	
KFRLSMDA	to	facilitate	subsequent	computational	steps.

4.5 | KFRLSMDA

We	developed	the	computational	model	of	KFRLSMDA	by	combining	
the	miRNA‐disease	association	data,	the	miRNA	functional	similarity,	
the	disease	 semantic	 similarity	and	 the	Gaussian	 interaction	profile	
kernel	 similarity	 to	 predict	 potential	 miRNA‐disease	 associations	
(see	Figure	2).	Basically,	our	algorithm	was	divided	 into	three	parts,	
namely,	kernel	fusion	of	data	sets,	regularized	least	squares	classifiers	
in	the	miRNA	and	disease	spaces,	and	ensemble	of	the	two	classifiers.

4.5.1 | Kernel fusion of data sets

Instead	of	simply	integrating	similarity	matrices	using	linear	combi‐
nation	like	many	previous	studies	in	computational	biology,	here	we	

adopted	nonlinear	kernel	fusion	on	our	data	sets.	To	be	more	spe‐
cific,	kernel	fusion	was	carried	out	in	both	the	miRNA	space	(involv‐
ing	SM and KM)	and	the	disease	space	(involving	SD and KD).

In	the	miRNA	space,	we	firstly	made	SM	positive	semi‐definite	
by	adding	an	 identity	matrix	using	the	formula	KSM=

(
SM+�∗ ISM

)

,	 where	 ISM	 was	 the	 identity	matrix	with	 the	 same	 size	 as	 SM 77 
and ε	 was	 a	 small	 positive	 value	 assumed	 to	 be	 0.1	 (and	 could	
be	optimized	further).	Secondly,	KSM	was	row‐normalized	so	that	
each	row	could	sum	up	to	one,	and	its	symmetric	version	PM1	was	
obtained	by	taking	the	average	of	KSM	and	its	transpose.	Thirdly,	
the	local	similarity	matrix	for	PM1	was	calculated	by	the	following	
equation

where Ni	denoted	the	nearest	neighbours	of	the	current	disease	d (i). 
In	our	work,	we	used	four	nearest	neighbours	(k	=	4).	This	matrix	LM1 
captured	the	local	information	of	PM1.	In	addition,	we	also	calculated	
a	 row‐normalized	symmetric	version	of	KM,	which	was	denoted	by	
PM2;	 and	we	obtained	 the	 local	 similarity	matrix	LM2	 according	 to	
Equation	(8).

Inspired	by	Tu	et al,78	in	the	ensuing	step	we	iteratively	updated	
PM1 and PM2	according	to.

(5)�d= � �
d
∕(

1

nd

nd∑
u=1

||IP(d(u))||2)

(6)KM (m (i) ,m (j))=exp (−�m||;IP (m (i))− IP
(
m (j) ||2

)

(7)�m= �
�

m
∕

(
1

nm

nm∑
i=1

||IP(m(i))||2
)

(8)LM1 (i,j)=

⎧
⎪⎨⎪⎩

PM1(i,j)∑
k∈Ni

PM1(i,k)
, k∈Ni

0, otherwise

(9)PM
(t+1)
1

=LM1PM
(t)

2
(LM1)

T

(10)PM
(t+1)
2

=LM2PM
(t)

1
(LM2)

T

F I G U R E  2  Flow	chart	of	KFRLSMDA	model	to	predict	the	potential	miRNA‐disease	associations
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This	update	was	the	key	step	of	kernel	fusion.	Here,	PM(t+1)
1

	was	

the	status	matrix	of	KSM	after	t	iterations	and	PM
(t+1)
2

	was	the	status	
matrix	of	KM.	As	has	been	pointed	out	by	Tu	et al,78	the	process	above	
could	 loosely	be	considered	as	a	diffusion	process.	Notice	 that,	at	
the	end	of	each	iteration,	both	status	matrices	were	further	changed	
as	they	were	added	by	an	identity	matrix.	In	the	next	iteration,	the	
generated	matrices	were	further	used.	The	 iteration	step	could	be	
set	by	the	user,	and	we	set	to	2	in	our	study.	After	the	iterations,	the	
two	final	status	matrices	were	averaged	KM

kf
=PM

(t)

1
+PM

(t)

2
	and	then	

KM
kf
	 was	 row‐normalized.	 Here,	M	 was	 the	 shorthand	 for	miRNAs,	

meaning	KM
kf
	was	the	kernel	fusion	matrix	in	the	miRNA	space.	Finally,	

we	further	transformed	the	resulting	matrix	by	KM
kf
= (KM

kf
+
(
KM
kf
)T+ I

)
∕2

,	which	was	the	final	fusion	matrix.	The	fusion	steps	are	illustrated	in	
the	left	part	of	Figure	2.	We	computed	the	fusion	matrix	KD

kf
	 in	the	

disease	 space	 in	 the	 same	 way	 (as	 depicted	 in	 the	 right	 part	 of	
Figure	2).

4.5.2 | Regularized Least Squares Classifiers in the 
MiRNA and Disease Spaces

After	kernel	fusion,	we	further	used	regularized	least	squares	(RLS)79 
to	 construct	 the	 two	classifiers	 in	 the	miRNA	and	disease	 spaces,	
respectively.	In	the	miRNA	space,	the	RLS	classifier	was	obtained	by	
defining	a	cost	function	to	minimize.

where || ∙ ||F	was	the	Frobenius	norm	and	�M	was	the	trade‐off	param‐
eter.	Fortunately,	this	optimization	problem	had	closed‐form	solution:

where IM	was	the	identity	matrix	with	the	same	size	as	matrix	KM
kf

. F∗
M

 
was	the	final	RLS	classifier	in	the	miRNA	space.	Similarly,	we	could	ac‐
quire	the	classifier	F∗

D
	in	the	disease	space	as	follows

where ID	was	the	identity	matrix	with	the	same	size	as	matrix	KD
kf
.	Here,	

we	set	the	two	trade‐off	parameter	�Mand�D	as	0.3,	respectively,	ac‐
cording	to	previous	work.79

4.5.3 | Ensemble of two classifiers

As	the	last	step,	F∗
M

 and F∗
D
	were	combined	in	a	simple	weighted	aver‐

age	operation:

F∗	was	 the	 output	 of	 the	 trained	model	 and	 could	 be	 used	 to	
make	miRNA‐disease	association	prediction.	The	entity	in	row	 i  col‐
umn j	of	F∗	was	denoted	by	F∗ (i,j),	which	represented	the	associ‐
ation	 score	 for	miRNA	 j	 and	disease	 i .	 The	higher	 the	 score	was,	
the	more	probably	this	miRNA‐disease	pair	would	be	associated.	The	

value	of	�	could	be	optimized	from	0	to	1	using	grid	search	method.	
Here,	we	set	�=0.1,	which	could	be	regarded	as	the	start	point.
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