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Abstract 

Purpose: Sepsis is a life-threatening organ dysfunction. It is caused by a dysregulated immune response to an infec-
tion and is one of the leading causes of death in the intensive care unit (ICU). Early detection and treatment of sepsis 
can increase the survival rate of patients. The use of devices such as the photoplethysmograph could allow the early 
evaluation in addition to continuous monitoring of septic patients. The aim of this study was to verify the possibil-
ity of detecting sepsis in patients from whom the photoplethysmographic signal was acquired via a pulse oximeter. 
In this work, we developed a deep learning-based model for sepsis identification. The model takes a single input, 
the photoplethysmographic signal acquired by pulse oximeter, and performs a binary classification between septic 
and nonseptic samples. To develop the method, we used MIMIC-III database, which contains data from ICU patients. 
Specifically, the selected dataset includes 85 septic subjects and 101 control subjects. The PPG signals acquired from 
these patients were segmented, processed and used as input for the developed model with the aim of identifying 
sepsis. The proposed method achieved an accuracy of 76.37% with a sensitivity of 70.95% and a specificity of 81.04% 
on the test set. As regards the ROC curve, the Area Under Curve reached a value of 0.842. The results of this study 
indicate how the plethysmographic signal can be used as a warning sign for the early detection of sepsis with the aim 
of reducing the time for diagnosis and therapeutic intervention. Furthermore, the proposed method is suitable for 
integration in continuous patient monitoring.
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Introduction
The Sepsis-3 task force in 2016 defined sepsis as a life-
threatening organ dysfunction caused by a dysregulated 
host response to an infection [1]. This condition is a 
major global health problem that represents a significant 
burden to the health care systems of different countries. 
Sepsis is one of the leading causes of death in intensive 
care unit (ICU) affecting 49 million people annually (year 
2017 [2]). This feared condition occurs in up to 30% of 
ICU patients and result in a mortality rate twice as high 
as that of non-septic patients [3]. All of this indicates how 
the recognition and treatment of sepsis should be consid-
ered as medical emergencies in order to reduce time for 

treatment and risk for patients [4, 5]. This is very impor-
tant because sepsis is a rapidly progressive condition and 
the mortality rate of patients has been shown to be cor-
related to timeliness of a therapeutic intervention high-
lighting the importance of early detection and treatment 
[6, 7]. In this sense, a few hours of delay in detection and 
treatment from the onset are associated with a reduction 
in survival rate [6, 8, 9]. Unfortunately, there is currently 
no gold-standard test for the diagnosis of sepsis. Conse-
quently, different sepsis scoring systems (SSS) are com-
monly used in clinical practice. Strengths and weaknesses 
have been recognized for each of these sepsis screening 
tools, as well as areas of preferential application [5, 10]. 
Manually tabulated SSS such as Systemic Inflammatory 
Response Syndrome (SIRS) criteria [11] and Sequential 
Organ Failure Assessment (SOFA) [12] are usually used 
to identify sepsis. These tools include the evaluation of 
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several parameters obtained from laboratory tests. Con-
versely, Quick-SOFA (qSOFA) is a scoring system [1] 
which utilizes only three independent non-laboratory 
test variables and is often used for a quick assessment 
that may require for further investigations. This tool is 
normally used for the purpose of predicting organ dys-
function and death in patients with or suspected sepsis in 
emergency department [4, 5, 7]. Unfortunately, the pres-
ence of multiple definitions of sepsis and recommenda-
tions for the use of different SSS can lead to confusion in 
clinical practice and hinder a quick diagnosis and treat-
ment of sepsis as well as the definition of shared treat-
ment protocols [4, 10, 13, 14]. Furthermore, the use of 
SSS may lead to costs such as those for laboratory tests 
and time to obtain the score in addition to showing lim-
its regarding the sensitivity [2]. These limitations can 
be particularly evident in low and middle-income coun-
tries in which a timely execution of laboratory tests can 
be difficult. It has recently been suggested that it is use-
ful to use multiple SSS at the same time (mixed models). 
This model can further hinder the timely evaluation of 
patients [5, 10, 15]. All this may limit the use of the SSS 
and indicates the need to continue studying tests and 
procedures that can promptly recognize the presence 
of sepsis. In this context, the availability of electronic 
clinical records together with data relating to continu-
ous monitoring of vital signs could offer important sup-
porting methods for the sepsis identification. Among the 
data available in these datasets there are those relating 
to microcirculation. These data are important because 
multiple clinical trials have shown common microcircu-
latory dysfunctions in sepsis patients [16, 17]. The altera-
tions of the microcirculation have been associated with 
organ failure and increase in mortality [18–21]. Micro-
circulatory dysfunctions in sepsis patients reflect them-
selves on parameters that can be easily evaluated at the 
skin level, as the photoplethysmogram (PPG). This signal 
is commonly monitored using devices such as the pulsi-
oximeter. This device is widely used, user-friendly and 
affordable. In particular, PPG is an optical signal that 
utilizes the absorption or reflection of the light through 
blood to detect changes in blood volume and oxygen sat-
uration at a peripheral site, typically the finger. It is worth 
noting that the perfusion characteristics depends on the 
measurement site, that needs to be defined as a part of 
the experiment protocol [22, 23]. Photoplethysmogram is 
now widely used in intensive care units for cardiovascu-
lar monitoring since it allows a non-invasive, continuous 
and comfortable measurement. In this sense, it is impor-
tant to consider that photoplethysmogram waveform 
contains information on heart rate, venous blood volume 
and peripheral vascular tone. As a whole this information 

can be very important because it could allow controlling 
the cardiovascular system.

Spectral analysis of photoplethysmogram has already 
been used to gain insight into the peripheral microcir-
culatory function of sepsis patients. Piepoli et  al. [24] 
showed that the low-frequency (LF, 0.04–0.15 Hz) 
band of fingertip PPG was suppressed in septic shock 
patients. This is considered relevant because low-fre-
quency band of fingertip PPG has been associated with 
sympathetic control over the peripheral circulation. 
Middleton et  al. [25] reported that the mid-frequency 
(MF, 0.09–0.15 Hz) band of earlobe PPG had a signifi-
cant decrease in power spectral density in severe stage 
sepsis patients, compared to controls and early stage 
sepsis subjects.

Traditional machine learning algorithms have previ-
ously been exploited for the detection of sepsis in ICUs. 
Calvert et al. [26] developed a classical machine learn-
ing algorithm to identify sepsis using many vital signs 
and demographic features. Other studies have subse-
quently further validated the same algorithm [27, 28] 
using different input features and different data sets. 
These studies showed that the algorithm outperformed 
standard sepsis diagnostics methods, such as tabulated 
scoring systems.

Mollura et  al. [29] trained multiple machine learning 
classifiers using features extracted from continuously 
recorded electrocardiogram (ECG) and arterial blood 
pressure (ABP) signals, in order to identify sepsis within 
one hour of admission to ICU. The authors reported 
that classification results were comparable with those 
obtained with tabulated scores, suggesting that vital 
sign waveforms might be useful in the early detection of 
sepsis.

A lot of studies have recently used deep learning 
approaches to carryout medical tasks, highlighting their 
potential in the healthcare field [30–32]. Deep learn-
ing models automatically learn from raw data without 
requiring conventional feature extraction and selection 
steps. Among deep learning architectures, Convolutional 
Neural Networks (CNN) are currently the state-of-the-
art technique for signal processing applications. Conse-
quently, CNNs have been increasingly used in biomedical 
signal analysis [33, 34]. CNN models and photoplethys-
mographic signals have previously been jointly used to 
perform classification tasks. In this sense, some authors 
used spectrograms and scalograms, obtained from PPG 
signals, to train a CNN model to perform blood pressure 
classification [35, 36].

In this study, raw fingertip photoplethysmography 
time-series data related to ICU patients were used to 
train and evaluate a CNN-based model. The aim of this 
study was to verify the possibility of detecting sepsis in 
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patients from the photoplethysmographic signal acquired 
by the pulse oximeter.

Materials and methods
Dataset
This study used the MIMIC-III database [37], a large, a 
freely accessible critical care database. MIMIC-III is pro-
vided as a collection of comma-separated value files, that 
we imported into a PostgreSQL relational database sys-
tem. The data are organised in tables containing informa-
tion such as demographics data, vital sign measurements, 
laboratory test results, procedures and mortality rate. 
The tables are linked by identifiers allowing the extrac-
tion of information on the same patient.

Waveform recordings, such as ECG and PPG, are 
stored in a separate database, the “MIMIC-III Waveform 
Database” [38]. In particular in a subset of the waveform 
database, the “MIMIC-III Waveform Database Matched 
Subset” [39], there are the recordings for which the 
patient has been linked to the clinical information avail-
able in the MIMIC-III database.

The MIMIC-III database contains a large heterogeneity 
of subjects, allowing it to be used for a variety of analyti-
cal studies. However, this heterogeneity could make the 
development of an efficient machine learning algorithm 
challenging [40]. Moreover, diagnosis are reported only 
as an ICD-code generated at the end of the hospitaliza-
tion, without providing any information on the date of 
the diagnosis. Thus, we selected a subset of the subjects, 
identified as “sepsis” (cases) and “non-sepsis” (controls) 
patients. The criteria used to select sepsis and non-sepsis 
subjects are reported in Table 1. In this phase a custom 
Structure Query Language (SQL) query was used.

The selection criteria resulted in a large number of con-
trol subjects in comparison to the group of patients with 
sepsis. Therefore, we limited the control group to 40 sub-
jects per ICD-9 code in order to have a more balanced 
selection. As a result, the group of patients with sepsis 
was of 178 subjects while the control group was of 200 
subjects.

The MIMIC-III Waveform Database contains a variety 
of signals (such as ECG, ABP, PPG) but not all of them 
are available for each patient. Therefore, we further 
restricted the selection to those patients for whom the 
PPG signal was available. As a result the group of patients 
with sepsis was reduced to 147 subjects while the control 
group consisted of 155 subjects.

Preprocessing
We downloaded the recordings from the Matched Sub-
set of MIMIC-III Waveform database and extracted the 
PPG of selected patients using WFDB Python package 
[41]. Selected signals were split into 2-min segments, and 
segments less than 2 min were discarded. Furthermore, 
in order to reduce the degree of similarity within the col-
lected signals, we kept only every other segment.

Afterwards, the regularity and quality of each 2 min 
sample was assessed using a template matching approach, 
a technique already used by other authors [42, 43]. This 
quality estimation was carried out using 3-s running win-
dow over the 2 min segment. We classified each window 
by comparing the signal acquired from the patient to an 
optimal template PPG signal. The similarity between the 
two time-series was calculated with Pearson’s correlation 
coefficient.

The template was generated using NeuroKit2 python 
toolbox, a package for neurophysiological signal 

Table 1 Criteria for the definition of septic patients and control (non-septic) patients

Selection criteria for control patients

• No death in the hospital

• Single ICU hospitalisation

• Single hospital admission

• One or more following diagnosis codes (ICD-9): 311 (Depressive disorder NEC), 3051 (Tobacco use disorder), 30,000 (Anxiety state NOS), 2948 (Other 
persistent mental disorders due to conditions classified elsewhere), 3004 (Dysthymic disorder)

• No sepsis diagnoses

• Subject was present in the Matched Subset of MIMIC-III Waveform Database

Selection criteria for sepsis patients

• Death in the hospital

• Single ICU hospitalisation

• Single hospital admission

• One or more following ICD-9 diagnosis codes: 99,591 (Sepsis), 99,592 (Severe sepsis), 78,552 (Septic shock)

• Subject was present in the Matched Subset of MIMIC-III Waveform Database
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processing [44]. The reference PPG signal was simulated 
without noise and motion artifacts. The simulation algo-
rithm also requires as input the sampling frequency of 
the signal and the mean heart rate within each window. 
Sampling frequency was set to 125 Hz, which is the sam-
pling frequency of all the signals in the waveform data-
base. Mean heart rate was calculated considering the 
distance between the systolic cardiac peaks. To identify 
the peak locations, we first filtered the signal and then 
we used NeuroKit’s peak finding method, as illustrated in 
Fig. 1a.

Signal filtering was carried out using a third-order 
Butterworth bandpass filter with cut-off frequencies of 
0.5 and 8 Hz. The objective of the signal filtering was to 
remove the baseline component and frequencies that are 
not relevant for systolic peaks. This peak finding function 
implements a method previously proposed by Elgendi 
et  al. [45] based on event-related moving averages with 
dynamic thresholds. On the bases of the procedure 
reported above, we were able to identify the location of 
systolic peaks and therefore estimate the mean heart rate 
within the window considered. At this stage, we excluded 
segments containing windows with only constant values, 
for which identification of systolic peaks was not pos-
sible, and windows with an estimated mean heart rate 
below 45 bpm. Once the reference signal was generated, 
we aligned the patient-acquired window and the tem-
plate signal on the first systolic peak, Fig. 1b. Hence, we 
calculated the Pearson correlation coefficient in order to 
evaluate the similarity between the two signals. A flow 

Fig. 1 Template matching method. a The raw and filtered signal. The 
filtered signal was used to identify the position of the systolic peaks 
indicated by green dots. b Alignment between the acquired signal 
and the template on the first systolic peak, which allowed us to calcu-
late the correlation coefficient between the two waveform

Fig. 2 Flow chart of the template matching algorithm. The template matching procedure was performed on 3-s windows obtained from each 
2-min PPG segment. The correlation coefficient values obtained for each window were stored and subsequently used to classify the quality of the 
2-min sample as acceptable or unacceptable
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chart that summarises the developed template matching 
algorithm is shown in Fig. 2.

The 3-s windows were grouped into four classes using 
the thresholds for correlation coefficient as illustrated in 
Table 2. These thresholds were chosen experimentally, by 

visually inspecting a set of signal samples associated with 
different correlation values.

An example of samples from each correlation group 
is shown in Fig. 3.

Segments containing windows belonging to group III 
or IV (Pearson correlation coefficient lower than 0.6) 
were discarded.

As a result, we obtained 720 h of recording from 139 
control subjects and 2272 h of recording from 111 sepsis 
subjects.

Finally, the training and test sets were created. The sub-
jects were randomly assigned to training and test sets 
using 80% and 20% of ratio, respectively. Segments from 
a single patient could not appear in both sets.

Moreover, the maximum amount of data per patient 
was set to 3 h in order to avoid a patient being over-rep-
resented. For patients with available signal greater than 3 
h, the segments were selected by random sampling. After 
the data selection phase, some patients were represented 
only by a few data samples. We considered that a small 
number of samples could indicate an unreliable signal 
with a high signal-to-noise ratio. Therefore, we set a min-
imum threshold of 1 h of signal per patient in order to 
further improve the quality of the data set. Patients who 
did not have the required amount of minimal signal were 
excluded. A statistical description of the resulting train-
ing set and the test set is shown in Table 3.

After the patient selection process, data from 85 sepsis 
patients and 101 controls were considered. Figure 4 sum-
marizes the procedure used for defining the dataset.

Network model
We based our model on a widely used ResNet architec-
ture [46]. Our model’s architecture started with an input 
layer, followed by a single convolutional and a max pool-
ing layer. After this, we added 8 identity blocks separated 

Table 2 Pearson correlation categories between window 
of patient-acquired signal and reference signal

Coefficient R Correlation group

R ≥ 0.8 Group I

0.6 ≤ R < 0.8 Group II

0.5 ≤ R < 0.6 Group III

R < 0.5 Group IV

Fig. 3 Examples of classified 3-s windows according to Pearson’s 
correlation coefficient. The figure shows that samples belonging to 
different groups have a different quality. The signals of group I (a) and 
group II (b) present the typical morphology of the PPG signal. The 
signals of group III (c) and group IV (d), associated with lower values 
of the correlation coefficient, are of poor quality

Table 3 Data set description

Training set Test set

Control group

 No. samples 6600 1598

 No. subjects 81 20

 Ratio (%) 53.2% 53.7%

Sepsis group

 No. samples 5816 1377

 No. subjects 68 17

 Ratio (%) 46.8% 46.3%

Total samples 12,416 2975

Length (h) 413 h 99 h



Page 6 of 12Lombardi et al. Health Information Science and Systems           (2022) 10:30 

by max pooling layers. Each identity block, illustrated 
in Fig.  5, included a shortcut connection and two con-
volutional layers initialized using Glorot function. Each 
convolutional layer was followed by a batch normaliza-
tion layer, and ReLU activation. The shortcut connection 
performed sum of the input to the identity block and the 
output of the last ReLU activation.

After the identity blocks, we added a fully connected 
dense layer with 100 units, a dropout layer with 0.2 drop-
out rate, and lastly, a fully connected layer with a Soft-
max activation. Dense layers used the same initialization 
function as the convolutional layers. As an input, the 
model used raw 2 minutes PPG segments, normalized 
within the range [ −1 , 1]. All convolutional layers had a 

Fig. 4 Main steps in dataset construction. For each step, the number of subjects involved is given for the septic group and the control group

Fig. 5 Composition of the identity block. The identity block consists 
of two convolutional layers, each followed by a batch normalization 
layer and a ReLU activation. Output of the identity block is created by 
summing the input to the identity block and the output of the last 
ReLU activation

Fig. 6 The network architecture used in our study. The core of the 
network consists of 8 consecutive identity blocks and max pooling 
layers. At the end of the network two fully connected layers sepa-
rated by a dropout layer are present
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number of filters equal to 40, with a filter width equal to 
3. A depiction of the complete architecture is illustrated 
in Fig. 6.

Evaluation
To evaluate the performance, we trained the model 
using k-fold cross-validation. The k-fold cross-validation 
involves dividing the training data into approximately 
equal size k subsets, called “Folds”. The model training is 
then repeated iteratively k times, so that at each iteration 
one of the folds is used as the validation set and the other 
k − 1 folds constitute the training data. In this work, the 
k value was chosen to be 5, resulting the training data 
to be split into 5 separate folds. The division of the data 
was done by ensuring that PPG samples acquired from 
the same subject were not present in multiple folds. As 
a result of this approach we obtained 5 different models, 
each of which was trained and validated on data from 
different patients. The best model weights from each 
training iteration were selected using validation loss as a 
metric. These weights were then used as an ensemble to 
perform majority voting prediction on the test set.

Parameter optimization
To train the model, we set the learning rate to 1e−6, 
batch size to 128, and number of epochs to 800. In addi-
tion, we used Adam optimizer and binary cross-entropy 
loss.

To select the optimal parameters, we conducted several 
experiments that led to the final version of the model. In 
this section we discuss the selection of the architecture, 
hyperparameters, input data length and data presenta-
tion format.

Architecture
We chose ResNet architecture [46] for this project due to 
its prominent status and signal classification capabilities 
demonstrated by literature [47]. Once the architecture 
type was chosen, we ran several empirical experiments in 
order to determine suitable depth for the network. Based 
on the achieved results we chose architecture depth con-
sisting of 8 identity blocks.

Learning rate
One of the most important hyperparameters is learning 
rate which typically has values ranging between less than 
1 and 1e−6 [48]. Learning rate defines how large updates 
are applied to the model weights during backward pass 
in response to the estimated error. In our study, we 
found experimentally a suitable learning rate by running 

multiple training with various, commonly used, learn-
ing rates. Learning rates of negative powers of 10 rang-
ing from 1e−2 to 1e−7 were evaluated. When deciding 
on appropriate value, we considered quantitative metrics 
such as maximum accuracy, minimum loss, and qualita-
tive metrics such as perceived smoothness of the learn-
ing, convergence and absence of under- or overfitting. 
Based on these metrics, we chose learning rate of 1e−6.

Batch size
Smaller batch sizes have been shown to improve gen-
eralization [49], but they can be computationally less 
effective than larger batches [48]. In this study, we per-
formed experiments using batch sizes of power of 2, 
ranging from 16 to 1024. Based on the experiments, we 
chose batch size of 128, which resulted in a good balance 
between computational efficiency and accuracy.

Data augmentations
Deep learning thrives on large datasets, but often avail-
able training data is scarce. In order to reduce this issue, 
data augmentations is commonly use to increase amount 
of training data. However, in the case of biosignals, the 
design of data augmentation techniques needs to con-
sider that it is necessary to preserve the time domain 
characteristics that represent physiological phenomena 
[50].

In this study, we evaluated effectiveness of adding noise 
and using random windows. The noise was sampled from 
a normal distribution and added to the normalized PPG 
signal. After noise addition, the resulting noisy signal was 
normalized again to obtain the values within the [ −1 , 1] 
range expected by the model. The noise augmentation 
was applied to the signal with 50% of chance. Random 
windows were implemented by taking a continuous 90 s 
window from a random location of the 2 min PPG seg-
ment. As shown in Table 4, the use of data augmentations 
did not lead to a significant improvement in the perfor-
mance. The combined use of jitter and windows led to 
modest improvements in accuracy and specificity com-
pared to the model without augmentations. As the base-
line approach yielded the best performance on sensitivity, 
it was selected for the final version of the model.

Table 4 Augmentation results

Model Accuracy (%) Sensitivity (%) Specificity (%)

Baseline 76.37 70.95 81.04

Jitter 75.70 68.34 82.04

Windows 73.71 65.50 80.79

Jitter & Windows 76.47 69.43 82.54
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Segment length
Moreover, we explored classification of photoplethys-
mography segments of various lengths. Exploration 
started with segments lasting 1 h. Subsequently, the 
length of the segments considered was gradually reduced 
to 1 min. Shorter segments increased amount of data and 
led to improved signal-to-noise ratio as shorter segments 
allowed visual inspection of the signal, which helped in 
identifying and discarding various artifacts. Furthermore, 
shorter segments allowed assessing the effectiveness of 
signal quality metrics.

Frequency domain presentation
We investigated frequency domain presentation input in 
addition to raw time-series. We observed a trend where 
frequency domain presentation compared favorably to 
the time-series when the PPG segments were longer, but 
when the segments were shorter, frequency presentation 
lost its advantage. We hypothesized that the better out-
come obtained with the longer segments might have been 
due to simplified presentation in the frequency domain.

Results
All trained models and their ensemble, with correspond-
ing evaluation metrics, are shown in Table 5. Each model 
is indicated in the table by the name of the fold used as 
the validation set. Accuracy identifies the percentage of 
correctly classified samples. Sensitivity indicates propor-
tion of correctly classified sepsis samples, and specific-
ity shows the percentage of correctly predicted control 
samples.

As shown in Table  5, the accuracy between the mod-
els varies from 72.27 to 74.59%, sensitivity from 65.72 to 
71.31% and specificity from 76.47 to 79.72%. The ensem-
ble method achieves 76.37% of accuracy with sensitivity 
of 70.95% and specificity of 81.04%. In addition to accu-
racy, sensitivity and specificity, Receiver Operating Char-
acteristic (ROC) curve was calculated for the ensemble. 
The ROC curve, illustrated in Fig.  7, shows that our 
method reaches 0.842 of Area Under Curve (AUC).

Figure  8 shows the trend of the loss function on the 
validation set for all 5 models during the first 400 training 

epochs. The loss curves show that the model identified 
as Fold 0 (gray) achieves the lowest loss, whereas Fold 4 
(blue) performs the worst.

Discussion
This study allowed investigating the feasibility of using 
deep learning based method to classify sepsis through 
the only analysis of photoplethysmogram signal. In par-
ticular, we developed a deep learning based model and 
trained it on PPG signal extracted from the public ICU 
waveform database (MIMIC-III database). To the best 
of our knowledge, this is the first study aimed at veri-
fying the possibility of using only photoplethysmogram 
signal together with a deep learning based method to 
classify sepsis. As regards data analysis, 5-fold cross-
validation was used, which resulted in 5 models, each 
trained using different training and validation subjects. 
Due to the differences in the training and validation 
data in each cross-validation iteration, the perfor-
mances of the models were different when evaluated 
on the test set. Our method showed mean and standard 
deviation of 73.398± 0.784 for accuracy, 67.754 ± 1.921 
for sensitivity and 78.26± 1.168 for specificity. In this 
regard, it was hypothesized that the performance varia-
tions between folds depended on how well the training-
validation data split of a given fold represented the test 
data; this also suggest the selected dataset contains not 
homogeneous populations, thus a larger dataset may 
improve the classification results. The final prediction 
was carried out by using majority-voting which con-
sulted all the trained models. Due to the differences 
among the folds, the ensemble method was presumed 

Table 5 Evaluation results

Model Accuracy (%) Sensitivity (%) Specificity (%)

Fold 0 72.87 65.72 79.04

Fold 1 73.65 67.83 78.66

Fold 2 73.61 66.52 79.72

Fold 3 74.59 71.31 77.41

Fold 4 72.27 67.39 76.47

Ensemble 76.37 70.95 81.04

Fig. 7 Calculated ROC curve. Red diagonal line represents points 
where the true positive rate is equal to the false positive rate. Points 
to the left of the diagonal line mean that proportion of true positives 
is higher than false positives. Optimal value is at the top of the left 
corner
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to make a better decision than any of the models inde-
pendently. By using the ensemble, we achieved 76.37% 
of accuracy, 70.95% of sensitivity and 81.04% of speci-
ficity, demonstrating promising results and indicating 
the possibility to use a PPG signal to assist in diag-
nosing sepsis. Our method could provide support to 
the sepsis diagnostic process, and allow a more timely 
diagnosis. Importantly, the method might not require 
recording extra signals because PPG is already com-
monly recorded in the case of ICU patients. Moreover, 
the acquisition and processing of photoplethysmogram 
signals can ensure continuous low-cost monitoring of 
the patient with or at risk of sepsis.

Differently from previous studies, the model pro-
posed in this article performs a binary classification of 
sepsis and was trained using only the raw plethysmo-
graphic signal. Previous studies using the MIMIC data-
base for sepsis detection were mainly conducted using 
vital parameters and laboratory measurements. Among 
these, we feel it is worth mentioning some works that 
used a deep learning approach for sepsis identification.

Kam and Kim [51] extracted the minimum, mean and 
maximum values of hourly periods of vital signs and 
laboratory measurement parameters from the MIMIC-
II database. The extracted features were used to train 
different architectures to predict sepsis 3 h before the 
estimated onset time. The authors reported that the 
Long Short-Term Memory (LSTM) architecture was 
the most effective, based on the Area Under the Curve 
(AUC) criterion.

Ashuroğlu et  al. [52] proposed a model called Deep 
SOFA-Sepsis Prediction Algorithm, which combined 
CNN and Random Forest algorithms, to predict the 
SOFA score. The authors trained the model with 7 vital 

signs obtained from MIMIC-III database. Laboratory 
results were excluded in order to assess the feasibility 
of estimating the risk score. They evaluated the archi-
tecture of their performance also to predict sepsis 6 h 
before the estimated onset time.

Scherpf et al. [53] developed a Recurrent Neural Net-
work (RNN) model to predict sepsis 3 h before the esti-
mated onset time. The model was trained using white 
blood cell count and vital signs averaged over one-
hour intervals. The training data were obtained from 
MIMIC-III database.

Our method achieved AUC of 0.842 compared to 0.929 
reported by Kam and Kim [51], 0.972 by Ashuroğlu [52], 
and 0.81 by Scherpf [53].

Table 6 summarises in more detail the cited works that 
used the MIMIC database for the identification of sep-
sis. Although these studies performed better than our 
method, we believe the results we obtained can still be 
considered very interesting, as our method only uses the 
PPG signal as input.

Our study has some limitations. As reported in the 
MIMIC-III database documentation, the ICD-code was 
generated at the end of the hospitalisation, consequently 
information on when the diagnosis was made or when 
the patient showed the symptoms is not known. Due to 
this limitation, our subject selection consisted of those 
sepsis patients who were hospitalised only once in ICU. 
We hypothesised that by using this criterion, the corre-
sponding signals contained sufficient information on the 
target pathology.

Nevertheless, it should be mentioned that some stud-
ies have tried to estimate the onset time of sepsis in the 
MIMIC database on the basis of the diagnostic criteria 
for sepsis: presence of 2 or more SIRS criteria or SOFA 

Fig. 8 Validation loss curves for the first 400 training epochs. In the figure, folds 0 and 3 have not yet reached plateau, in contrast to folds 2 and 4, 
which show a trend that could indicate overfitting on the training data. Lower loss values indicate better performance



Page 10 of 12Lombardi et al. Health Information Science and Systems           (2022) 10:30 

score > 2 . After extracting the parameters necessary to 
estimate the SIRS or the SOFA scores, several authors 
[26, 27, 52, 53] considered the onset time of the disease to 
be when the estimated score met the diagnostic criterion 
for sepsis. Second limitation of the study is the selection 
of control and target diagnoses. In our study, the control 
group was restricted to a small subset (n = 5) of ICD-9 
mental disorders, and sepsis group consisted of multiple 
(n = 3) classes of different sepsis severities. Furthermore, 
all waveforms used for training and testing the method 
were collected from the same database.

Based on the above limitations, the future direction of 
this research involves evaluating the model on a larger 
set of control diagnoses as well as sepsis diagnoses strati-
fied by severity. Patient selection could be improved by 
including subjects from other databases and by extend-
ing the subject selection in MIMIC-III. To assess the gen-
eralisation capability of our model, we intend to test the 
performance of our method on other datasets. Further-
more, to evaluate the ability of the method in predicting 
the onset of sepsis, we plan to train and test the model on 
a dataset where the diagnosis times are known.

Conclusion
This study explored the feasibility of using a deep learn-
ing based method to classify sepsis relying only on the 
photoplethysmogram signal. This was possible through 
the use and analysis of the MIMIC-III database. The pro-
posed method allowed us to achieve AUC of 0.842 and 
obtain an accuracy of 76.37% on the testing set demon-
strating promising results. The proposed method, using 
only a non-invasive signal, is perfectly suited for long-
term monitoring of patients at risk. We hypothesize this 
method could serve as an early warning system to trigger 
application of more invasive tests, and thus reduce the 
time to make a diagnosis. This method could contrib-
ute in improving the quality of the treatment of patients. 
However, as discussed in Chapter 4, future studies with a 
larger number of patients and data from other databases 
will be necessary to assess the effectiveness of the pro-
posed method.
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Table 6 Summary of the results of other works on sepsis identification from MIMIC database; abbrevations: Accuracy 
(ACC), Sensitivity (SE), Specificity (SP)

*For the calculation of the specificity the sensitivity was fixed to 90.00%

Authors Method Prediction time Input parameters AUC ACC SE SP

Calvert et al. Insight machine learning 
algorithm

3 h before estimated onset Systolic blood pressure, pulse 
pressure, heart rate, body tem-
perature, respiration rate, white 
blood cell count, pH, blood 
oxygen saturation, age

0.92 82.70% 90.00% 81.00%

Desautels et al. Insight machine learning 
algorithm

4h before estimated onset Age, systolic blood pressure, 
pulse pressure, heart rate, 
respiration rate, Sp02, Glasgow 
Coma Score

0.74 – 80.00% 54.00%

Mollura et al. Bagged Tree Classifier 1 h from ICU admission Features extracted from ECG and 
ABP waveforms

0.86 85.00% 85.00% 86.00%

Kam et al. LSTM (Long-short term memory 
network)

3h before estimated onset Systolic Blood Pressure, Pulse 
Pressure, Heart Rate, Body 
Temperature, Respiration Rate, 
White Blood Cell Count, pH, 
Blood Oxygen Saturation, Age

0.93 93.00% 91.40% 94.40%

Ashuroğlu et al. CNN (Convolutional Neural Net-
work) and Random Forest

6h before estimated onset Heart Rate, Systolic and Diastolic 
Blood Pressure, Respiratory 
Rate, Oxygen Saturation, Glas-
gow Coma Score eye opening, 
Temperature

0.97 – – –

Scherpf et al. RNN (Recurrent Neural Network) 3h before estimated onset Systolic and Diastolic Blood 
Pressure, Heart Rate, Body 
Temperature, Respiration Rate, 
White Blood Cell Count, pH, 
Blood Oxygen Saturation, Age

0.81 – 90.00% * 46.90%

Present Method Custom ResNet 0h PPG raw timeseries 0.84 76.37% 70.95% 81.04%
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