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1  |  INTRODUC TION

A large number of wildlife species are harvested worldwide for com-
mercial, recreational, or subsistence purposes (Di Minin et al., 2021; 
Kyle & Wilson, 2007; Ticktin, 2004). Overexploitation is one of the 
main threats to biodiversity and ecosystem functioning (IPBES, 2019). 

Assessing the consequences of harvest on the viability of species and 
populations is therefore a major conservation issue.

To date, the impact of harvest has mainly been addressed by 
assessing its consequences on population dynamics, genetic diver-
sity, or structural/functional properties of communities (Allendorf 
et al., 2008; Jennings et al., 1999; Lebreton, 2005). Maintaining 
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Abstract
Selective hunting has various impacts that need to be considered for the conservation 
and management of harvested populations. The consequences of selective harvest 
have mostly been studied in trophy hunting and fishing, where selection of specific 
phenotypes is intentional. Recent studies, however, show that selection can also 
occur unintentionally. With at least 52 million birds harvested each year in Europe, it 
is particularly relevant to evaluate the selectivity of hunting on this taxon. Here, we 
considered 211,806 individuals belonging to 7 hunted bird species to study uninten-
tional selectivity in harvest. Using linear mixed models, we compared morphological 
traits (mass, wing, and tarsus size) and body condition at the time of banding between 
birds that were subsequently recovered from hunting during the same year as their 
banding, and birds that were not recovered. We did not find any patterns showing 
systematic differences between recovery categories, among our model species, for 
the traits we studied. Moreover, when a difference existed between recovery catego-
ries, it was so small that its biological relevance can be challenged. Hunting of birds in 
Europe therefore does not show any form of strong selectivity on the morphological 
and physiological traits that we studied and should hence not lead to any change of 
these traits either by plastic or by evolutionary response.
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annual population growth rate equal or above 1 is the central objec-
tive pursued by management policies implemented to ensure the sus-
tainability of exploitation regimes (e.g., bag limits, harvesting periods, 
and size limits [Lormée et al., 2020]). However, the possible evolution-
ary consequences have also been considered as relevant in the frame-
work of sustainable harvesting (Allendorf & Hard, 2009). Classical 
examples of undesirable evolutionary outcome of harvesting include 
temporal changes in the frequencies of the different fur morphs in 
the Red Fox in response to selective harvesting by Canadian trappers 
(Haldane, 1942), reduction in the size of horns of bighorn sheep as a 
result of trophy hunting (Coltman et al., 2003; Pigeon et al., 2016), or 
decreasing size and age at sexual maturity observed in some fish spe-
cies in which larger individuals are targeted (Law, 2000). This suggests 
that particular harvesting methods/regimes that target individuals ac-
cording to their phenotype can impose a form of “unnatural selection,” 
sometimes in opposition to natural or sexual selection (Allendorf & 
Hard, 2009; Conover, 2007). However, phenotypic changes are only 
possible when the selective pressure induced by hunting is very high. 
In such conditions, the rates of phenotypic change induced by harvest-
ing would be dramatically faster than those measured in response to 
other anthropogenic or natural perturbations (Darimont et al., 2009). 
Thus, managers should be aware that harvesting can remove genetic 
variability in such a way that it can seriously threaten the long- term 
viability of populations (“the Darwinian debt,” Allendorf & Hard, 2009).

To our knowledge, the evolutionary consequences of human ex-
ploitation of wildlife species are overlooked in current sustainable 
exploitation strategies, which may be explained by several reasons. 
First, knowledge about the extent and magnitude of the evolution-
ary impact of harvest is scanty in most taxa. In most cases, details 
about the phenotypic traits potentially affected (e.g., morphology, 
sexual characters, and behavior) are lacking. Second, the mech-
anisms underlying phenotypic changes of harvested populations 
are still a matter of controversy, and some authors suggesting that 
phenotypic plasticity, not selection, is the main driver of phenotypic 
changes (Heffelfinger, 2018). Third, it is generally implicitly assumed 
that selection processes can occur if and only if harvest target a par-
ticular phenotype, intentionally (Festa- Bianchet, 2017). However, 
evidence is accumulating that even nondeliberately selective har-
vest may differentially remove phenotypes (Leclerc et al., 2017). In 
this context, evaluating the occurrence of nonrandom removal of 
individuals is therefore the first step in assessing its possible con-
sequences at evolutionary level (Festa- Bianchet & Mysterud, 2018).

Numerous mechanisms can explain why nonrandom removal can 
result from nonconsciously selective harvesting. These may include 
human cognitive biases (e.g., hunters may be unconsciously tempted 
to remove bigger individuals) or spatiotemporal heterogeneity of 
the distribution of hunters respective to different phenotypes (e.g., 
Christensen et al., 2017). Harvested individuals may also be uninten-
tionally selected if some intrinsic characteristics make them more vul-
nerable to harvest (Madden & Whiteside, 2014; Morez et al., 2000). For 
example, many studies suggest that bolder individuals or those moving 
more and over greater distances are more vulnerable to hunting or an-
gling (Biro & Post, 2008; Ciuti et al., 2012; Madden & Whiteside, 2014; 

Andersen et al., 2017; see Leclerc et al., 2017 for a review). Given that 
phenotypic traits do not evolve in isolation (Réale et al., 2010), behav-
ioral differences causing contrasts in vulnerability among individuals 
have the potential to translate into a gradual change in other heritable 
phenotypic characters, including morphometric traits.

In this study, we assessed whether some sort of selectivity on mor-
phological traits or body condition may occur in migratory game bird 
species, even when no particular phenotype is consciously targeted 
by hunters. Birds are among the taxa the most exposed to harvest 
worldwide. Only in Europe, 10 of millions of individuals are harvested 
each year (Hirschfeld et al., 2019). Despite such high levels of harvest, 
little attention has been devoted to the study of the potential selec-
tive action of bird hunting. Existing studies suggest that hunting can be 
nonintentionally selective, removing weakest (waterfowl, Greenwood 
et al., 1986; Heitmeyer et al., 1993; Reinecke & Shaiffer, 1988) or 
boldest individuals (Phasianus colchicus, Madden & Whiteside, 2014). 
However, they do not allow to draw firm conclusions about the poten-
tial of harvest to imprint a form of unintentional selection at the scale 
of whole populations. Indeed, these studies primarily concern small 
geographical scales and particular hunting methods. Conversely, all 
hunting modes should be considered, and their consequences should 
be measured at relevant biological and spatial scales. This is particu-
larly true for migratory birds, which use vast migration flyways and are 
therefore exposed to a wide variety of hunting modes and pressures 
in relation to local economic and cultural contexts. To overcome these 
issues, we used extensive data on morphometric traits measured as 
part of national banding schemes in France, whereby individuals could 
later be recovered anywhere in Europe. Our dataset encompassed 
hundreds of thousands of banded individuals belonging to seven com-
mon game species including four Anatidae, one Turdidae, one Rallidae, 
and one Scolopacidae. We assessed the potential selective effect of 
hunting by comparing morphologies (wing length, tarsus length, and 
body mass) and body condition (mass/wing length ratios) at banding 
between banded individuals, depending on whether they were later 
recovered by hunters (shot) or not. Under the hypothesis that hunters 
unintentionally may remove some phenotypes more frequently than 
others, we predicted differences in body mass, folded wing length, 
and tarsus length between birds recovered due to hunting and those 
not recovered, without any specific prediction regarding the direction 
of any potential difference. Based on several studies showing that 
hunting may preferentially take individuals in poor body condition in 
waterbirds (Greenwood et al., 1986; Heitmeyer et al., 1993; Reinecke & 
Shaiffer, 1988), hunted individuals should have a lower body condition 
index than nonrecaptured individuals in Anatidae and Rallidae.

2 | METHODS

2.1  |  Banding data

Our study was based on morphological data of game birds banded 
in France between 1953 and 2020. These data include ring re-
coveries reported from Europe, covering several putative flyways 
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and including individuals potentially pertaining to distinct popula-
tions. With the exception of blackbirds, some banding seasons are 
missing before 2000. In addition, for Anatidae and Rallidae, no 
banding data were available between 1978 and 2000. The details 
of the years covered by the study and the structure of the data 
are presented in Appendix S1. The dataset included morphologi-
cal measures recorded at the time of banding on a total 237,890 
full- grown individuals belonging to seven game species: Mallard 
(Anas platyrhynchos), Eurasian Teal (Anas crecca), Tufted Duck 
(Aythya fuligula), Common Pochard (Aythya ferina), Common Snipe 
(Gallinago gallinago), Eurasian Coot (Fulica atra), and Blackbird 
(Turdus merula). Direct recoveries by hunters (see definition 
below) totalized 4674 events, which represents on average 2% of 
the banded individuals.

2.2  |  Morphological data and recovery categories

The morphological data used in the analyses included body mass, 
tarsus length, and folded wing length at first capture/banding 
(the morphology of the birds at recovery is almost never known 
and therefore cannot be used). As a proxy of physiological condi-
tion, we used the body condition index of Peig and Green (2010), 
computed from the residuals of the centered- reduced major axis 
regression of mass against a measure of body size (here wing 
length). We had kept only full- grown fledged individuals, banded 
and measured from August 1 in year n, to March 31 in year n + 1.	In	
this way, we excluded most individuals that had not finished their 
growth and whose traits would not be representative of those 
they would acquire when exposed to hunting. This banding period 
(1 August to 31 March) encompassed the various legal hunting pe-
riods of most countries over the study period. For a given year, 
birds were categorized as (1) harvested, when they were recov-
ered by hunters during the same year as banding (direct recovery) 
or (2) not recovered, when their rings were not reported during 
the same year or reported from hunting or other causes in a later 
year (indirect recovery). Thereafter, these two recovery categories 
are named “hunting recovered” and “not recovered,” respectively. 
Direct recoveries from other or undefined mortality causes were 
excluded from the analyses. Such direct recoveries from nonhunt-
ing or unknown causes amounted to <15% of the total number of 
direct recoveries, except for blackbird (Table 1).

2.3  |  Statistical analyses

To assess whether hunters unintentionally selected individuals ac-
cording to their morphological or physiological traits, for each spe-
cies and each trait, we considered a full mixed linear model and used 
a stepwise method to find the best submodel. For each of these 
models, the response variable was the morphological or physiologi-
cal trait at the time of banding and the explanatory variables were 
as follows:TA
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2.3.1  |  Random	structure

Due to population idiosyncrasies, morphological and physiological 
traits may be influenced by banding location (e.g., body mass of indi-
viduals could be influenced by the resources available in the banding 
environment, or the use of decoys; Guillemain et al., 2015) or the 
fieldworker taking the morphological measurements (e.g., system-
atic biases; Barrett et al., 1989). To accommodate for this plausible 
source of variability, the models were fitted using the region of band-
ing (NUTS 3 level) as a random factor (National structures— NUTS— 
Nomenclature of territorial units for statistics -  Eurostat, 2022). In 
addition, to take into account fluctuations around long- term tem-
poral trend, year was also considered as a random factor in all mod-
els. This random structure was the same for all species except for 
Eurasian Coot for all traits and Tufted Duck for tarsus where the 
banding region was not taken into account because, for E.Coot, for 
example, there were only two banding regions and 98% of individu-
als were banded in only one of them.

2.3.2  |  Fixed	effect

The full model considered that the traits vary according to Sex (male 
vs. female) and Age (first- year vs. adult), as acknowledged by previous 
studies showing morphological differences between different age and 
sex classes (e.g.,; Fairbairn et al., 2007). The interaction between age 
and sex was also included in the full model (Age × Sex). Second, the 
traits may also vary in response to large- scale changes in climate and/
or land use (Guillemain, Elmberg, et al., 2010;	Kaňuščák	et	al.,	2004; 
Yom- Tov, 2001; Yom- Tov et al., 2006). The Year variable was consid-
ered in the full model to account for this long- term variation. Third, the 
morphological and physiological characteristics would exhibit varia-
tion at shorter timescale. For example, depletion of food resources or 
climatic conditions is known to trigger modifications of certain plastic 
traits such as mass (Guillemain et al., 2005; Pravosudov & Grubb, 1997). 
Nonrandom mortality will also modify the proportion of different phe-
notypes available to hunters during the year (i.e., seasonal variation, 
see Haramis et al., 1986; Newcomb et al., 2016). The same also applies 
if migration strategies differ between the morphotypes of individu-
als. For all these reasons, the full model included the covariate Julian 
day (from August 1st to March 31st) too. Fourth, life history strategies 
and migration strategies may differ between age and sex classes. If so, 
patterns of the inter-  and intra- annual trends of the traits would differ 
by age and sex (Cristol et al., 1999; Guillemain et al., 2009), which has 
been taken into account in the full model considering four interaction 
terms: Age × Year, Age × Julian day, Sex × Year, and Sex × Julian day. 
Fifth, the intra- annual trend considered may have changed over the 
period studied (1953– 2020) because global changes may also have 
modified the intra- annual pattern of studied traits. For example, the 
intra- annual variation in body mass is expected to be less pronounced 
now than it was in the past, for example, because of increasing winter 
temperatures and available food resources. We thus considered a fifth 
interaction term in the full model (Julian day × year).

Finally, the full model also considered the core of the problem-
atic of this paper, obviously, the differences in the morphological 
traits according to the information available related with hunting 
fate, that is, recovery versus nonrecovery. The full model thus in-
tegrated the “Recovery” binary variable, as well as interactions with 
year (Recovery × Year)	and	Julian	day	(Recovery × Julian	day)	to	ac-
count for possible changes in hunting effect within and between 
years. Moreover, we also tested the interaction of recovery with age 
and gender (Recovery × Age and Recovery × Sex).

This full model was fitted using the lme4 package and the lmer 
function (Bates et al., 2015). An automatic backward elimination of 
fixed effects has been performed on this general model using the 
step function of the LmerTest package (Kuznetsova et al., 2017). The 
p- values for the fixed effects were calculated from the F- test based 
on the Sattethwaite approximation, and the significance level for the 
fixed part elimination was α = 0.05. During the stepwise procedure, 
the model parameters were estimated in maximum likelihood. Once 
the best set of fixed effects was found, model parameters were then 
better estimated by restricted maximum likelihood (Zuur et al., 2009).

In all models, intra-  and interannual variations were modeled as 
a function of cubic polynomials of covariates Year and Julian day in 
order to provide flexibility in the form of the relationships between 
dependent variables and covariates, since nonlinear relationships 
were expected (see for example Tamisier et al., 1995 for nonlinear 
change in duck body mass throughout the winter).

Before analysis, data were checked for possible aberrant measure-
ments (outliers) as our modeling approach was sensitive to mean val-
ues. To do this, the modified Z- score method was used and the very 
conservative	value	of	5 × MAD	(median	absolute	deviation)	was	con-
sidered as a threshold (Kannan et al., 2015). By grouping the 7 spe-
cies, this represented 0.12%– 0.84% of data, depending on the trait 
considered.

3  |  RESULTS

As expected, we observed sexual dimorphism for traits such as mass 
and folded wing size in several of our species, especially in Anatidae. 
In	teal,	for	example,	females	had	slightly	smaller	wings	(about	3 mm	
less)	 and	were	 thinner	 (about	16 g	 less).	On	 the	contrary,	 in	 snipe,	
there was no difference between males and females for morphologi-
cal traits such as folded wing size or tarsus. In Anatidae, our models 
also allowed us to observe the known pattern of seasonal variation 
in mass during autumn and winter.

While effects retained during the automatic backward elimina-
tion process, and thus the final model, varied between species, we 
observed some similarities in the structure of the final models. In 
all step procedures, age, sex, year, and Julian day effects were re-
tained. Part of the trait variance was also explained by the interac-
tion between year and Julian day in all species/trait combinations 
except for Mallard for folded wing and E.Coot for body condition 
index. Other interactions between the variables age, sex, year, and 
Julian day varied between the final models. All final models with the 
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estimate, standard error, confidence interval, and p- value for each 
effect are detailed in Appendix S2.

Among the 26 comparisons done (7 species times up to 4 traits), 
in 7 cases, the final model included a significant recovery effect 
(alone or in interaction): wing and body condition of Teal; mass and 
body condition of Eurasian Coot; mass of Common Pochard; mass 
and body condition of Common Snipe and wing of Blackbird (see 
Table 2). In two cases, the recovery effect was retained in the final 
model (alone or in combination) but was not significant: Teal for mass 
and Common Pochard for tarsus. It was interesting to note that the 
tarsus was the only trait for which recovery effect was never re-
tained or significant in any of the final models.

Even if some final models supported the hypotheses of a possi-
ble effect of hunting recovery on the trait variations, the difference 
between hunting recovered and unrecovered individual was low (see 
Table 2). In coots, the difference in mass and condition index be-
tween hunting recovery and nonrecovered coots differed according 
to age. In adults, birds recovered from hunting were leaner and in 
poorer	condition	than	nonrecovered,	but	only	about	37 g	less	(i.e.,	6%	
of the average mass) and 50 points less (i.e., 8% of the average condi-
tion index). For juveniles, although the difference between the two 
categories was much smaller, the individuals recovered from hunting 
were	 heavier	 and	 in	 better	 condition,	 16 g	 heavier	 (i.e.,	 3%	of	 the	
average mass), and with a condition index 11 points higher (i.e., 2% 
of the average condition index). In Snipe, individuals recovered from 
hunting had a lower condition index than the whole available popu-
lation (i.e., hunting- recovered + nonrecovered), 0.88 (CI =	−1.48	to	
−0.28),	but	this	difference	represented	<1% of the mean value of the 
condition index. In the same species, there was also a small differ-
ence in mass between those recovered from hunting and those not 
recovered, the recovered ones were 2 g lighter (which represents 2% 
of the average mass), but this difference was only observed in the fe-
males. For the Common Pochard, the difference between recovered 
individuals	and	the	population	was	1%	of	the	average	mass	(−8.64 g;	
CI =	 −14.03	 to	−3.24).	 In	blackbirds	 for	 folded	wing,	 even	 though	
it was significant, the difference between recovered birds and the 
population was even smaller as it represented <0.5% of the aver-
age wing size in this species (0.45. CI = 0.08– 0.82). In Teal, Figure 1 
shows estimated folded wing length of Teal across the study period 
for individuals that were hunting- recovered and nonrecovered ones: 
Almost no difference existed between the two categories at the be-
ginning	 and	 for	most	 of	 the	 study	 period,	 only	 reaching	 ca.	 2 mm	
greater in hunting- recovered individuals at the end of the study pe-
riod. In the same species, there was also such differences in body 
condition (Figure 2a). The body condition increased over the study 
period, and the recovered individuals had higher values at the be-
ginning and at the end of the study period, while no difference ap-
peared in the middle. The difference was greater at the end of the 
study period with birds recovered having a body condition index16 
units higher than the nonrecovered birds. In this species, the differ-
ence in body condition index between recovered and nonrecovered 
birds also varied within the same year (Figure 2b). At the beginning, 
recovered individuals had a higher body condition index of about 

282 compared with 269 for the nonrecovered individuals. But this 
difference diminished during the year and reversed at the end of the 
year with this time recovered individuals having a lower body con-
dition index, about 258 compared with 284 for the nonrecovered 
individuals. In the few situations where statistical differences were 
recorded between hunting- recovered and non- recovered Teal, such 
differences were small and restricted to only a part of the dataset.

4  |  DISCUSSION

Our results do not document strong selectivity of hunting on mor-
phological traits and body condition index of the game bird species 
studied. There was no trait for which final models systematically in-
cluded a recovery effect. In the majority of the cases, the recovery 
variable was eliminated during the stepwise process. In the seven 
cases where the final models included an effect of recovery type, 
the differences between the hunting- recovered individuals and the 
others	were	 generally	 small,	 less	 than	 1 mm	 difference	 for	 folded	
wing length in Teal, for example. The difference between the two 
categories of birds was slightly greater in the case of inter-  and intra- 
annual variation of body condition in Teal (Figure 2), for some parts 
of the year or the study period, but even in such cases, it is relevant 
to note that the confidence intervals of the two categories were 
largely overlapping, which still question the existence of a genuine 
marked difference between shot birds and the others.

The model selection process used here supports the list of ex-
planatory variables and factors considered, since a large proportion of 
these variables were retained during the stepwise process. Moreover, 
average values estimated were in agreement with the literature (Del 
Hoyo et al., 2010). Usual differences between age or sex classes, or 
inter-  and intra- annual variations of some traits already known from 
the literature, such as body mass in Anatidae (Guillemain et al., 2005) 
were again recorded here. It is interesting to note that body mass of 
Anatidae increased over the study period (see Appendix S2), even 
though in some species such as Tufted Duck, it decreased again at the 
end of the study period (however, this decrease was generally accom-
panied by an increase in the confidence interval, which could suggest 
that it was simply due to a reduced number of banded individuals to-
ward the end of the study period). In these same species, folded wing 
length has decreased at the same time.

Several studies show a form of selection on the traits we are 
studying: Morphological traits play a role in flight performance and 
thus in the ability to escape predators (Gosler et al., 1995; Kullberg 
et al., 2000; Macleod et al., 2005). However, given the very small 
differences in traits that we observed between hunting- recovered 
and nonrecovered individuals, any fitness difference between indi-
viduals differing by less than a gram of body mass or at most 1% of 
the average weight is really doubtful.

Similarly, there does not appear to be any inter-  or intra- annual evo-
lution of selectivity, since when the models that comprise such effects 
are among the best ones, the graphs of predicted values showed that 
the confidence intervals of recovered and nonrecovered birds almost 
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systematically overlapped. The full set of graphs representing the inter-
action of recovery with Year or Julian day are available in Appendix S2.

4.1  |  Is hunting biased toward individuals of poorer 
quality?

So far, most studies have considered that hunters should, as natural 
predators do (see Hudson et al., 1992), remove poor quality indi-
viduals preferentially, especially when no particular phenotype is a 

priori targeted, because these individuals are more exposed to har-
vest (e.g., closer leak flight). Differential harvest of poor individuals 
should also be advised in the context of harvest management, given 
that a greater harvest of poorer individuals is a prerequisite toward 
compensatory harvest mortality (Lindberg et al., 2013) although 
compensatory mortality can also occur when harvesting is random if 
the density dependence is strong. Therefore, most previous studies 
have tested that hunting tends to remove poor individuals through 
the “lens” of body condition indexes including those employed in 
our studies (Christensen, 2001; Dufour et al., 1993; Greenwood 
et al., 1986; Hepp et al., 1986; Szymanski et al., 2013). Overall, our 
study does not support this formerly accepted view. This difference 
in results could be partly explained by the fact that some of these 
studies focused on the impact of certain hunting methods such as 
the use of decoys or hunting on wet fields (Greenwood et al., 1986; 
Szymanski et al., 2013), or are restricted to small geographical areas 
/ time windows. Our study is placed in a much larger framework and 
sought to evaluate the selectivity of hunting in general. Indeed, by 
studying selectivity of hunting on a panel of relatively different mi-
gratory species, spanning entire flyways, our results likely provide a 
more general view over this question, hence being relevant for the 
management of populations and the study of possible evolutionary 
consequences. However, our study alone does not allow to rule out 
the fact that hunting can be selective under certain conditions (par-
ticular hunting methods, strong pressure).

4.2  |  Heterogeneous hunting pressure hypothesis

Another hypothesis that could explain how hunters may nonran-
domly remove phenotypes relies on the possibility that hunters 

F I G U R E  1 Predicted	values	of	wing	length	as	a	function	of	year	
and recovery category in Eurasian teal (Anas crecca).

F I G U R E  2 Predicted	values	of	body	condition	index	as	a	function	of	recovery	category	and	year	(a)	or	Julian	day	(b)	in	Eurasian	teal	(Anas 
crecca).
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themselves and/or game bird phenotypes are not evenly distrib-
uted over space and time. Such “Heterogeneous Hunting Pressure” 
hypothesis (HPP) can explain the high frequency of unexpected 
migration azimuths in birds: for example, Common pochard fe-
males that migrate farther South than males experience higher 
predation pressure and display lower survival than males (Carbone 
& Owen, 1995), and in western France, sedentary and migrant 
Common pochards experience differential hunting mortality (see 
Gourlay- Larour et al., 2014). A greater hunting pressure at lower 
latitudes could therefore gradually result in the promotion of un-
expected directions in migration routes, such as those observed 
toward the North or the East during winter in diving ducks (Tableau 
et al. in press, see also Briedis & Bauer, 2018; Sabal et al., 2021). 
The HPP hypothesis could also explain unintentional selection of 
morphotypes. For instance, because hunting pressure is expected 
to increase toward the south in Europe (Hirschfeld et al., 2019), 
long- distance (long- winged) migrants (Blem, 1975; Bowlin, 2007; 
Hahn et al., 2016) that end up farther South than short- distance 
(short- winged) individuals should be more exposed to hunting 
and hence dominate the hunting bag. In our study, we consid-
ered spatiotemporal variables in our models (see materials and 
methods), especially because some morphological variables such 
as body mass show a very strong seasonal variability (Guillemain 
et al., 2005; Pravosudov & Grubb, 1997; Tamisier et al., 1995). By 
taking such variables into account, we were able to detect a slight 
temporal variation in the difference in traits between shot and un-
recovered individuals in some cases (see graphs in Appendix S2). 
However, taking such spatiotemporal variables into account also 
prevented us, in some cases, from detecting hunting selectivity 
that would be due to the interaction between migration phenol-
ogy and variation of the hunting pressure in space and time. If, 
for example, the smallest birds are the most recovered because 
they are more present at the beginning of the season and hunting 
pressure is also stronger at this time, including Julian day in the 
model will absorb this information. Accounting for the interaction 
between banding Julian day/years and recovery does not always 
solve this problem. In order to better account for this assumption, 
future analyses of hunting selectivity should attempt to explicitly 
take hunting pressure into account in models. However, such an 
exercise will be very difficult because hunting pressure depends 
on many factors, and such information is often difficult (when not 
impossible) to access, especially at flyway scale.

4.3  |  Representativity of the data

One of the major requirements in our analyses was that individuals 
captured for banding should be representative of the population, 
and in particular of individuals available for hunting. Many studies 
have shown there may be a bias for age, sex, size, body condi-
tion, personality, or molt in the capture of wild birds (Davis, 2005; 
DomèNech & Senar, 1997; Dufour & Weatherhead, 1991; Insley & 
Etheridge, 1997; Senar et al., 1999; Stuber et al., 2013). The biases 

encountered differ in particular according to the mode of capture: 
mist nets, clap- net, cage, cannon nets (Davis, 2005; DomèNech & 
Senar, 1997; Insley & Etheridge, 1997) but also the use of callers, 
food or bird song to attract birds (Borras & Senar, 1986; Dufour & 
Weatherhead, 1991; Figuerola & Gustamante, 1995; Greenwood 
et al., 1986). The use of decoys to attract birds would, for example, 
encourage the capture of birds in poor body condition (Dufour & 
Weatherhead, 1991) even if this phenomenon does not seem to 
be systematically observed, as demonstrated by a study on two 
species of Sparrowhawks (Gorney et al., 1999). The fact that our 
dataset combines several capture methods such as mist nets, 
baited dabbling duck funnel traps, and cages reduces the amount 
of bias associated with each of these methods. Moreover band-
ing data provided us with evidence for individual heterogeneity 
in survival in a number of species including many of those stud-
ied here (see Guillemain et al., 2014; Schatz, 2021). This finding 
suggests that both poor and good quality individuals may well be 
present in our banding samples, instead of banding yielding data-
sets biased toward some categories of individuals only. We can-
not completely rule out that our data do not entirely reflect the 
whole range or magnitude of different phenotypes present in the 
population and available for hunting; however, the range of meth-
ods, the volume of birds considered, and the extended duration 
spanned by our datasets (several decades) make this an unlikely 
problem. Furthermore, it seems very unlikely that banding would 
select traits toward a precisely opposite direction to that poten-
tially selected by hunting.

4.4  |  Low reporting rate may reduce statistical  
power

By relying on banding data to study hunting selectivity, one only has 
access to individuals that were shot, then recovered, and finally re-
ported by hunters. However, it is known that some of the birds shot 
during the hunt are not found by the hunters, forming the “crippling 
loss.” In north American waterfowl, the crippling loss would vary 
between 20% and 40% of the birds shot (Norton & Thomas, 1994). 
We cannot exclude the fact that morphology is related to crippling 
loss, and that, for example, larger individuals fall further away and 
are less easily found. Moreover, even if the banded bird is found 
after being shot, this information is not always transmitted to the 
banding center by the hunters. A North American study of mallard 
showed band reporting probabilities to be between 0.50 and 0.81 
depending on the flyway and region (Boomer et al., 2013). In our 
study, some of the birds classified as nonrecovered could therefore 
be shot birds that did not get found or reported. Such a misclassifi-
cation of birds could have partly limited our ability to detect hunt-
ing selectivity on certain morphological traits. One could also think 
that the return of the ring is conditioned by the morphology of the 
bird, but as there are no regulations on the size of killed birds, nor 
any particular prestige in taking large individuals, such hypothesis 
seems very unlikely.
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4.5  |  Populations may become homogenous due 
to the long- standing effects

All species included in the current analyses have been quarry species 
for a long time. Thus, one cannot exclude that part of the variability 
that once allowed the expression of the full spectrum of personali-
ties/life histories/morphologies in populations has now disappeared 
in response to a longstanding selective pressure exerted by harvest. 
If true, populations should be very homogenous not only regarding 
morphological traits, but also in terms of behavioral or biodemo-
graphic characteristics. Yet as already mentioned above, earlier de-
mographic studies strongly suggests that many of our model species 
still display a large spectrum of demographic and behavioral traits 
(Gourlay- Larour et al., 2014; Guillemain, Devineau, et al., 2010; 
Schatz, 2021), so again the lack of evidence for selectivity of hunting 
toward some morphological traits seems a genuine phenomenon.

5  |  CONCLUSION AND PERSPEC TIVES

While deliberate selection of trophy ungulates or fish is a well- known 
phenomenon, and sometimes even a part of harvested population 
management procedures, our analysis does not provide any sup-
port for unintentional selection of morphological traits during bird 
hunting. This is opposite to what former studies recorded, but the 
fact	that	we	used	a	large	panel	of	biological	models	over	a	70 years	
period during which studied populations likely experienced variable 
environmental conditions, changing hunting modes and pressure, 
and hence contrasted population dynamics (increase, stability and 
decline) provides a strong generality to our results. Albeit we did not 
find strong selectivity on morphological traits, many studies show 
that harvest and/or natural predation nonrandomly remove person-
ality types (see above). If a link exists between personalities and the 
relative contribution of different individuals to population dynamics, 
then such criteria may be used to promote some forms of harvest 
over other ones, in order to buffer the effect of exploitation at popu-
lation scale. Thus, rather than simply using morphology parameters 
to assess population heterogeneity and (un)intentional selection by 
hunters, we advocate that future studies should more precisely eval-
uate the diversity of personalities in game populations. When suf-
ficient heterogeneity of personalities is found, further work should 
aim a developing targeted management measures in order to protect 
those personalities which are associated with a greater contribution 
to population dynamics, and focus harvest toward the least contrib-
uting individuals.
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