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A B S T R A C T   

Objectives: To verify the analytical performance of the HepatoPredict kit, a novel tool developed to 
stratify Hepatocellular Carcinoma (HCC) patients according to their risk of relapse after a Liver 
Transplantation (LT). 
Methods: The HepatoPredict tool combines clinical variables and a gene expression signature in an 
ensemble of machine-learning algorithms to forecast the benefit of a LT in HCC patients. To 
ensure the accuracy and reliability of this method, extensive analytical validation was conducted 
to verify its specificity and robustness. The experiments were designed following the guidelines 
for multi-target genomic assays such as ISO201395-2019, MIQE, CLSI-MM16, CLSI-MM17, and 
CLSI-EP17-A. The validation process included reproducibility between operators and between 
RNA extractions and RT-qPCR runs, and interference of input RNA levels or varying reagent 
levels. A recently retrained version of the HepatoPredict algorithms was also tested. 
Results: The validation process demonstrated that the HepatoPredict kit met the required stan-
dards for robustness (p > 0.05), analytical specificity (inclusivity of 95 %), and sensitivity (LoB, 
LoD, linear range, and amplification efficiency between 90 and 110 %). The operator, equipment, 
input RNA, and reagents used had no significant effect on the HepatoPredict results. Additionally, 
the testing of a recently retrained version of the HepatoPredict algorithm, showed that this new 
version further improved the accuracy of the kit and performed better than existing clinical 
criteria in accurately identifying HCC patients who are more likely to benefit LT. 
Conclusions: Even with the introduced variations in molecular and clinical variables, the Hep-
atoPredict kit’s prognostic information remains consistent. It can accurately identify HCC patients 
who are more likely to benefit from a LT. Its robust performance also confirms that it can be easily 
integrated into standard diagnostic laboratories.   
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1. Background 

Primary liver cancer is a significant global health issue, ranking as the 6th most diagnosed cancer and being the third leading cause 
of cancer death worldwide [1]. Hepatocellular carcinoma (HCC) comprises 75–85 % of primary liver cancer cases and is linked to 
chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infection, heavy alcohol consumption, smoking, type 2 diabetes, excess body 
weight, and the consumption of aflatoxin-contaminated foods [1]. Around 30 % of HCC cases are considered for treatment with 
curative intent [2] which involves liver transplantation (LT) or surgical resection [2,3]. Liver transplantation is preferred over surgical 
resection because it treats the HCC and the underlying cirrhosis, reducing the risk of death in the first two years following diagnosis 
[3]. However, the shortage of liver donors has led to the development of various criteria for identifying HCC patients most likely to 
benefit from LT [4–13] mainly based on tumor burden and protein biomarkers such as alpha-fetoprotein (AFP) and 
des-carboxyprothrombin (DCP). Despite all the LT criteria, their limitations are currently under discussion, mainly because they 
exclude patients with an underlying good prognosis who can benefit from LT and include bad prognosis patients who will not benefit 
from the surgery [14,15]. 

The HepatoPredict kit was designed to predict which HCC patients will benefit from LT by determining their prognosis. This is 
accomplished by combining three clinical variables (tumor number, size of the largest nodule, and total tumor volume) with a gene 
expression signature that includes DPT, CLU, CAPNS1, and SPRY2 genes, using a proprietary algorithm. The HepatoPredict kit can 
extract RNA from formalin-fixed paraffin-embedded (FFPE) HCC samples and perform gene expression analysis using real-time 
quantitative reverse transcription polymerase chain reaction (RT-qPCR) technology. The RT-qPCR results are then combined with 
the clinical data using a machine learning algorithm that returns three different values concerning the predictive value (Class I and II) 
or its absence (Class 0) [16]. 

In a previous study [16], we demonstrated that in the selection of patients suitable for LT HepatoPredict outperforms the Milan [4], 
University of California San Francisco (UCSF) [6], Up-to-seven [11], alpha fetoprotein (AFP) [7], Metroticket 2.0 5, Total Tumor 
Volume (TTV) [13], and TTV AFP [12] criteria in a retrospective clinical validation cohort of patients diagnosed with HCC [16]. 

In addition to its clinical utility, a prognostic test used in diagnostics must also be able to produce accurate, reliable, and specific 
data under standard laboratory conditions (analytical validation). This study aims to provide evidence of the analytical validation of 
the HepatoPredict kit through comprehensive technical analysis. The validation process also involved re-training the HepatoPredict 
algorithm using a retrospective cohort of 162 patients diagnosed with HCC and who underwent LT. 

2. Methods 

Samples: In this study, HCC samples preserved as FFPE tissue were used. FFPE HCC samples were acquired from four different 
suppliers: Biobank IRBLleida (PT20/00021), integrated in the Spanish National Biobanks Network and Xarxa de Bancs de Tumors de 
Catalunya (XBTC) sponsored by Pla Director d’Oncología de Catalunya; Biobank ISABIAL, integrated in the Spanish National Biobanks 
Network and in the Valencian Biobanking Network; and biorepositories from Amsbio (US) and Biotech (US). All samples were pro-
cessed following standard operating procedures with the appropriate approval of the Ethical and Scientific Committees. Moreover, 
clinical samples from a retrospective clinical study approved by the ethics authorities and taking place in the Curry Cabral Hospital 
(Lisbon, Portugal), were also used. All HCC FFPE samples were acquired either sectioned with 3–5 μm thickness or as paraffin blocks 
that were then cut in 3–5 μm thick slices using a microtome (Leica SM2010R Sliding Microtome, Leica Biosystems) and mounted on a 
glass slide. 

Histopathologic analysis: Prior to RNA extraction, HCC FFPE samples were analyzed by certified pathologists using a hematoxylin 
and eosin (H&E) stained tumor section. FFPE HCC slides (3 μm thick) were first deparaffinized and stained using Harris Hematoxylin 
solution (#3801561 E, Leica Biosystems, Richmond, USA. The slide was then counterstained with Eosin Y solution (#2801601, Leica 
Biosystems, Richmond, USA). Finally, slides were dehydrated in increasing alcohol concentrations, cleared in xylene (#28973, VWR, 
Alfragide, Portugal), and mounted using a xylene-based mounting medium (#107961, Merck, Darmstadt, Germany). After H&E 
staining, slides were observed under an optical upright microscope (Panther L, #1100104600142, Motic®). 

RNA extraction: For RNA extraction, an HCC area mimicking a needle biopsy was delimited in two sequential 5 μm slides. Samples 
were initially deparaffinized and the RNA was extracted using the RNeasy FFPE Kit (#73504, Qiagen, Hilden, Germany), according to 
the manufacturer’s instructions with two exceptions: proteinase K cell lysis and final elution volume. 

DNA extraction: DNA was extracted from HCC FFPE samples using the QIAamp DNA FFPE Tissue Kit (#56404, Qiagen, Hilden, 
Germany) in accordance with the manufacturer’s instructions. 

RNA extraction method validation: For the validation of the RNA extraction method, 87 FFPE HCC samples (from the four different 
suppliers) were used. Each sample was tested in duplicate and by two different operators on different equipment. Moreover, mirror 
sections of each sample were used to reduce the variability between operators. Immediately after extraction, RNA was stored at − 20 ◦C 
until further usage or used straight away in RT-qPCR reactions (conditions described below) targeting RPL13A (reference gene) and 
Chr3 (genomic DNA control) to analyze the integrity [17] and the purity of the RNA samples, respectively. 

RT-qPCR reactions: 1-step RT-qPCR reactions were performed as previously described [16]. The QuantStudio Design & Analysis 
Software v1.5.1 software was used for data acquisition and analysis. For gene expression normalization, the geometric mean of the 
cycle threshold (Cq) of the reference genes (RPL13A, GAPDH, and TBP) was subtracted from the Cq values of the genes of interest (DPT, 
CLU, CAPNS1, and SPRY2). 

Primer Specificity: RT-qPCR products were sequenced via Sanger sequencing outsourced to Eurofins (https://eurofinsgenomics.eu/ 
en/custom-dna-sequencing/gatc-services/supremerun-tube/). In total, 16 different solutions (forward and reverse for 8 targets) were 
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sent to Eurofins. Regarding RT-qPCR products, a 2-step RT-qPCR reaction was performed using the SuperScript™ VILO™ cDNA 
Synthesis Kit (#11754050, Thermo Fisher Scientific, Bleiswijk, Netherlands) to synthetize cDNA and the Invitrogen™ Platinum™ 
SuperFi™ PCR Master Mix with the SuperFi™ GC Enhancer (#12358010, Thermo Fisher Scientific, Bleiswijk, Netherlands) in qPCR. 
An RNA pool (composed of 8 different FFPE HCC samples) was used as template. The size of each RT-qPCR product was assessed by 
electrophoresis in a 4 % agarose gel (#G401004, Thermo Fisher Scientific, Bleiswijk, Netherlands), using a DNA ladder (#10488096, 
Thermo Fisher Scientific, Vilnius, Lithuania) and nuclease-free water (#129114, Qiagen, Hilden, Germany) as a negative control in an 
electrophoresis system (#G8300, Thermo Fisher Scientific, Vilnius, Lithuania). 

RT-qPCR inclusivity: Different FFPE HCC samples were used as templates in RT-qPCR reactions targeting all the genes included in 
HepatoPredict kit. Each RT-qPCR reaction was performed in duplicate and by two different operators. For each sample, each operator 
used the same batch of extracted RNA or DNA. Both nucleic acid extraction and RT-qPCR reactions were performed as described above. 

Limit of Detection (LoD) determination: For LoD determination, a pool composed of 8 FFPE HCC samples was used. The samples 
composing the pool reflected high and low expression levels of each target and were associated with a bad prognosis (recurrence, n =
4) and a good prognosis (no recurrence, n = 4). Both pools, of DNA and RNA, were created using the same samples. DNA pool was 
directly used for serial dilutions (at least 11 per target) and the RNA pool was diluted 1:4 to create the starting sample for the serial 
dilutions. In total, 21 replicates were done for each dilution (triplicates in each of the 7 RT-qPCR reactions), per lot number of reagents, 
on three different days (2–3 RT-qPCR reactions per day). For each target, all reactions were performed by the same operator with the 
same equipment. RT-qPCR reactions using reagents from different lots were analyzed separately. Data was analyzed in accordance 
with the Probit model, which implied the creation of a regression representing the probability vs log2 dilution for each target assuring 
at least 3 dilutions with hit rates within 0.10–0.90 and at least one exceeding 0.95. Moreover, to minimize the influence of the model 
limit ranges of probability, dilutions with a 100 % fail or success rate were included in each analysis. LoDs were independently 
calculated for each lot and the maximum LoD (concentration) was taken as the reported value for the measurement procedure. To 
determine the Cq value associated with the LoD, a linear regression was applied between the Cq values and the log2(dilution factor). All 
the log2(dilution factor) until the one immediately after the LoD were considered. The values outside the confidence interval (CI) at 99 
% were considered outliers and were removed. Linear, quadratic, and cubic polynomial functions were fitted to the Cq values using 
log2 dilution values. If none of the non-linear coefficients was different from zero, the target was considered linear (GAPDH, TBP and 
Chr3). Otherwise, the absolute difference between the model that best fits the data (smallest mean squared error) and the linear model 
was calculated. When the difference was less than 1 Cq value, the target was considered linear (RPL13A, DPT, CAPNS1, CLU and 
SPRY2). 

Linearity: The linear range of each target included in the HepatoPredict kit was determined for RT-qPCR reactions using FFPE HCC 
samples (previously used for LoD determination) and reference materials (#636690, Takara, Saint Germain en Laye, France) to cover a 
broad range of nucleic acids concentrations in linearity determination. For that, seven serial dilutions of reference RNA were used with 
3 replicates per dilution and at least eleven dilutions of nucleic acids pools, obtained from HCC FFPE samples, were used with 7 
replicates per dilution. Finally, the Cq values and the dilution factors were plotted in a base 2 logarithmic graph and R2 (>0.90) was 
calculated for all targets. 

Amplification efficiency: The reaction efficiency was calculated for each target included in the HepatoPredict kit. It was determined 
from the slope of the log-linear portion of each target curve: amplification efficiency = (2− 1/slope - 1) x 100. 

Robustness of RT-qPCR reactions: Plackett and Burman tables [18] were used to design the robustness assay: alterations in the 
concentrations (±30 %) of the master mix (#A15300, Thermo Fisher Scientific, Bleiswijk, Germany), primers and probes were 
implemented as well as different final reaction volumes (±5 %) and annealing temperatures (±1 ◦C), as demonstrated in Supple-
mentary File 1. Two independent assays per each target were performed using the same sample pool (see LoD) in triplicate and all 
reactions were performed using sample concentration near the LoD (RNA pool serial dilution 2− 2 and DNA pool without further di-
lutions). Three standard conditions were incorporated in the assay for data analysis: standard (STD) (no changes), STD1 (− 1 ◦C 
annealing temperature), and STD2 (+1 ◦C annealing temperature). 

Determination of Cq values below LoD and within the linear range for each target: Serial dilutions of the reference RNA (#636690, 
Takara, Saint Germain en Laye, France) were used as templates for RT-qPCR reactions targeting all genes included in the HepatoPredict 
kit. The Cq values above the LoD and outside the linear range for each target were identified and the maximum acceptable Cq value for 
each target was determined. 

Precision studies: The conditions under which repeated measurements were made determine the type of precision being analyzed – 
reproducibility (daily, lot-to-lot, operator, and inter-assay) and repeatability. For the daily reproducibility, for the same sample, assays 
were performed by the same operator, using the same sample and kit’s lot on 4 different days. Regarding lot-to-lot reproducibility, the 
same sample was analyzed by the same operator using kits from three different lots. Finally, operator reproducibility was studied by 
using the same sample with HepatoPredict kits from the same lot but performed by three different operators. For each condition, two 
HepatoPredict kits were used (two independent assays). Repeatability was measured considering the triplicates of each HepatoPredict 
kit run. In total, 3 different HCC FFPE samples were studied, thus, 48 HepatoPredict kits were used (16 kits/sample). To further assess 
inter-assay reproducibility, 15 additional samples were tested in duplicate by different operators, using different lots of the Hep-
atoPredict kit, and on different days (total n = 18). 

HepatoPredict algorithm training: A dataset with 162 patients diagnosed with HCC and submitted to liver transplant, of which 131 
were previously studied [19], was used (Supplementary File 2). Concerning the dataset, different models were tested, such as Naive 
Bayes, support-vector machine (SVM) with different kernel functions, and Extreme Gradient Booster (XGBoost). Moreover, synthetic 
minority oversampling technique (SMOTE) was also used for data imbalances. Python 3.8 was used with scikit-learn 1.0.2 (1https:// 
scikit-learn.org/stable/), XGBoost 1.6.1 (https://xgboost.readthedocs.io/en/stable), imbalance-learn (https://imbalanced-learn.org/ 
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stable/), and Optuna 2.10.0 (https://optuna.org/). Furthermore, the leave-one-out cross-validation (LOOCV) approach was used for 
algorithm training. Each model was fed with 4 molecular (DPT, CLU, CAPNS1, and SPRY2 gene expression) and 3 clinical variables 
(tumor number, largest tumor size and total tumor volume). As previously described [16], the algorithm was developed as a two-level 
predictor. 

HepatoPredict algorithm univariate analysis: The univariate analysis of the HepatoPredict algorithm consisted in calculating the error 
(i.e., counting each time the algorithm would fail the correct prognosis classification) when altering the Cq mean values of each gene 
(prior normalization) and varying the normalized Cq values of DPT, CLU, SPRY2 and CAPNS1 and the clinical variables (tumor 
number, diameter of the largest tumor, and total tumor volume). Thus, Cq mean values of the genes of interest (DPT, CLU, SPRY2 and 
CAPNS1) were replaced by 40 Cq (the maximum number of cycles allowed) and their respective LoD and the Cq means of the reference 
genes (RPL13A, GAPDH, and TBP) were removed and replaced by their respective LoD. Regarding the variations of the normalized Cq 
values (for DPT, CLU, SPRY2 and CAPNS1 genes), variations of 0.1 Cq were performed. Alterations in clinical variables included the 
variations in the tumor number (1–2 units), and in the diameter of the largest tumor (cm) and the total tumor volume (cm3) by 2 %. 

HepatoPredict algorithm multivariate analysis: The multivariate analysis of the HepatoPredict algorithm consisted in calculating the 
error associated with the alteration of more than one variable at a time. Thus, a range for each variable variation was defined (based on 
algorithm univariate analysis) and random combinations of 2, 3, 4, 5, 6 and 7 altered variables were tested. All possible combinations 
of variables were performed and for each combination the assay was repeated 10,000 times with random variable alterations within 
the defined range. Finally, two types of errors were calculated: error type A (between Class I and Class II) and error type B (between 
Class I or II and Class 0). 

Statistical analysis: Statistical analysis was performed using the R language for Statistical Computing (v 4.1.1) and GraphPad Prism 7 
(GraphPad Software, Inc. 2016). For RNA extraction validation, as the data followed a normal distribution, the Paired Student t-test 
was applied. For robustness assay, Dunn’s multiple comparisons test was applied. Regarding precision, due to data size, a non- 
parametric test (Friedman test) was used. A p < 0.05 was considered statistically significant. 

3. Results 

3.1. Validation of RNA extraction method 

For the RNA extraction from HCC FFPE tissues, the RNeasy FFPE kit was used. This RNA extracted method was validated by using 
87 HCC FFPE samples handled by two different operators. After extraction, RNA was used as a template in RT-qPCR reactions targeting 
the RPL13A gene and a DNA-specific target (Chr3), assuring both the integrity and the purity of the extracted RNA. Each sample was 
analyzed in duplicate by each operator. Regarding RPL13A expression, no significant differences were observed between operators for 
each sample (p = 0.27, Fig. 1A) and the mean standard deviation (SD) between samples tested by the two operators was 0.47 Cq 
(Fig. 1D). Moreover, no statistically significant differences were observed between each operator’s duplicates (p = 0.99 for operator 1 
and p = 0.13 for operator 2, Figs. 1B and 2C respectively). The mean SD between duplicates of each sample for operator 1 was 0.12 Cq 
while it was 0.18 Cq for operator 2 (Fig. 1D). Regarding Chr3, residual genomic DNA (gDNA) contamination (Cq mean > 34) was 
identified in 8 samples (9.19 %) handled by operator 2 and in one sample (1.15 %) handled by operator 1 (data not shown). 

3.2. Analytical specificity – primer specificity and RT-qPCR inclusivity 

To demonstrate primers’ uniqueness for each target, primers and RT-qPCR products were sequenced and the specificity of each 

Fig. 1. RNA extraction validation using RPL13A gene expression. The RNA extraction method was validated by two different operators (p =
0.27, Paired Student’s t-test) (A). Moreover, each operator performed the assays in duplicate: operator 1 (p = 0.99, Paired Student’s t-test) (B) and 
operator 2 (p = 0.13, Paired Student’s t-test) (C). The mean SD between operators and within operators is also represented (D). For each violin plot 
(A, B, and C), dots represent Cq mean values (A) and Cq values (B and C) of RPL13A gene. Dashed lines represent the correspondence of samples 
between groups. 
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primer pair was confirmed by aligning the Sanger sequencing electropherograms from each primer with the respective PCR amplicon, 
as suggested by ISO 20395:2019 and MIQE guidelines [20,21]. Before sequencing, the amplicon size was verified by electrophoresis in 
an agarose gel (Fig. 2A, RPL13A depicted as an example). For the RPL13A gene, the electrophoresis band corresponded to 75 bp 
(Fig. 2A), in accordance with the expected amplicon size [16]. All the amplified amplicons (for the remaining HepatoPredict targets) 
corresponded to the expected size [16] and no extra bands of unspecific PCR products were observed (data not shown) confirming the 
specificity of the primer pairs for the desired target. The sequences of all primers and probes were successfully aligned for all targets 
included in the HepatoPredict (data not shown) in the DNA sequence displayed in the Sanger electropherogram of the respective PCR 
amplicon (Fig. 2B–D, example for RPL13A). Due to the very small size of the amplicons (between 71 and 108 bp 16) and to limit the 
baseline noise always present at the beginning and end of Sanger electropherograms, the Sanger sequencing was performed for both 
forward and reverse strands (Fig. 2C and D, respectively). This allowed for the successful sequencing of forward and reverse primers 
and respective probe positions in all HepatoPredict amplicons. 

The inclusivity of the RT-qPCR reactions included in the HepatoPredict kit was demonstrated as described in CLSI-MM17 guideline 
[22]. An inclusivity of 100 % was demonstrated for all targets, except for DPT which had an inclusivity of 95 % (Supplementary File 3). 

3.3. Limit of Detection (LoD), limit of blank (LoB), linearity and efficiency 

For LoD, LoB, linearity and efficiency determination of each RT-qPCR reaction included in HepatoPredict kit, an RNA pool of FFPE 
HCC samples was used in accordance with MM16-A guideline [23]. The LoD, for each of the 8 targets included in the HepatoPredict kit, 
was determined based on ISO 20395:2019, CLSI-MM17, MIQE, and CLSI-EP17-A guidelines [20–22,24]. The Probit model was used, 
and Fig. 3 exemplifies the application of the model to the RPL13A target. The Probit model was applied to two different data sets 
obtained using different reagent lots (Figs. 3A and 4B). The LoD was defined as the lowest concentration of target that could be 
detected in ≥95 % of the samples, as represented in Figs. 3A and 4B. To determine the Cq value corresponding to the LoD, a linear 
regression was performed (Fig. 3C). For all targets, Pearson’s correlation coefficient (R2) was higher than 0.90 (data not shown), except 
for Chr3 (R2 = 0.73, data not shown). The highest LoD (nucleic acid concentration) between lots was taken as the reported value for the 
measurement. The LoD of the 7 RNA targets included in the HepatoPredict kit ranged from 34.75 Cq to 36.89 Cq (Table 1). Regarding 
Chr3 the LoD was defined at 33.95 Cq (Table 1). 

To apply the Probit model, it is necessary to assume that all blank or negative samples are reported as negative. These assumptions 
are true for the HepatoPredict kit, in fact, if a valid Cq value was obtained (<40 cycles) for just one of the replicates of the NTC (no 
template control) the entire assay was considered invalid. Thus, the LoB was assumed to be zero, i.e., Cq results for the NTC samples, 

Fig. 2. Primer Specificity (for RPL13A as an illustrative example). After a RT-qPCR reaction targeting the RPL13A gene, the size of the amplicon 
was assessed by electrophoresis in an agarose gel (~75 bp), using a DNA ladder and a negative control (nuclease-free water) (A). ENSEMBL ca-
nonical transcript sequence (ENST00000391857.9, RefSeq NM_012423), represented from 5′ to 3’ (B). Alignment of the RPL13A forward 
(RPL13A_F) and reverse (RPL13A_R) primers and probe (RPL13A_FAM) with the Sanger sequencing electropherogram results for the RPL13A 
amplicon in forward (5′ to 3′) (C) and reverse (3′ to 5′) (D) directions. The presented image is cropped. The full-size original image can be found in 
Supplementary File 4. 
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for all valid RT-qPCR reactions, did not cross the threshold within the 40 cycles and were considered “undetermined” (>40 Cq). 
The linear range of each target was also determined in accordance with ISO 20395:2019 [20] with R2 = 0.99 for RPL13A, GAPDH, 

DPT, and CAPNS1, R2 = 0.98 for TBP and CLU, R2 = 0.97 for SPRY2 and R2 = 0.93 for Chr3. All targets were linear at least within 24.63 

Fig. 3. Estimation of the Limit of Detection (LoD) in Cq values (for RPL13A as an illustrative example). The Probit approach was used to 
determine the LoD of RPL13A gene for two different lots of reagents. The LoD was defined as the concentration (log2 dilution) at a probability of 95 
%. The grey areas represent the confidence interval at 99 % (A and B). The linear dynamic range was also estimated and the Cq value associated 
with the LoD was determined (C). For the example of the RPL13A gene, the highest LoD was obtained with Lot 1 and the correspondent Cq value 
was 35.75. 

Fig. 4. Robustness of the RT-qPCR reactions included in the HepatoPredict kit. Representation of Cq mean values for each condition (Sup-
plementary File 1) of each target included in the HepatoPredict kit. The original condition (STD) (A) was compared with all other conditions (1–8) 
and no statistically significant differences were observed (Dunn’s multiple comparisons test). Moreover, conditions with the same annealing 
temperature were compared with the respective STD condition: (B) STD1 was compared with condition 2, 4, 5 and 7 while (C) STD2 was compared 
with conditions 1, 3, 6, and 8. No statistically significant differences were observed (Dunn’s multiple comparisons test). 
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and 35.11 Cq (Table 1). Moreover, the amplification efficiencies, determined in accordance with ISO 20395:2019 and MIQE guidelines 
[20,21], ranged from 91.02 to 110.26 Cq for all targets (Table 1). 

Considering that the HepatoPredict kit analyzes 7 different genes and a DNA-specific target, it is important to assure that all targets 
can be detected within their linear range and below their LoDs. As represented in Table 2, the maximum RNA input to assure an ideal 
performance of the HepatoPredict kit is 0.031 ng/μL, corresponding to Cq values of 28.26 for RPL13A, 28.34 for GAPDH, 33.95 for 
TBP, 34.44 for DPT, 29.42 for CLU, 31.61 for CAPNS1, and 33.96 for SPRY2. 

Robustness of RT-qPCR reactions:To study the robustness of the RT-qPCR reactions included in the HepatoPredict kit, alterations in 
the concentrations and volumes of RT-qPCR reagents were performed as suggested in ISO 20395:2019 [20] and represented in 
Supplementary File 1. The Cq mean values of two independent assays obtained for each target under each condition are represented 
in Fig. 4A–C. Conditions with the same annealing temperature were compared with the respective standard condition – conditions 2, 4, 
5, and 7 were compared with STD1 (Fig. 4B), while conditions 1, 3, 6, and 8 were compared with STD2 (Fig. 4C) – and no statistically 
significant differences were observed (p > 0.05). Furthermore, all conditions (from 1 to 8) were compared with the STD condition 
representing no changes regarding the initial protocol (Fig. 4A) and no statistically significant differences were observed (p > 0.05). 

3.4. Precision of the HepatoPredict kit 

The precision of the HepatoPredict kit was determined as described in ISO 20395:2019, MIQE, and CLSI-MM17 guidelines [20–22]. 
Precision data was transduced numerically using imprecision values such as standard deviation (SD) and respective confidence interval 
(CI) at 95 % (Table 3). The HepatoPredict kit reproducibility was verified by normalizing the gene expression level of the genes of 
interest (DPT, CLU, CAPNS2, and SPRY2) to the geometric mean of the reference genes (RPL13A, GAPDH, and TBP) (Table 3), as 
described for the standard use of the kit. In general, the SD for daily, lot-to-lot, and operator reproducibility were higher for the DPT 
gene (0.38–1.36) when compared with the other genes of interest included in the HepatoPredict kit (0.03–0.44). The same was verified 
for the inter-assay reproducibility (SD calculated between all the independent assays for the same sample) and total SD (square root of 
the daily, lot-to-lot, and operator variances) (Table 3). Furthermore, while all targets of sample A were associated with higher SD in 

Table 1 
LoB, LoD, linear range and PCR efficiency of the 8 targets included in HepatoPredict kit.  

Target LoB 
Cq value 

LoD 
Cq value 

Linear Range Efficiency 
% 

Cq value R [2] 

RPL13A >40 35.75 17.63–36.30 0.99 91.02 
GAPDH >40 36.32 18.02–38.70 0.99 104.76 
TBP >40 34.75 24.63–39.62 0.98 110.01 
DPT >40 35.11 24.41–37.68 0.99 102.97 
CLU >40 35.35 19.07–39.44 0.98 110.26 
CAPNS1 >40 36.89 21.22–38.44 0.99 101.79 
SPRY2 >40 34.93 23.27–38.02 0.97 97.70 
Chr3 >40 33.95 23.90–35.11 0.93 91.02  

Table 2 
Acceptable maximum Cq values for each HepatoPredict kit’s target to be detected below their LoD and within the linear range.  

Reference RNA (ng/μL) Targets (Cq mean) 

RPL13A GAPDH TBP DPT CLU CAPNS1 SPRY2 

8 20.19 20.40 25.67 25.95 21.38 23.43 25.15 
4 21.14 21.36 26.59 26.94 22.44 24.45 26.30 
2 22.28 22.37 27.66 27.85 23.42 25.46 27.31 
1 23.33 23.27 28.82 28.89 24.44 26.45 28.26 
0,5 24.06 24.28 29.76 30.02 25.40 27.68 29.26 
0.25 25.09 25.33 30.67 31.12 26.58 28.70 30.50 
0.125 26.12 26.43 31.93 32.04 27.40 29.46 31.34 
0.063 27.06 27.47 32.76 32.47 28.60 30.75 32.58 

0.031 28.26 28.34 33.95 34.44 29.42 31.61 33.96 

0.016 29.12 29.38 35.47 35.64 30.53 32.86 34.33 
0.008 30.31 30.34 35.31 36.68 31.79 33.89 37.39 
0.004 31.20 31.54 36.40 N/A 32.67 35.02 36.80 
0.002 32.36 32.41 N/A 38.06 33.68 37.12 N/A 
0.00100 33.22 33.33 37.71 N/A 34.57 37.10 38.47 
0.00050 34.41 34.18 N/A N/A 35.20 38.19 N/A 
0.00024 35.65 36.31 N/A 37.19 37.15 39.17 N/A 
0.00012 36.85 37.37 N/A N/A N/A 38.75 N/A 

Cq mean values represented in bold are above the LoD of each target. Between double lines are represented the acceptable maximum Cq values for all 
targets assuring that all of them are detected below their LoD and within their linear range: [RNA] = 0.031 ng/μL. N/A – not applicable, Cq > 40. 
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lot-to-lot reproducibility, sample C presented higher SD values in daily reproducibility. Nevertheless, none of these were observed in 
sample B, suggesting that the observed variability between independent assays is not dependent on a single factor. In fact, when all 
varying factors were considered (inter-assay reproducibility and total SD), SD values were similar between both samples. Additionally, 
inter-assay reproducibility was also determined for 18 different HCC FFPE samples (calculation of the mean SD and respective con-
fidence interval), corroborating the previous results (Table 3). The repeatability was verified for each target included in the Hep-
atoPredict kit – reference genes (Supplementary File 5) and genes of interest (Table 3) – and similar SD were obtained for all targets 
ranging from 0.05 to 0.14 Cq. 

3.5. Univariate and multivariate analysis of the new version of the HepatoPredict algorithm 

The HepatoPredict algorithm (V2.0) is a two-level predictor, but the first level (Class I), presents the highest precision and uses the 
XGboost model (instead of SVM in V1.0) increasing the positive predictive value (PPV) to 96.43 %. The second level (Class II) is a linear 
SVM model. The variables’ weights within each model are represented in Supplementary File 6, with DPT and CLU gene expression 

Table 3 
Reproducibility of the HepatoPredict kit.  

Sample Target Repeatability (mean 
SD) 

Daily 
Reproducibility 

Lot-to-Lot 
Reproducibility 

Operator 
Reproducibility 

Inter-Assay 
Reproducibility 

Total 
SD 

SD 95 % CI SD 95 % CI SD 95 % CI SD 95 % CI 

Sample A DPT 0.07 0.52 0.10–0.93 1.05 0.21–1.89 0.81 0.16–1.46 0.77 0.55–0.99 1.42 
CLU 0.07 0.11 0.02–0.19 0.29 0.06–0.53 0.04 0.01–0.07 0.28 0.20–0.35 0.31 
CAPNS1 0.07 0.24 0.05–0.43 0.35 0.07–0.64 0.17 0.04–0.37 0.26 0.19–0.34 0.46 
SPRY2 0.13 0.08 0.02–0.14 0.08 0.02–0.14 0.11 0.02–0.19 0.18 0.13–0.23 0.16 

Sample B DPT 0.12 0.38 0.08–0.68 0.58 0.12–1.05 0.58 0.12–1.04 0.81 0.58–1.04 0.90 
CLU 0.08 0.34 0.07–0.60 0.30 0.06–0.53 0.19 0.04–0.35 0.25 0.18–0.32 0.49 
CAPNS1 0.11 0.08 0.02–0.14 0.04 0.01–0.07 0.15 0.03–0.26 0.13 0.09–0.16 0.17 
SPRY2 0.08 0.03 0.01–0.06 0.12 0.02–0.21 0.29 0.06–0.52 0.23 0.17–0.30 0.32 

Sample C DPT 0.05 1.36 0.27–2.45 0.41 0.08–0.74 0.84 0.17–1.51 0.99 0.71–1.26 1.65 
CLU 0.14 0.31 0.06–0.55 0.27 0.05–0.48 0.05 0.01–0.09 0.36 0.26–0.47 0.41 
CAPNS1 0.09 0.10 0.02–0.17 0.04 0.01–0.07 0.02 0.00–0.03 0.12 0.09–0.15 0.11 
SPRY2 0.08 0.44 0.09–0.79 0.16 0.03–0.28 0.38 0.08–0.69 0.47 0.34–0.60 0.60 

All samples 
(n¼18) 

DPT N/A N/A N/A N/A 0.69 0.53–0.84 N/A 
CLU 0.26 0.20–0.31 
CAPNS1 0.24 0.18–0.29 
SPRY2 0.20 0.16–0.25 

SD, standard deviation; CI, confidence interval; N/A, not applied. 

Fig. 5. – Robustness of the HepatoPredict algorithm. Representation of errors associated with the univariate alteration of Cq mean values from 
each molecular variables before normalization (A), with the univariate alteration of the tumor number (B), or tumor size or total tumor volume (C). 
Errors associated with the univariate alteration of the molecular variables after normalization (D). Multivariate analyses of the HepatoPredict al-
gorithm for distinct combinations of variables, ranging from 2 to 7 variables (E). The dashed line in light grey represents the errors at 5 %. 
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levels and total tumor volume being the most important variables of the HepatoPredict algorithm. Furthermore, the new Hep-
atoPredict algorithm was also compared with other clinical criteria for the identification of HCC patients suitable for liver trans-
plantation (Supplementary File 7). 

The analytical validation of the new HepatoPredict algorithm consisted in calculating the error (i.e., how many times the correct 
classification is missed) associated with the alteration of one (univariate) or more (multivariate) variables. Fig. 5A represents the error 
associated with the alteration of the Cq mean values before normalization. The errors were all superior to 10 % demonstrating that to 
maintain a good HepatoPredict performance, no reference gene can be removed from the assay and the Cq means of the genes cannot 
be replaced by 40 Cq or its respective LoD. Moreover, the variations allowed for each variable, assuring a maximum error of 5 % (or a 
maximum variation of 2 Cq or 50 % from the initial value), are represented in Fig. 5B–D. In general, it was verified that the DPT 
normalized gene expression level and the total tumor volume (in cm3) were the variables that least allowed for alterations (for an error 
= 5 %, variation of ±0.4 Cq and ±12 %, respectively). On the other hand, CLU normalized gene expression level and the tumor size 
(the diameter of the largest tumor in cm) were the variables that tolerated greater variations (±3 Cq and ±50 % respectively, while 
maintaining an error <5 %) (Fig. 5C–D). For these variables, the error at 5 % was not used as a threshold for the multivariable analysis, 
but instead an acceptable absolute variation value was used (±2 Cq for CLU expression level and ±50 % for tumor size). Furthermore, 
while maintaining an error <5 %, the tumor number was possible to vary in 2 units (Fig. 5B) and the normalized gene expression levels 
of CAPNS1 and SPRY2 varied ± 1.7 Cq and ±1.5 Cq, respectively (Fig. 5D). 

The HepatoPredict algorithm multivariate analysis was based on the results presented in Fig. 5B–D and demonstrated that the error 
increases with the number of varying variables (Fig. 5E). Moreover, two types of errors were analyzed concerning the final Hep-
atoPredict class. Error A corresponds to class switching between HepatoPredict classes associated with a very high or high predicted 
benefit of LT, respectively Class I and Class II [16]. Error B relates to a switch on HepatoPredict class with more impact in the LT 
benefit, i.e., a switch from a class with no benefit to a class with LT benefit (Class 0 to Class I or Class II) or from a class with LT benefit 
to a class with no benefit (Class I or Class II to Class 0). In general, error A was ~1.6 times higher than error B (Fig. 5E). 

4. Discussion 

The HepatoPredict kit uses an algorithm that combines molecular data (gene expression levels of DPT, CLU, CAPNS1, and SPRY2) 
with clinical variables (tumor number, size of the largest nodule, and total tumor volume) to classify the patients in two different 
classes associated with the benefit of a liver transplant (Class I – very high confidence, and Class II – high confidence) or in Class 0 (no 
benefit of liver transplant predicted). Some products already exist in the market focused on the prognostic prediction of different 
tumors, such as breast [25] and prostate [26], but nothing specific for HCC is available. While the successful clinical validation of 
HepatoPredict kit using a retrospective cohort was previously published [16], the new HepatoPredict algorithm presents some vari-
ation as compared to the original algorithm (Supplementary File 8) which reduces the risk of overfitting with new samples. The new 
algorithm is associated with a higher PPV in Class I, enabling the identification of individuals with a very high likelihood of good 
prognosis for LT. This could be particularly beneficial in geographies where the waiting period for LT is very long. In addition, the new 
HepatoPredict algorithm presents a higher negative predictive value (NPV) when compared with different clinical criteria (such as 
Milan [4], UCSF [6], Up to seven [11], AFP [7], Metroticket 2.0 5, TTV [13], and TTV AFP [12] criteria). The higher NPV of Hep-
atoPredict translates into a higher probability of being correct in terms of detecting a bad prognosis patient when the kit result is Class 
0 (no benefit of a LT). This reduces the misclassifications of patients that benefit from a LT and can avoid wasting a healthy organ in a 
patient that very likely will face HCC recurrence. This correct prognosis assignment was also corroborated by the results of multivariate 
analysis of the HepatoPredict algorithm, demonstrating a higher rate of type A errors (switch between Class I and II with benefit 
prediction) than type B errors (from good prognosis to bad prognosis and vice-versa). To further corroborate the clinical utility of the 
HepatoPredict kit additional retrospective studies are being planned enrolling patients’ cohorts from different geographic localizations 
and HCC etiologies and a prospective study (NCT0449983) is currently open and recruiting. 

In the context of analytical validation of multi-target genomic assays (such as HepatoPredict kit), no evaluation guidelines covering 
all the relevant aspects required for the diagnostic setting are available. To fill this gap, different guidelines such as ISO201395-2019 
20, MIQE [21], CLSI-MM16 23, CLSI-MM17 22, and CLSI-EP17-A [24] were followed where applicable, to demonstrate that the Hep-
atoPredict kit is a sensitive, specific, and robust test. Thus, the described analytical validation of the HepatoPredict kit is in accordance 
with standard assay validation processes. This type of approach has been previously used to validate similar prognostic [27–30] and 
diagnostic [31–33] tests and as a reference for analytical validation of the test in different molecular pathology laboratories. 

In diagnostic settings, FFPE is the most used technique for long-term conservation of clinical samples, since it preserves the proteins 
and vital structures within the tissue while it aids microscopic diagnostic examination, experimental research, and diagnostic/drug 
development [34]. FFPE samples were thus implemented for the HepatoPredict kit to simplify its adoption by molecular biology and 
pathology laboratories. The RNA extraction method from FFPE HCC samples was demonstrated to be repeatable (between duplicates) 
and reproducible (between operators). Regarding gDNA residual contamination, Cq values above 34 in RT-qPCR reactions targeting 
Chr3 were observed in 1.15 and 9.19 % of the samples (for operator 1 and 2, respectively). However, the LoD for Chr3 was determined 
at 33.95 Cq, meaning that above this Cq value, Chr3 detection is likely invalid, suggesting that gDNA contamination during RNA 
extraction from HCC FFPE samples is very residual and approaching 0 % with HepatoPredict kit. 

The RNA extracted from FFPE tissues is normally fragmented [35], thus, FFPE sections were digested with heat application (56 ◦C) 
and proteinase K to decrease RNA fragmentation and chemical modifications [36,37]. Moreover, the primers of the HepatoPredict kit 
were designed for the generation of short amplicons to increase gene detection rate [17,38,39], and gene specific reverse transcription 
and targeted cDNA amplification (1-step RT-qPCR) were performed to increase the accuracy and sensitivity of the RT-qPCR reactions 
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[40]. Nevertheless, the HepatoPredict kit includes a sample quality control step comprising 1-step RT-qPCR reactions targeting 
RPL13A and Chr3. With this procedure, it is possible to determine if the extracted sample contains enough RNA (shown by the Cq value 
from RPL13A) and if gDNA contamination is present (reported by the Cq value from Chr3) [17] before proceeding with the kit protocol. 
This assessment is important because it assures the reproducibility and veracity of the experiments, avoids extra costs associated with 
the need of repeating the analysis and the wasting of precious tumor samples [21,41]. Considering that HepatoPredict analyses the 
expression level of 7 different genes, Cq values for each target, allowing all targets to be detected within their linear ranges and below 
their LoDs, were determined. Thus, an acceptable Cq range for the sample quality control was defined for the RPL13A gene: 18.32 to 
28.26 Cq. Regarding Chr3, all Cq values above its LoD (33.95 Cq) are acceptable since they represent no gDNA contamination. 

Regarding RT-qPCR reactions, primer specificity for each target included in the HepatoPredict kit was demonstrated. Although 
probes (TaqMan® technology) are also included in the RT-qPCR reactions, they were not analyzed in the context of sequencing because 
they do not amplify PCR products and because their fluorescence is only released in the context of highly specific annealing to the 
target sequences in the PCR amplicons. Thus, if the Sanger sequencing proves that each primer pair-related PCR amplicon is specific 
and no unspecific PCR products are detected, each probe can only anneal to the amplified specific product. To further demonstrate that 
the RT-qPCR reactions included in the HepatoPredict kit could distinguish between target and non-target sequences, an inclusivity of 
100 % was demonstrated for all targets, excluding the DPT gene which had an inclusivity of 95 %. This result was expected since the 
downregulation of the DPT gene in HCC has been demonstrated and can be already associated with HCC carcinogenesis and pro-
gression [42–44]. In contrast with diagnostic systems [32], the exclusivity of the RT-qPCR reactions was not studied since the Hep-
atoPredict kit analyzes the expression level of genes that are not exclusively expressed on HCC cells. Nevertheless, to be analyzed by 
HepatoPredict kit, each HCC sample needs to be collected by expert clinicians (surgeons or radiologists) and subsequently analyzed at 
the microscopical level (H&E-stained tissue slides) by a certified pathologist, assuring the specificity of each HCC biopsy submitted to 
the HepatoPredict kit test. Furthermore, the sensitivity of the RT-qPCR reactions included in the HepatoPredict kit was determined by 
defining the LoD for each target, as well as the respective linear range. The amplification efficiency was also calculated for all targets 
being between 90 and 110 % as recommended by ISO 203095:2019. 

The robustness of the qPCR reactions included in HepatoPredict kit was studied. It was demonstrated that qPCR reactions were 
robust, not being affected by small changes either in annealing temperatures and reagents’ concentration and volumes. 

Moreover, precision studies, assessing both the repeatability and reproducibility of the qPCR reactions included in the Hep-
atoPredict kit, demonstrated that the variability associated with normalized Cq values for DPT, CLU, CAPNS1 and SPRY2 genes was not 
dependent on a single factor (day, lot, or operator). Furthermore, the inter-assay SD within a sample is similar to the inter-assay SD 
between 18 samples, demonstrating the reproducibility of the assay independently of the sample used. The DPT gene was associated 
with a higher SD in all assays, nevertheless no differences were observed in DPT repeatability in comparison with the other targets. 
These results suggest that the lower reproducibility of the DPT gene (i.e., higher SD), may be associated with DPT lower inclusivity (95 
%) due to DPT downregulation in HCC [42–44]. 

The robustness of the new HepatoPredict algorithm was also studied and the acceptable variation range for each variable was 
determined. It was demonstrated that DPT gene expression level and total tumor volume were the most sensitive variables. This was 
expected since in the XGBoost model (first level), the DPT gene expression level and total tumor volume had an information gain of 
3.75 and 0.29 (respectively), while the other variables had an information gain of zero. Moreover, the SVM model (second level), also 
corroborated these results since the variables with higher SVM weights were DPT gene expression level, total tumor volume, and CLU 
gene expression level. Total tumor volume is related to the number of tumors and tumor diameter measurements; thus, errors in these 
variables will influence its value. A recent study described a mean error of 0.81 cm when measuring the tumor size using different 
magnetic resonance imaging pulse sequences [45]. This was reflected in an HepatoPredict type B error of 4.94 %, demonstrating that 
the prognostic test handles common measuring errors. 

5. Conclusions 

After testing the HepatoPredict kit with variations that simulate real-life scenarios, it has been determined that the prognostic 
information provided by the kit remains consistent. Only extreme and unlikely combinations of multiple variables could potentially 
affect the prognosis. The validation procedures outlined in this study can serve as a guide for other molecular diagnostic laboratories to 
ensure accurate results with the HepatoPredict test. Furthermore, the analytical testing showed that the HepatoPredict kit can be 
integrated into routine diagnostic procedures to identify HCC patients who may benefit from a liver transplant, thereby advancing 
precision medicine. 
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