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Reports regarding brain inflammation, known as encephalitis, have shown an increasing
frequency during the past years. Encephalitis is a relevant concern to public health
due to its high morbidity and mortality. Infectious or autoimmune diseases are
the most common cause of encephalitis. The clinical symptoms of this pathology
can vary depending on the brain zone affected, with mild ones such as fever,
headache, confusion, and stiff neck, or severe ones, such as seizures, weakness,
hallucinations, and coma, among others. Encephalitis can affect individuals of all
ages, but it is frequently observed in pediatric and elderly populations, and the most
common causes are viral infections. Several viral agents have been described to
induce encephalitis, such as arboviruses, rhabdoviruses, enteroviruses, herpesviruses,
retroviruses, orthomyxoviruses, orthopneumovirus, and coronaviruses, among others.
Once a neurotropic virus reaches the brain parenchyma, the resident cells such as
neurons, astrocytes, and microglia, can be infected, promoting the secretion of pro-
inflammatory molecules and the subsequent immune cell infiltration that leads to brain
damage. After resolving the viral infection, the local immune response can remain active,
contributing to long-term neuropsychiatric disorders, neurocognitive impairment, and
degenerative diseases. In this article, we will discuss how viruses can reach the brain,
the impact of viral encephalitis on brain function, and we will focus especially on the
neurocognitive sequelae reported even after viral clearance.
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INTRODUCTION

One of the most relevant neuropathology causing high morbidity and mortality worldwide is
encephalitis, which is the inflammation of the brain parenchyma leading to neurological alterations
(Granerod and Crowcroft, 2007; Venkatesan, 2015). Mild clinical symptoms, such as fever,
headache, nausea, vomiting, confusion, and altered mental status (including personality changes)
or more severe symptoms, such as seizures, weakness, hallucinations, and coma, among others are
associated with encephalitis (Ferrari et al., 2009; De Blauw et al., 2020). Currently, encephalitis
incidence ranges between 7 and 15 cases per 100,000 inhabitants depending on the country (Vora
et al., 2014; Dubey et al., 2018; Ferreira et al., 2019). Encephalitis can affect individuals of all ages,
but it is frequently observed in pediatric and elderly populations, usually caused by pathogenic
infections (mainly viral infections) (Stone and Hawkins, 2007; Ferrari et al., 2009) or autoimmune
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responses (Dubey et al., 2018; Perlejewski et al., 2020). Viral
encephalitis can be classified as either primary or secondary.
Primary encephalitis requires direct infection of the brain
by the pathogen, affecting one or more areas of this tissue.
Secondary encephalitis occurs when the pathogen spreads
from the original site of infection (i.e., lungs, kidney) to the
central nervous system (CNS) (Jayaraman et al., 2018). The
diagnosis of primary viral encephalitis is confirmed mainly
by sampling cerebrospinal fluid (CSF), where lymphocytic
pleocytosis, normal glucose levels, and high proteins levels can
be found (Ekmekci et al., 2013; Rozenberg, 2013). Nowadays,
the diagnose of encephalitis is performed by several methods,
such as electroencephalographic (EEG) and brain magnetic
resonance imaging (MRI), and by detecting several pathological
changes such as hemiparesis, pyramidal signs, and seizures
(Chaudhuri and Kennedy, 2002; Kennedy, 2004; Rozenberg,
2013; Ellul and Solomon, 2018; Jayaraman et al., 2018).
However, to determine the possible presence of pathogenic agents
causing neuropathology, additional methods are needed, such
as polymerase chain reaction (PCR) assays, reverse transcription
PCR (RT-PCR) assays, routine serology assays, bacterial cultures,
among others (DeBiasi and Tyler, 2004; Ekmekci et al., 2013).
A proper and opportune diagnosis of encephalitis leads to a
better prognosis and management of the sequelae provoked by
this neuropathology.

Patients that have suffered from viral encephalitis can
exhibit persistent symptoms that include behavioral problems,
tic disorders, recurrent headache, sleeping disorders, and
motor disabilities (Michaeli et al., 2014). Several symptoms of
neurocognitive impairment have also been reported as sequelae
of viral encephalitis, such as attention-deficit/hyperactivity
disorder (ADHD), speech disorder, and memory and learning
disorders (Huang et al., 2006; Michaeli et al., 2014; Pöyhönen
et al., 2021). In this article, we will first describe some relevant
zoonotic viruses and their characteristics. Then, we will discuss
the mechanisms reported to date used by these viruses to reach
the brain and how they impact the integrity of the blood-brain
barrier (BBB). We will also describe the immune response elicited
in the CNS upon infection with these viruses. Following this,
a characterization of the systemic immune response induced
upon viral infections will be addressed. It is key to note that
most viruses first induce a systemic infection and then reach
the CNS. The order of the information presented in this article
focuses on the impact of these viruses on the CNS rather than
the systemic response. Finally, we will emphasize the long-term-
sequelae described upon infection with these viruses.

EMERGING ZOONOTIC ENCEPHALITIS
VIRUSES

Several human diseases, including those leading to encephalitis,
might be caused by viruses that are originated or transmitted
from animals to humans, called zoonotic viruses (Olival et al.,
2017). These zoonotic viruses can be transmitted to humans by
direct contact with fluids carrying the viral particles, such as
urine, saliva, blood, or feces (Chomel, 2009). Some viruses can be

transmitted through an intermediate organism (Chomel, 2009).
Risk factors for zoonotic transmission include the consumption
of animals and domestication of animals, among others (Chomel,
2009). Here we will describe some of the encephalitic zoonotic
viruses of significant relevance worldwide.

Arboviruses are arthropod-borne viruses usually transmitted
to humans by blood-feeding arthropods, such as mosquitoes,
sand flies, and ticks (Beckham and Tyler, 2015; Clé et al., 2020).
The group of clinically relevant neurotropic arboviruses includes,
among others, West Nile virus (WNV), Japanese encephalitis
virus (JEV), dengue virus (DENV), Zika virus (ZIKV),
chikungunya virus (CHIKV), and tick-borne encephalitis
virus (TBEV) (Beckham and Tyler, 2015; Clé et al., 2020).
Arboviruses have emerged and increased due to the expansion
of cities, and crowded conditions allow mosquitoes to spread
this virus to a high number of humans (Baker et al., 2021).
Accordingly, WNV is a mosquito-borne neurotropic virus that
can cause meningitis and even lethal encephalitis in 1–2% of
the infected host (Hayes and Gubler, 2006). JEV is transmitted
by mosquitos, while waterbirds act as a reservoir. Also, it has
been described that pigs serve an amplifying host that can be
transmitted directly between this species (Ricklin et al., 2016;
Zhou et al., 2021). The mortality of the JEV cases is about
30%, while 50% of the survivors developed neuropsychiatric
sequels (Hsieh and John, 2020). DENV, ZIKA, and CHIKV are
transmitted by the same mosquito causing encephalitis and
encephalopathy, among other neurological manifestations, with
an incidence between 0.5 and 20% (Hills et al., 2017; Li et al.,
2017; Constant et al., 2021).

Rhabdoviruses consist of more than 175 viruses and include
the rabies virus (RABV) as the only human pathogen described
up to date of this group (Burrell et al., 2017). Rabies encephalitis
is a widely studied zoonotic and mortal disease. The transmission
of RABV is usually through the bite of an infected animal, but
in some cases, it can be transmitted by direct contact with body
fluids or by tissue or organ transplants (Hemachudha et al., 2013;
Potratz et al., 2020b; Siepker et al., 2020). The natural reservoirs
of RABV are some wild carnivores, raccoons, and bat species.
Remarkably, the dog is a domestic animal that serves as the main
reservoir of this virus (Burrell et al., 2017; Siepker et al., 2020;
Worsley-Tonks et al., 2020).

Nowadays, among the zoonotic respiratory viruses that cause
secondary encephalitis are orthomyxoviruses and coronavirus
(Meseko et al., 2018; Magouras et al., 2020). Influenza virus
belongs to the orthomyxovirus genus, and Influenza A virus
has been described as zoonotic (Meseko et al., 2018). The
subtypes of avian origin include H5, H7, and H9, while H1
and H3 have a swine-origin (Meseko et al., 2018). Significantly,
the transmission of Influenza virus from humans to animals, a
process known as reverse zoonosis, has also been described (Mi
and Al, 2015). This is relevant for the emerging of pandemics
Influenza viruses that can jump from animals to humans and
backward. The pandemic of the 2009 H1N1 Influenza A virus
increased influenza-associated encephalitis and encephalopathy
(IAE) (Meijer et al., 2016). After this pandemic, the incidence of
IAE went from 0.21 per million population to 12 per million of
the symptomatic population (Meijer et al., 2016).
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Human coronaviruses (HCoV) have also been implicated
in the development of secondary encephalitis, despite that the
primary tissue these viruses infect are the respiratory and enteric
systems (Bohmwald et al., 2018; Mishra and Banerjea, 2020;
Singer et al., 2021). Among the different HCoVs are HCoV-
O43, HCoV-229E, Middle East respiratory syndrome coronavirus
(MERS-CoV), severe acute respiratory coronavirus 1 (SARS-
CoV-1), and SARS-CoV-2 (Morfopoulou et al., 2016; Bohmwald
et al., 2018; Mishra and Banerjea, 2020; Kasereka and Hawkes,
2021). These viruses have a zoonotic origin in bats, and the
transmission to humans originates from dromedary camels for
MERS-CoV and palm civet for SARS-CoV-1 (Memish et al., 2013;
Azhar et al., 2014). The transmission of SARS-CoV-2 to humans
remains to be elucidated (Haider et al., 2020).

Currently, the probability of a pandemic occurring due to
an emerging zoonotic virus is increasing, being a concern for
public health, especially regarding encephalitis development.
This pathology has demonstrated to increase the cases after the
pandemic of Influenza A virus (Meijer et al., 2016).

VIRUSES INDUCING ENCEPHALITIS
AND THEIR IMPACT ON THE
BLOOD-BRAIN BARRIER

As previously mentioned, viral encephalitis is the most common
cause of this neuropathology (Rozenberg, 2013; Salimi et al.,
2016; Bohmwald et al., 2018; Stahl and Mailles, 2019; Chen et al.,
2020). Several viruses have been described as agents leading to
encephalitis, including arbovirus, rhabdoviruses, enterovirus,
herpesvirus, retroviruses, orthomyxoviruses, orthopneumovirus,
and coronavirus (including SARS-CoV-2), among others
(Rozenberg, 2013; Salimi et al., 2016; Bohmwald et al., 2018;
Stahl and Mailles, 2019; Chen et al., 2020). A viral infection
must induce inflammation and damage to the brain to cause
encephalitis, which can be achieved by recognizing viral particles
or antigens in the CNS (Spindler and Hsu, 2012; Al-Obaidi et al.,
2018; Chen and Li, 2021). One of the most common ways for
viruses to reach the brain (and therefore induce this damage) is
by disrupting the BBB (Spindler and Hsu, 2012; Hou et al., 2016;
Bohmwald et al., 2021b; Thomsen et al., 2021).

The BBB is a physical roadblock in the interface between
the CNS, the circulatory system, the immune system, and the
rest of the organism (Abbott et al., 2010). This barrier is found
in all vertebrates, has a highly restricted permeability, and is
responsible for maintaining the microenvironment of the brain
(Abbott et al., 2010). Under normal physiological conditions,
the BBB protects the brain and the neurons from elements
circulating in the blood that may cause damage to them, such
as antibodies, toxins, immune cells, or microorganisms (Chen
and Li, 2021). This barrier is mainly composed of a monolayer
of brain microvascular endothelial cells found along the vascular
tree [mostly kept together by tight junctions (TJ)], pericytes,
and astrocytes (giving structural support to this structure)
(Nikolakopoulou et al., 2019; Chen and Li, 2021). TJs in the BBB
usually extend as transmembrane networks and are responsible,
for the most part, for the selective permeability of this barrier

(Spindler and Hsu, 2012; Hou et al., 2016; Thomsen et al., 2021).
TJs are usually composed of transmembrane proteins, such as
junctional adhesion molecules (JAMs), endothelial cell-selective
adhesion molecule (ESAM), occludins, and claudins, with these
last two anchored to the endothelium through adaptor proteins
such as the zonula occludens (ZO) protein family (Daneman
et al., 2010). Along these lines, the most common markers used
to evaluate BBB integrity and disruption are claudins-5 and ZO-
1 (Nitta et al., 2003). Remarkably, it has been described that
some viruses, such as adenovirus, reovirus, and hepatitis C virus,
can use TJs as an entryway to their target cells, promoting their
infection. However, this entry does not necessarily disrupt the
architecture of the TJ network (Barton et al., 2001; Walters et al.,
2002; Evans et al., 2007).

Overall, there are three ways by which viruses (and most
pathogens) can cross the BBB: the paracellular pathway,
the transcellular pathway, and the “trojan horse” mechanism
(Figure 1; Meltzer et al., 1990; Al-Obaidi et al., 2018; Chen and Li,
2021). The paracellular pathway requires viruses to move between
cells of the BBB. The transcellular pathways require viruses to
pass through cells of the BBB, sometimes infecting them; and
the “trojan horse” mechanism is associated with the infection
of circulating cells (usually immune cells) that are capable of
moving across the BBB and, therefore, taking with them viruses
into the brain (Meltzer et al., 1990; Al-Obaidi et al., 2018; Chen
and Li, 2021). Although viruses or their molecular components
do not directly disrupt the BBB, the presence of these elements
induces cellular responses that cause damage to this barrier
(Al-Obaidi et al., 2018).

Among the many modulators of the integrity of the BBB,
the Matrix Metalloproteinases (MMPs) are endopeptidases with
zinc-dependent proteolytic activities on the components of the
extracellular matrix (Rosenberg, 1995). Other molecules, such
as cytokines, chemokines, growth factors, lipids mediators, and
free radicals, are also players in the modulation of the integrity
of the BBB (Stamatovic et al., 2008). Different MMPs have been
described, but the most common ones associated with cleavage of
TJ are MMP2, MMP3, and MMP9 (Bojarski et al., 2004; Giebel
et al., 2005; Gurney et al., 2006; Candelario-Jalil et al., 2009;
Spindler and Hsu, 2012). Accordingly, these are the MMPs that
are mainly secreted during neuroinflammatory events, and they
can also modulate the activity of cytokines by cleaving them
too (Candelario-Jalil et al., 2009). MMPs are first expressed as
zymogens (the inactive state of an enzyme) and require different
stimuli to be activated, such as cleavage by other MMPs or by
exposure to reactive oxygen species (ROS) (Lehner et al., 2011;
Spindler and Hsu, 2012). Since the presence of viral particles
or antigens and the immune response elicited by the organism
upon recognition of these components can induce ROS secretion,
MMPs will be activated (Lehner et al., 2011; Paiva and Bozza,
2014). These pro-inflammatory processes are part of the main
mechanisms associated with damage to the BBB. In this section,
we will further characterize the mechanisms used by some of
these viruses to reach the brain and the CNS and as to how these
pathogens cause damage to the BBB.

As it was mentioned above, arboviruses are arthropod-borne
viruses (Barrett and Weaver, 2012; Beckham and Tyler, 2015;
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FIGURE 1 | Pathways used by viruses to cross the blood-brain barrier. The blood-brain barrier (BBB) is composed of endothelial cells, pericytes, and astrocytes
cells. The viruses use three principal pathways to cross the BBB: paracellular, transcellular, and the “trojan horse” mechanism. West Nile virus (WNV) can reach the
central nervous system via the paracellular pathway and the “trojan horse” mechanism, disrupting claudins and promoting the secretion of matrix metalloproteinases
(MMPs) 9. Herpes simplex virus (HSV-1) can reach the central nervous system via the paracellular pathway, disrupting claudins and occludins and promoting the
secretion of MMP2 and MMP9. Human immunodeficiency virus (HIV) can reach the central nervous system via the paracellular and transcellular pathways and
promote the secretion of MMP2 and MMP9. SARS-CoV-2 can reach the central nervous system via the paracellular pathway and the “trojan horse” mechanism;
however, it has not been elucidated how and what it promotes. Human respiratory syncytial virus (hRSV) can reach the central nervous system through the
disruption of the BBB, but how and what it causes this has not been elucidated yet.

Clé et al., 2020). Infections by arboviruses can result in viremia,
and it has been reported that in most cases, patients are
asymptomatic or exhibit symptomatology similar to flu, such as
headache, high fever, muscle aches, lack of muscle coordination,
disorientation, convulsions, and coma (Table 1; Barrett and
Weaver, 2012; Perng and Chen, 2013; Clé et al., 2020). Moreover,
it has been reported that this virus may cross the BBB by the
“trojan horse” mechanism and also through the paracellular
pathway without disrupting the BBB (Verma et al., 2009).
Astrocytes infected with WNV in vitro exhibited increased RNA
and protein expression of MMPs. Particularly, MMP9 has been
shown to be essential for the entry of WNV into the brain, as
MMP9 KO mice exhibited reduced viral loads (Wang et al., 2008;
Verma et al., 2010). Remarkably, in cells culture of human brain
microvascular endothelium, an increased expression of claudin-1
(and no changes on ZO-1 expression) have been reported upon
infection with WNV, consistent with the lack of BBB disruption
described in vitro (Verma et al., 2009). Different reports have
shown that the capsid from WNV can induce the disruption
and loss of claudin-2 and -3 in mice in vivo and increase

the permeability of the BBB, while ZO-1 and occludin remain
unchanged (Medigeshi et al., 2009). Since the differences of these
studies are notorious (i.e., the first one is in vitro with human
cells, while the second one is in vivo with mouse models), further
studies are still required to understand the capacity of WNV to
modulate the permeability and disrupt the integrity of the BBB.

Herpesviruses have been described as a common cause of
sporadic viral encephalitis worldwide, with herpes simplex virus-
1 (HSV-1) and herpes simplex virus-2 (HSV-2) most frequently
found in CSF samples from patients with viral encephalitis
(mainly neonates and adults) (Marcocci et al., 2020; Aksamit,
2021). The primary infection of HSVs occurs through direct
contact of the host mucosal membranes or damaged skin
with infected fluids. This virus can then reach and infect
sensory neurons, leading to secondary encephalitis (Bradshaw
and Venkatesan, 2016; Marcocci et al., 2020; Acuña-Hinrichsen
et al., 2021). The clinical signs described in patients with HSV
encephalitis (HSE) are fever, headache, seizure, focal neurological
deficits, and general encephalopathy (Table 1; Bradshaw and
Venkatesan, 2016). HSV-1 is one of the most prevalent viruses
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worldwide, with over 70% of the population carrying this virus
(Whitley, 2006). This neurotropic virus is usually found in a
latent state in the trigeminal ganglia and the olfactory bulb
after primary infection of the target mucosa (Feldman et al.,
2002). Unlike other viruses addressed here, it is thought that
HSV-1 gain access to the CNS through retrograde transport
into the nerve fibers on the sites indicated above, therefore
not disrupting the BBB on a first instance (Figure 1; Jennische
et al., 2015). However, the presence of this virus may cause HSE,
which in turn will promote damage to the BBB, manifesting
clinical signs, such as headaches, fever, seizures, as well as
cognitive and behavioral sequelae (Steiner, 2011; Jennische et al.,
2015; Liu et al., 2019). The specific mechanisms underlying the
disruption of the BBB by HSV-1 during HSE have not been
elucidated yet, but some reports have made advancements in
this field. For instance, increased activity of MMP2 and MMP9
has been reported in HSE mouse models using either HSV-
1 or mouse adenovirus (MAV)-1, which led to disruption of
TJs and components of the extracellular matrix (Zhou et al.,
2010; Ashley et al., 2017). Remarkably, infection with MAV-1
resulted in increased permeability of the BBB, which could not be

TABLE 1 | Viral agents causing encephalitis and symptomatology.

Classification Virus Symptomatology

Arboviruses WNV Headache, high fever, muscle aches,
lack of muscle coordination,
disorientation, convulsions, and coma.

JEV

DENV

ZIKV

CHIKV

TBEV

Rhabdoviruses RABV Fever, hypersalivation, hydrophobia,
swallowing difficulty, throat pain,
aerophobia, neurological signs, coma,
and multiple organ failure

Enteroviruses EV71 Fever, headache, respiratory illness,
vomiting, diarrhea, autonomic nervous
system dysregulation, and
cardiopulmonary failure.

RV

Herpesviruses HSV-1 Fever, headache, seizure, focal
neurological deficits, and general
encephalopathy.

HSV-2

Retroviruses HIV Mental concentration, leg weakness,
slowness of hand movement,
personality changes, apathy, and social
withdrawal.

Orthomyxoviruses Influenza virus Febrile seizures, convulsions, ataxia,
and status epilepticus

Orthopneumovirus hRSV Headache, dizziness, confusion,
hypogeusia, and hyposmia

Coronaviruses HCoV-O43

HCoV-229E

SARS-CoV-1

SARS-CoV-2

related to inflammation (Gralinski et al., 2009). In vitro infection
of primary cultures of the mouse brain, endothelial cells with
HSV-1 resulted in a downregulation of occludin and claudin-
5, along with significant cell apoptosis and Golgi apparatus
fragmentation (Deng et al., 2018; He et al., 2020). Remarkably,
infection of HeLa cells with HSV-2 resulted in no differences in
the expression of ZO-1, although this has not been evaluated for
HSV-1 (Miezeiewski et al., 2012). Most of these results support
the notion that HSV-1 can disrupt the BBB. However, more
detailed analyses are required to address further the specific
mechanisms shown by this virus to disrupt this barrier, such as
the impact on TJ components like ZO-1.

Human immunodeficiency virus (HIV) is a highly prevalent
virus that belongs to the retroviruses group and is the agent
causative of the acquired immunodeficiency syndrome (AIDS)
and can also cause encephalitis (Simon et al., 2006; Maartens
et al., 2014). Transmission of HIV is through the direct
contact of infected body fluids (such as blood, semen, breast
milk, and vaginal secretions) [Deeks et al., 2015; German
Advisory Committee Blood (German Advisory Committee
Blood (Arbeitskreis Blut), Subgroup ‘Assessment of Pathogens
Transmissible by Blood’, 2016)]. One of the most critical
aspects of the neurological impact of HIV infection is the
HIV-associated neurocognitive disorder (HAND). HAND is a
pathology characterized by a deficit of mental concentration,
leg weakness, slowness of hand movement, mood alterations,
apathy, and social withdrawal (Table 1; Ghafouri et al., 2006;
Wang et al., 2020). HIV is also one of the most studied viruses
that significantly impact the BBB (Strazza et al., 2011; Spindler
and Hsu, 2012; Caligaris et al., 2021). This virus can move
through the BBB by transcellular and paracellular diapedesis of
infected lymphocytes, leading to barrier damage and encephalitis
(Ivey et al., 2009). In vitro studies showed that PBMCs infected
with HIV-1 exhibited enhanced capacities to cross brain-derived
micro vascularity in primary cultures, compared to uninfected
PBMCs (Eugenin et al., 2006). The presence of HIV-1-infected
PBMCs also led to increased expression of MMP-2 and MMP-9,
along with altered expression of TJ (Eugenin et al., 2006).

Human immunodeficiency virus expresses different proteins
that are part of the viral particle, and some of those have
been shown to play a role in the modulation of the BBB
integrity. The protein gp120 is an envelope protein from HIV-
1 with various effects in the host [German Advisory Committee
Blood (German Advisory Committee Blood (Arbeitskreis Blut),
Subgroup ‘Assessment of Pathogens Transmissible by Blood’,
2016)]. In vitro and in vivo studies showed that the presence
of gp120 increased the permeability to albumin of the BBB
(a protein that in normal conditions does not cross the BBB)
(Cioni and Annunziata, 2002; Strazza et al., 2011). This viral
antigen also was responsible for reducing the expression of ZO-
1 and occludin in human brain endothelial cultures in vitro
(Kanmogne et al., 2005). The addition of Tat (an HIV protein
associated with transactivation, enhancement of initiation and
elongation of viral transcription [German Advisory Committee
Blood (Arbeitskreis Blut), Subgroup ‘Assessment of Pathogens
Transmissible by Blood’, 2016] to human brain microvascular
cultures resulted in altered TJ expression, inflammation, and the
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expression of proteolytic enzymes (Strazza et al., 2011). This
protein also reduced the expression of occludin and enhanced
its cleavage by MMP9 (increasing the mRNA levels, protein
levels, and enzymatic activity of this MMP) in these cultures
(Xu et al., 2012; Marino et al., 2020). Nef is an HIV-1 protein
with roles described in modulating the expression of MHC-I
and CD4 in lymphocytes [Haller et al., 2014; German Advisory
Committee Blood (Arbeitskreis Blut), Subgroup ‘Assessment of
Pathogens Transmissible by Blood’, 2016]. This protein increases
the sensibility of astrocytes to ROS in vitro cultures. Therefore,
Nef can modulate the expression and activity of enzymes,
such as MMP9 (Lévêque et al., 2004). Different reports have
also evaluated the role of HIV in vivo. For instance, reduced
expression of ZO-1, occludin, and claudins have been described
in post-mortem samples from HIV-infected humans exhibiting
encephalitis or dementia (Dallasta et al., 1999; Boven et al., 2000).
Accordingly, pericytes in the BBB can also be infected by HIV in
mice, and the expression of occludin by these cells modulates the
transcription of HIV (Castro et al., 2016; Bertrand et al., 2019).
Administration of gp120 to rats resulted in increased levels of
ROS, which led to reduced expression of claudin-5 and increased
expression of MMP2 and MMP9 (Louboutin et al., 2010). Mice
treated with Tat also showed a decreased expression levels of ZO-
1 and accumulation of inflammatory immune cells (Marino et al.,
2020). Finally, administration of Nef to rats also led to an MMP9-
mediated BBB disruption, which could be reverted by previous
treatment with inhibitors for this enzyme (Sporer et al., 2000).
Altogether, several studies are addressing the capacities of HIV
to modulate and disrupt the components of the BBB, and further
studies should focus on elucidating the molecular mechanisms
and finding therapeutic approaches to prevent BBB disruption.

Respiratory viruses also have the ability to produce secondary
encephalitis (Bohmwald et al., 2018; Mastrolia et al., 2019; Yuan
et al., 2019). For instance, orthomyxoviruses such as Influenza
virus have been detected in CSF from patients with respiratory
symptoms and mild altered mental state, vertigo, or febrile
seizures (Table 1; Bohmwald et al., 2018; Mastrolia et al., 2019;
Yuan et al., 2019). Human respiratory syncytial virus (hRSV),
an orthopneumoviruses, has also been associated with secondary
encephalitis (Millichap and Wainwright, 2009; Bohmwald et al.,
2018; Kawasaki et al., 2019). Among the clinical signs related
to neurological complications due to hRSV infection are febrile
seizures, convulsions, ataxia, and status epilepticus (Table 1;
Bohmwald et al., 2018).

Virtually every human in the world has been infected with
hRSV (Calvo et al., 2008; Gálvez et al., 2017; Bohmwald et al.,
2018; Ali et al., 2020). This virus is one of the main responsible
for causing acute respiratory tract infections in developing and
developed countries, with a significant burden on newborns,
infants, and the elderly (Gálvez et al., 2017; Bohmwald et al.,
2018; Mandi et al., 2021; Tabor et al., 2021). Reports have shown
that hRSV can disrupt the BBB, as seen in Evans Blue (EB)
permeability assays (Saunders et al., 2015; Bohmwald et al.,
2021b). EB is a molecule that binds to albumin (a protein found
circulating in the blood) in normal physiological conditions and
cannot cross the BBB (Espinoza et al., 2013; Saunders et al.,
2015; Bohmwald et al., 2021b). The presence of both EB in the

brain (meaning that albumin crossed the BBB), viral antigens,
and genetic material indicate that this virus can disrupt the
integrity of the BBB (Espinoza et al., 2013; Bohmwald et al.,
2021b). Remarkably, BBB disruption and the presence of hRSV
in the CNS have been shown to impact different behavioral
and cognitive capacities in mouse models (Espinoza et al.,
2013; Bohmwald et al., 2021b). Further studies are required
to evaluate the mechanisms underlying BBB disruption by
hRSV, i.e., changes on TJ components, such as ZO-1 or in the
expression of MMPs.

Regarding the HCoVs, HCoV-O43, HCoV-229E, SARS-CoV-
1, and SARS-CoV-2 have been detected in patients exhibiting
neurological symptoms, such as headache, dizziness, confusion,
hypogeusia, and hyposmia (Table 1; Morfopoulou et al., 2016;
Bohmwald et al., 2018; Mishra and Banerjea, 2020; Kasereka
and Hawkes, 2021). Coronavirus disease 2019 (COVID-19) is
the disease caused by SARS-CoV-2, the virus responsible for the
pandemic affecting the whole world since December 2019 (Zhu
et al., 2020). This pandemic has caused the death of over four
million people, although vaccines and treatments are just starting
to control the spread and the severity of this virus (Dong et al.,
2020; WHO, 2020). As previous coronaviruses were known to
have an impact on the CNS, and several neurological sequelae
have been reported after SARS-CoV-2 infection in humans, a
significant number of studies have focused on the impact of
SARS-CoV-2 in the brain and the BBB (Bohmwald et al., 2018;
Desforges et al., 2019; Fiani et al., 2020). Studies using HCoV-
OC-43 and HCoV-229E have shown that these coronaviruses
can enter the brain through the paracellular pathway and the
“trojan horse” mechanism; therefore, SARS-CoV-2 could be using
the exact mechanisms, as genetic material from this virus has
also been found in post-mortem brain samples (Desforges et al.,
2007; Li et al., 2020; Paniz-Mondolfi et al., 2020; Zubair et al.,
2020). In vitro use of human pluripotent stem cell-derived brain
organoids have shed some light on the infective capacity of SARS-
CoV-2 at the CNS (Pellegrini et al., 2020). Among the many
cell types found in these organoids, only mature choroid plexus
cells were infected, while neurons and other cell types were not
(Pellegrini et al., 2020). Remarkably, a decrease in the expression
of claudin-5 was observed on the epithelium of SARS-CoV-2-
infected cells, which could be associated with the BBB disruption
(Pellegrini et al., 2020). Although further studies are required to
characterize the impact of this novel virus on the BBB function
and the modulation of other elements, such as occludins and
MMPs, it has been recently shown that the envelope protein (E) of
SARS-CoV-2 can interact with ZO-1 on TJ (Shepley-McTaggart
et al., 2021). This phenomenon likely plays a role in disrupting
the BBB function (Shepley-McTaggart et al., 2021).

As it was previously mentioned, RABV is the most studied
zoonotic neurotropic virus with symptoms such as fever,
hypersalivation, hydrophobia, swallowing difficulty, throat pain,
aerophobia, neurological signs, coma, and multiple organ failure
(Table 1; Hemachudha et al., 2013; Sharma et al., 2015). Besides,
RABV neuroinvasion is through the infection of peripheral
neurons located in the bite site, altering the BBB permeability
to increase its replication in the CNS (Qingqing et al., 2014).
Indeed, only a laboratory-attenuated RABV infection decreases
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the expression of claudin-5, occludin, and ZO-1, which increase
the BBB permeability, allowing the infiltration of the immune
cells into the brain (Qingqing et al., 2014). These effects were not
observed with the WT RABV infection, suggesting that this virus
evaded the immune response maintaining the BBB permeability
intact (Qingqing et al., 2014).

Enteroviruses infections are mainly transmitted by the
fecal-oral route, and viral replication usually occurs in the
gastrointestinal tract (Chen et al., 2020). Several enteroviruses
capable of causing encephalitis, such as poliovirus (PV) and
enterovirus 71 (EV71) (Huang et al., 2006; Huang and Shih,
2015; Chen et al., 2020). Generally, enterovirus infections are
asymptomatic, but they can also cause a wide range of clinical
manifestations, such as fever, headache, respiratory illness,
vomiting, diarrhea, autonomic nervous system dysregulation,
and cardiopulmonary failure (Table 1; Huang and Shih, 2015;
Chen et al., 2020).

Autoimmune encephalitis has also been reported in several
cases (Lancaster, 2016). This neuropathology is challenging to
diagnose due to similar clinical analyses performed with other
autoimmune diseases or viral encephalitis (Lancaster, 2016).
Autoimmune encephalitis can be classified into two groups. In
the first one, known as paraneoplastic syndromes, autoantibodies
attack intracellular proteins such as anti-Hu, anti-Yo, and anti-
Ri (Lancaster, 2016; Hermetter et al., 2018), while in the
second group, autoantibodies are directed against extracellular
epitopes of ion channels, neuronal receptors, or synaptic proteins
including anti-N-methyl D-aspartate-receptor (NMDAR) and
metabotropic glutamate receptor 5 (mGluR5) (Lancaster, 2016;
Hermetter et al., 2018). Importantly, encephalitis caused by
damage to NMDAR exhibits symptoms, such as behavioral
changes, hallucinations, seizures, amnesia, and movement
disorders (Prüss et al., 2010). Antibodies against NMDAR have
been found in serum from patients who were diagnosed or
recovered from HSE, CHIKV, TBEV, Influenza virus, WNV,
enteroviruses, and SARS-CoV2, among others (Adang et al.,
2014; Cavaliere et al., 2019; Karagianni et al., 2019; Sahar et al.,
2019; Alvarez Bravo and Ramió i Torrentà, 2020; Nóbrega
et al., 2020). One crucial aspect to consider is that secondary
encephalitis can be caused by an infection of the CNS and a
systemic inflammation where normal brain functions are affected
(Hosseini et al., 2018, 2021).

IMMUNE RESPONSE AT THE CENTRAL
NERVOUS SYSTEM DURING VIRAL
INFECTIONS

As mentioned above, the first step to initiate viral encephalitis
is the BBB disruption. Once the virus enters the CNS, the first
line of defense consists of microglia, which are the primary
innate immune response of the CNS (Kofler and Wiley, 2011;
Ousman and Kubes, 2012; Lenz and Nelson, 2018; Bohmwald
et al., 2021a). In the brain, microglia play an essential role in
maintaining homeostasis, supporting neurons by the secretion
of neurotrophins and growth factors, in addition to their
contribution to the immune response against pathogens (Kofler

and Wiley, 2011; Ousman and Kubes, 2012; Lannes et al., 2017a;
Chhatbar and Prinz, 2021). Microglia are susceptible to being
infected by several viruses, including WNV, JEV, DENV, ZIKV,
HIV, and HSV-1, among others (Jhan et al., 2017; Wang et al.,
2018). The astrocytes are one of the most abundant cell types
in the brain and plays several roles in brain homeostasis, such
as regulation of the ion balance and neurotransmitters, support
of the neuronal synapses, and maintenance of BBB permeability
(Colombo and Farina, 2016; Soung and Klein, 2020; Bohmwald
et al., 2021a). Like microglia, activated astrocytes can secrete
factors that allow immune cell recruitment into the injured
area, promoting the amplification of the neuroinflammation
(Farina et al., 2007). Astrocytes are permissive to infection by
WNV, JEV, ZIKV, TBEV, HSV-2, HIV, hRSV, and SARS-CoV-
2 (Palus et al., 2014; Huang et al., 2018; Potokar et al., 2019;
Crunfli et al., 2020; Lutgen et al., 2020; Bohmwald et al., 2021b;
Słońska et al., 2021). Neurons can have different functions,
depending on their location in the brain. For instance, neurons
close to the BBB contribute to the regulation of blood flow
and secrete factors that promote angiogenesis, among others
(Bohmwald et al., 2018; Rhea and Banks, 2019). The pyramidal
glutamatergic neurons function at the hippocampus is mainly
associated with learning, memory, and emotions (Wheeler et al.,
2015; Spencer and Bland, 2019). For several viruses, including
WNV, JEV, ZIKV, TBEV, HSV, HIV, Influenza virus, hRSV,
and SARS-CoV-2, neurons are the primary infection target in
the brain (Kopp et al., 2009; Wang et al., 2016; Bohmwald
et al., 2018; Klein et al., 2019; Clé et al., 2020). The infection
of neurons promotes cell damage, death, the secretion of
cytokines that induce immune cell recruitment, and alterations in
neurocognitive processes (Bílı et al., 2015; Bohmwald et al., 2018;
Klein et al., 2019).

Studies evaluating WNV encephalitis have shown that human
fetal cultures of microglia are less permissive to viral infections
than human fetal cultures of neurons and astrocytes (Cheeran
et al., 2005). However, poor viral infection promoted microglia
activation and TNF-α secretion at an early stage of the infection
and, later, IL-6, CCL2, CCL5, and CXCL10, which was not
observed when inactivated WNV was administered to these
cells (Cheeran et al., 2005). Moreover, increased susceptibility
to infection has also been shown during the infection with an
attenuated strain of WNV in mice lacking IL-34 (absent of
microglia but not bone marrow-derived macrophages) therefore
confirming the protective role of microglia (Wang et al.,
2012). Additionally, WNV-infection of astrocytes promotes the
expression of pro-inflammatory mediators and the release of
neurotoxins (van Marle et al., 2007). Indeed, neuron death
induced by WNV is not only by direct infection, but it is also
promoted by infected astrocytes (Figure 2; van Marle et al., 2007;
Potokar et al., 2019).

One of the models used to study viral infection of
microglia in vitro is through the use of human peripheral
blood monocytes, which can differentiate into monocyte-
derived microglia after culture with a serum-free medium
containing M-CSF, GM-CSF, NGF, and CCL2 (Etemad et al.,
2012; Rai et al., 2020). Studies performed in JEV-infected
human blood monocytes-derived microglia model showed a
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FIGURE 2 | Viral encephalitis leads to several neurologic sequelae. Primary encephalitis is caused by viruses that infect the brain as their principal target, which can
be found in arboviruses, enteroviruses, herpesviruses, and HIV. The infection of cells from the central nervous system induces the cytokine, neurotrophic, and growth
factor secretion and the recruitment of immune cells. It is thought that this response can contribute to neuroinflammation, leading to neurologic sequelae such as
depression, speech disorders, memory, and cognitive impairment, motor dysfunction, microcephaly, and even Alzheimer’s disease. Secondary encephalitis is caused
by viruses that do not infect the brain as their principal target, which can be found in orthomyxovirus, orthopneumoviruses, and coronaviruses. The infection of cells
from the central nervous system induces the cytokine, neurotrophic, and growth factor secretion and the recruitment of the immune cells. This response contributes
to neuroinflammation, leading to neurologic sequelae such as learning and memory impairment, depression, anxiety, and post-traumatic stress disorder.

contact-dependent cell-to-cell transmission, which involves the
CX3CR1-CX3CL1 axis allowing an early infection of neurons
(Lannes et al., 2017b, 2019). It has been proposed that microglia
can be the reservoir for JEV (Thongtan et al., 2010). In
mouse microglial cells (BV2), exposure to JEV resulted in
95% of cells being infected after 24 h, and this remained
constant until 5 days post-infection (Thongtan et al., 2010).
JEV-infected microglia were activated, and after they were
sub-cultured 2-3 times per week for 16 weeks, the microglial
cells showed a long-term infection (Thongtan et al., 2010).
Notably, the activation of microglia promoted an increase in the
expression of CCR2, tumor necrosis factor-alpha (TNF-α), and
interferon gamma (IFN-γ) (Singh et al., 2020). The inhibition
of CCR2 in JEV-infected microglia reduces their activation
and, consequently, the expression of pro-inflammatory cytokines
(Singh et al., 2020). Similarly to WNV and TBEV, JEV can
infect astrocytes and induce the secretion of pro-inflammatory
molecules, such as CXCL10 and TNF-α and also type I IFN, which

contribute to limiting viral spreading in these cells (Figure 2;
Lindqvist et al., 2016; Potokar et al., 2019). Additionally, it
has been described that JEV infects dopaminergic neurons and
induces the secretion of high dopamine levels, which increases
dopamine receptor 2 (DR2) involved in viral entry (Simanjuntak
et al., 2017). Also, JEV infection of neurons promotes the
activation of NMDAR, which increases the release of glutamate
and pro-inflammatory cytokines, promoting neuronal death
(Chen et al., 2018).

It is known that ZIKV impairs normal neurodevelopment
due to the infection of neural cells. However, it can also
infect microglia, promoting the secretion of pro-inflammatory
cytokines, such as TNF-α and IL-6, and therefore inhibiting
neuronal differentiation of neuronal precursor cells (NPCs)
(Wang et al., 2018). Fetal astrocytes are more permissive to ZIKV
infection than fetal neurons or NPCs (Huang et al., 2018). In a
human astrocyte cell line (U251), viral infection induces protein
expression changes associated with several signaling pathways,
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including axonal guidance and the expression of genes involved
in neurological disorders (Sher et al., 2019; Shereen et al.,
2021). Furthermore, ZIKV infection of hippocampal neurons
promotes changes in the expression of molecules involved in
the communication between astrocytes and neurons, such as
NMDAR and neurotrophins (Bobermin et al., 2020).

Studies performed in neurons and astrocytes differentiated
from human fetal neuronal progenitors (hNPCs) showed that
this cell type is permissive to be infected by TBEV (Fares et al.,
2020). Viral infection promotes neuron and astrocyte death and
the production of type I IFNs, which is implicated in the control
of viral replication and cell protection (Selinger et al., 2017;
Fares et al., 2020).

Concerning the RABV neurotropism, it is well known that
the infection of motor neurons and dorsal root ganglia (DRG)
sensory neurons help this virus to spread from the site of
the infection to the CNS through an axonal anterograde and
retrograde transport (Velandia-Romero et al., 2013; Davis et al.,
2015; MacGibeny et al., 2018; Potratz et al., 2020a). Most studies
have shown that infection of neurons with laboratory-adapted
RABV can induce more neuronal apoptosis than WT RABVs
(Fernandes et al., 2011). Although neurons are the primary target
of infection of this virus, several reports show that astrocytes can
also be infected with different RABVs strains (Tian et al., 2018;
Potratz et al., 2020a). In this line, RABV Tha (the WT strain)
and Th2P-4M (a less virulent strain) can replicate more efficiently
in human neuroblastoma cell lines (SK-N-SH) as compared to
astrocyte-like (SVGp12) and microglia-like (HMC3) cell lines. It
has also been reported that RABV only infects human neural stem
cells (hNSC) differentiated into hiNeurons and hiAstrocytes,
while it does not infect iPSC differentiated into hiMicros (Feige
et al., 2021). Interestingly, it has been reported that glial cells
display a protective role when co-cultured with infected neurons,
reducing and limiting the infection of RABV. Additionally, glial
cells differentially express and secrete cytokines such as IL-6,
CCL5, and CXCL10, as part of the innate immune response
against RABV, which varies depending on the viral strain (Tian
et al., 2018; Feige et al., 2021).

Interestingly, HSV not only infects neurons but can also
establish latency on these cells as well as in astrocytes (Marcocci
et al., 2020; Słońska et al., 2021). HSV-1-infected cortical neurons
exhibit an altered expression of dendritic spine proteins as well
as their distribution and changes in response to a glutamate
stimulation altering the normal function of these cells (Acuña-
Hinrichsen et al., 2021). Importantly, HSV-1-infected NCSs
present impairment in their growth, proliferation, and neuronal
differentiation, which can cause neurodevelopment disorder
observed in neonatal HSV-1 infections (Qiao et al., 2020). On
the other hand, microglia also are permissive to HSV-1 infection,
but the viral replication is limited due to the secretion of antiviral
molecules, such as TNF-α, IL-1β, CCL5, and CXCL10, suggesting
a protective role for these cells (Lokensgard et al., 2001).
However, the chronic infection of HSV-1 induces a prolonged
activation state of microglia characterized by the secretion of
chemokines including CCL2, CCL5, and CXCL10 that allow
peripheral immune cell infiltration into the brain (Figure 2;
Wang et al., 2019).

Neuroinvasion of HIV occurs in the acute stage of the
infection, where the virus can infect astrocytes and microglia,
while the infection of neurons remains controversial (Kovalevich
and Langford, 2012; Wallet et al., 2019; dos Reis et al., 2020;
Lutgen et al., 2020). HIV can infect astrocytes in the brain and
then egress to the peripheral organs through the infection of
CD4+ T cells (Lutgen et al., 2020). Additionally, it has been
reported that microglia may act as the main reservoir for HIV
in the brain due to in these cells, there is no evidence of
cytopathic effect, lysis, or cell apoptosis (Wallet et al., 2019).
Similar to other viral infections, the activation of microglia
promotes the secretion of pro-inflammatory cytokines, such
as TNF-α, IL-6, IL-10, and CXCL8 (Figure 2; Tatro et al.,
2014). Regarding the HIV latency on microglia, it has been
described that dopaminergic and GABAergic but not cholinergic
motor neurons can control the expression of HIV and prevent
the reactivation of this virus (Alvarez-Carbonell et al., 2019).
Conversely, HIV-infected microglia induce neuronal damage
(Alvarez-Carbonell et al., 2019).

Recently, studies in mice described that hRSV could infect
several brain cells, such as microglia, astrocytes, and neurons,
among others (Bohmwald et al., 2021b). Studies in primary
mouse astrocyte cultures have shown that hRSV infection
promotes cellular activation, increasing production of nitric
oxide (NO) as well as the expression of GFAP, which increased
both at the levels of GFAP per astrocyte and the number
of activated astrocytes (Eng et al., 2000; Bohmwald et al.,
2021b). Besides, hRSV-infected astrocytes secrete pro-and anti-
inflammatory cytokines during the acute phase of infection,
which can be the source of cytokines observed in the brain of
hRSV-infected mice (Figure 2; Bohmwald et al., 2021b). Further
experiments are required to address the effect of hRSV infection
in microglia and neurons.

SYSTEMIC IMMUNE RESPONSE
AGAINST THE VIRAL INFECTION

Neurotropic viruses can reach the brain and promote a local
infection in this tissue. However, most of these viruses have
a primary infection site outside the CNS, where the systemic
immune response is elicited (Luethy et al., 2016). From there,
neurotropic viruses can reach the CNS through different
pathways, such as the infection of peripheral nerves or its
dissemination through the bloodstream (viremia) that allows
the virus to cross the BBB as described earlier (Luethy et al.,
2016). During these events, the infection caused by these viruses
in the primary tissue target, including the CNS, can lead to a
systemic immune response against them, which is characterized
by the increase of pro-inflammatory cytokines and leukocytes
infiltrating different tissues besides the infection site, such as
the CNS (Libbey and Fujinami, 2014; Zotova et al., 2016;
Filgueira et al., 2021). This section will discuss the systemic
immune response induced and this effect on the clearance of the
viral neuroinvasion.

It is known that patients with viral encephalopathies exhibit
specific characteristics, such as abnormal concentrations of
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lymphocytes in CSF (Stone and Hawkins, 2007). In the case of
arboviruses, the neuroinvasion of WNV induces the recruitment
of peripheral T cells and monocytes, which can infiltrate the
brain (Fulton et al., 2020). Additionally, local infection with
arboviruses promotes the recruitment of CD8+ T cells from
the periphery into the brain due to the continued activation of
astrocytes (Soung and Klein, 2018). Even though the infiltration
of T cells into the brain promotes the clearance of viruses, such as
WNV and ZIKV, studies in mice have shown that these cells are
responsible for learning defects and destruction of presynaptic,
postsynaptic terminals, and neuronal apoptosis (Garber et al.,
2019). Infection with EV71 can promote the infiltration of
peripheral immune cells, such as T cells, B cells, monocytes, and
dendritic cells, into the CSF (Chen et al., 2020). Interestingly,
the expression of CD40L on T cells and the secretion of IL-4
decreases in EV71-infected infants (Chen et al., 2020).

The infection with the laboratory strain of RABV has
been characterized by the inflammation of the CNS, where it
could be seen an increase of different inflammatory molecules
such as cytokines, chemokines, and IFNs (Wang et al., 2005).
Since the pro-inflammatory molecular response is responsible
for recruiting leukocytes into the infected tissue, it has been
suggested that these molecules are responsible for the infiltration
of different immune cells, such as dendritic cells, macrophages,
neutrophils, and lymphocytes, into the CNS (Kuang et al., 2009;
Luo et al., 2020). Even more, the presence of CD4+ and CD8+

T cells found on the brain of patients infected with RABV
represented the majority of the population within the brain that
were undergoing apoptosis (Fernandes et al., 2011). These last
observations suggest that RABV promotes the apoptosis of T
lymphocytes to avoid clearance by the immune system.

As discussed previously, arboviruses can induce peripheral
T cell infiltration through the activation of astrocytes, and
herpesviruses seem to have a similar mechanism to recruit
immune cells into the brain (Marques et al., 2008). Studies
with HSV-1 on murine models have shown that brain infection
induces the activation of microglial cells, and following their
activation, infiltration of immune cells can be observed (Marques
et al., 2008). These data suggest that the activation of
microglial cells can induce the recruitment of immune cells
from the periphery (Marques et al., 2008). Among immune
cells recruited into the brain, macrophages and neutrophils
can be found during the first days of infection, and T cells
can be found even 30 days post-infection, which correlates
with the activation of microglial cells that lasted up to
30 days post-infection (Marques et al., 2008). Consistently,
brain infection with HIV promotes the recruitment of immune
cells from the periphery, such as macrophages, dendritic
cells, and T cells, following the activation of microglial cells
(Ousman and Kubes, 2012).

Reports of patients with encephalopathies due to local
infection with Influenza virus in the brain have shown an
increased transcription for IL-6, IL-10, and TNF-α in immune
cells from the peripheral blood (Kawada et al., 2003). Both
IL-6, IL-10, and sTNF-R1 levels correlate with the peripheral
blood concentration of these cytokines, and death was usually
reported in patients with extremely high concentrations of these

cytokines (Kawada et al., 2003). Interestingly, these studies
suggest that encephalopathies increase the pro-inflammatory
response in these patients, compared to patients only with
pulmonary symptoms due to Influenza virus infection (Kawada
et al., 2003). Additionally, infants with encephalopathies due to
Influenza virus infection can exhibit leukopenia in some cases,
while leukocytosis could be observed in others (Mastrolia et al.,
2019). Infants diagnosed with encephalopathies due to hRSV
infection exhibited a systemic increase of cytokines, and slight
increases in CD4+ and CD8+ T cells numbers have been detected
(Ayukawa et al., 2004; Bohmwald et al., 2018). Infection with
SARS-CoV-2 promotes T cell and monocyte infiltration into
the CNS, where microglial cells may be responsible for the
recruitment of these peripheral immune cells (Pacheco-Herrero
et al., 2021). Similarly, SARS infections promoted T cells and
monocytes infiltration into the CNS (Gu et al., 2005; Wu and
Tang, 2020). These data suggest a general infiltration of these cell
types from the peripheral blood into the CNS during encephalitis
due to coronaviruses.

Non-neurotropic viruses can also induce encephalopathies
through the systemic immune response. Non-neurotropic viruses
such as Influenza virus (H1N1) increase the levels of B cells,
CD8+ T cells, and monocytes but decrease the number of
regulatory T cells (Frisullo et al., 2011; Maria et al., 2018).
Interestingly, infection with this virus increases the activation of
microglial cells, leading to the recruitment of immune cells into
the brain (Sadasivan et al., 2015).

LONG-TERM SEQUELAE DUE TO VIRAL
INFECTIONS

The inflammation previously described due to neurotropic
viruses can induce several neurologic diseases, such as
encephalitis that can lead in some cases to neuronal death
(Griffin, 2011; Klein et al., 2017). Thus, a viral infection of
the brain can induce permanent neurologic damage, which is
more common after viral encephalitis (van den Pol, 2009; Klein
et al., 2017). The sequelae reported after viral encephalitis can
involve cognitive impairments, motor dysfunction, and epilepsy,
where the cases of epilepsy have been described up to 20% in
the survivors of viral encephalitis (Libbey and Fujinami, 2011;
Schmidt et al., 2011). In this section, the long-term sequelae
because of the viral neuroinvasion will be discussed.

Patients diagnosed with viral encephalitis due to WNV tend
to develop long-term neuro-pathologies, such as depression,
speech disorders, memory, and cognitive impairment, motor
dysfunction, and in some rare cases, epilepsy (Klein et al.,
2017; Fulton et al., 2020; Zheng et al., 2020). In these patients,
cognitive symptoms such as memory loss, loss of concentration,
depression, irritability, and confusion can be detected from
6 to 18 months after the initial infection (Klee et al., 2004;
Klein et al., 2017). Studies performed in mice have shown
that infection with WNV can interfere with the neurological
synapsis and promote neuronal dysfunction and astrocytosis,
leading to spatial learning deficits and memory loss (Klein et al.,
2017; Fulton et al., 2020). Similar to the reports for WNV,
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JEV infection can cause a decrease in IQ, speech disorders,
memory, and adaptive behavioral impairment, even 2 years after
the initial infection (Figure 2; Yin et al., 2015). Additionally,
it has been reported that the infection with JEV can promote
the development of epilepsy, possibly due to the secretion of
pro-inflammatory molecules from activated microglial cells, their
proliferation, and the generation of microglial nodules (Ghoshal
et al., 2007; Zheng et al., 2020). Other arboviruses like ZIKV
can lead to sequelae on the offspring, such as microcephaly
and brain anomalies, after infecting pregnant women (Figure 2;
Panchaud et al., 2016). Even more, the microcephaly caused
by the infection with ZIKV can lead to epileptic activity in
more than 50% of the cases (Zheng et al., 2020). Sequelae
are generally associated with cognitive symptoms within the
arboviruses, and only ZIKV causes symptoms in newborns
(Panchaud et al., 2016).

Infants with encephalitis due to infection with EV71 exhibited
symptoms such as epilepsy, cerebellar dysfunction, cranial
nerve palsy, neurodevelopmental delay, cognitive disorders, and
ADHD (Huang et al., 2006; Chang et al., 2019; Tseng et al., 2020).
Interestingly, cognitive impairments are related to the severity of
the local infection on the brain by EV71, along with the age of
infection, as infants with severe symptoms during the infection
presented higher rates of neuropathological sequelae (Figure 2;
Chang et al., 2019). This observation suggests that enteroviruses
can cause massive neuron damage in young patients following
severe symptoms during infection.

Studies of patients who had been diagnosed with viral
encephalitis due to HSE have demonstrated sequelae such
as speech disorders, memory, and cognitive impairment,
personality disorders, and epilepsy (Sellner and Trinka, 2012;
Fruchter et al., 2015; Klein et al., 2017). It is vital to notice that the
development of epilepsy has been reported 8 years after the onset
of the encephalitis, and in nearly 60% of the patients infected
with HSV (Sellner and Trinka, 2012; Bonello et al., 2015). In vitro
studies have shown that HSV-1 is capable of upregulating the
processing of amyloid-beta precursor protein (AβPP), increasing
Aβ, suggesting the possibility that the infection with HSV can
contribute to Alzheimer’s Disease (AD) (Shipley et al., 2005;
Harris and Harris, 2018). Further, HSE in infants and adults
promotes an alteration mediated by the immune response,
where anti-NMDAR antibodies were detected after the HSV-
1 infection (Leypoldt et al., 2013). This phenomenon was
also associated with CHIKV infection (Nóbrega et al., 2020).
Studies performed on mice infected with HSV-1 have shown a
decrease in the NDMAR levels on hippocampal neurons, which
induce symptoms such as depression, anhedonia, and memory
deficits (Klein et al., 2017). The decrease of NMDAR is due to
the increase of anti-NMDAR antibodies during HSE, and the
consequences of these antibodies can be appreciated from the
first 2 months and up to 9 months after the initial infection
(Ewida et al., 2019). In some rare cases, as seen for ZIKV, HSVs
can cause microcephaly on the offspring of infected mothers
(Panchaud et al., 2016). Because HSV infection can cause a
variety of sequelae, which can be cognitive-, psychiatric-, or
neurodegenerative-related, patients infected with this virus need
to be appropriately monitored for an extended period after the

infection to manage the sequelae correctly (Figure 2; Fruchter
et al., 2015; Klein et al., 2017).

Other viral infections associated with neurodegeneration
are HIV, Influenza virus, and possibly SARS-CoV-2 (Chiara
et al., 2012; Rogers et al., 2020). Infection with HIV induces
HAND, causing cognitive impairment, dementia, and epilepsy
(Kellinghaus et al., 2008; Kranick and Nath, 2012). Studies have
indicated that 67% of the patients infected with HIV develop
epilepsy, and in the case of infants infected with HIV, epilepsy
has been associated with brain development problems and
cognitive impairment (Kellinghaus et al., 2008). Several reports
indicate that infection with HIV contributes to the onset of
AD through the dysregulation of signaling pathways that would
increase Aβ (Canet et al., 2018). Infection with neurotropic
and non-neurotropic Influenza viruses may promote several
neurologic sequelae, such as cognitive impairment, anxiety
behavior, learning difficulties, and memory problems, as studies
performed on mice have demonstrated (Hosseini et al., 2018). It
was recently shown that the sequelae observed in mice infected
with Influenza virus were caused by the alteration of function
and morphology of the CA1 hippocampal neurons, increases
in the glial cell density, and the activation in the hippocampus
region (Hosseini et al., 2018). Furthermore, a later study
suggested that non-neurotropic Influenza viruses can promote
an increase in AD symptoms due to the stimulation of the
systemic immune response that causes microglial hyperactivation
(Figure 2; Hosseini et al., 2021).

Infection with hRSV in infants has been shown to induce
language learning impairment, with children being unable to
differentiate native phonetic, non-native phonetics and develop
communication abilities (Peña et al., 2020). Moreover, studies
on mice infected with hRSV showed that infection promotes
learning impairment and behavioral alteration, which could
be observed up to 60 days post-infection (Figure 2; Espinoza
et al., 2013; Bohmwald et al., 2021b). Similar sequelae are
reported for patients infected with coronaviruses, exhibiting
symptoms such as impaired memory, depression, anxiety, and
post-traumatic stress disorder (Rogers et al., 2020). Reports
of patients infected with SARS-CoV-2 showed delirium and
dysexecutive syndrome symptoms, a neurodegenerative disease
affecting the frontal lobe of the brain (Poletti et al., 2017; Rogers
et al., 2020). Further, the increase of pro-inflammatory cytokine
response characteristic of the infection might be associated with
the development of epilepsy in patients infected with SARS-
CoV-2 (Nikbakht et al., 2020). Interestingly, a recent report
showed that a patient diagnosed with encephalitis caused due
to infection with SARS-CoV-2 had anti-NMDAR antibodies,
which could suggest that the depression and memory-impaired
symptoms are originated through a similar mechanism as
the one described for HSV (Figure 2; Klein et al., 2017;
Alvarez Bravo and Ramió i Torrentà, 2020).

CONCLUSION

Encephalitis is a public health problem that has been increasing
over the years either due to the emerging viruses, better
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diagnosis methods, or new knowledge about the etiology of the
disease. Some of these emerging viruses causing encephalitis are
considered to have an origin within animals and can spread
the infection toward humans. Regarding viral encephalitis, it is
clear now that not only the known neurotropic viruses such
as WNV, TBEV, RABV, HSV, and HIV, are responsible for
neuroinflammation, but also emerging respiratory viruses can
cause this pathology (Granerod and Crowcroft, 2007; Chia and
Hann Chu, 2013; Bohmwald et al., 2018; Yuan et al., 2019).
During viral infections, microglial cells are the first line of
defense and are the resident immune cells that initiate the
local immune response. Once microglia are activated, astrocytes
can also be activated and participate in the immune response
along with microglia by the secretion of soluble factors such
as cytokines and chemokines, inducing the recruitment of
circulating immune cells into the injured zone of the brain
(Colombo and Farina, 2016; Soung and Klein, 2018; Mangale
et al., 2020). In this process, neurons can also amplify the immune
response (Klein et al., 2017). The brain immune response can
be altered when a virus infects either microglia, astrocytes, or
neurons, increasing the inflammatory state and cell damage,
which can translate from neurocognitive and motor alterations to
the development of anti-NMDAR encephalitis or death (Huang
et al., 2006; Morfopoulou et al., 2016; Susanne, 2018; Clé et al.,
2020; Moriguchi et al., 2020; Pöyhönen et al., 2021). This
phenomenon has also been seen in non-neurotropic viruses,
which can induce systemic inflammation, capable of altering
the BBB permeability, allowing the infiltration of immune
cells that can directly impact brain cells or produce pro-
inflammatory factors (Jurgens et al., 2012; Maria et al., 2018).

Here, we discussed the current knowledge about the long-term
sequelae of viral infections. Among the different consequences
of a viral infection, neurodevelopmental delay, depression,
cognitive disorders, memory impairment, language acquisition
alteration, and ADHD can be found (Peña et al., 2020; Rogers
et al., 2020; Sinanović, 2021). These neurological alterations
can go unnoticed in most cases, which underscores the
importance of increasing the number of studies evaluating
the effects of viral infections with or without neuroinvasive
characteristics.
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